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Projective measurement (1)

For the system defined on Hilbert space #, take
m an observable O (Hermitian operator) defined on H.:

O:ZAVPZM

where \,’s are the eigenvalues of O and P, is the
projection operator over the associated eigenspace; O can
be degenerate and therefore the projection operator P, is
not necessarily a rank-1 operator.

m a quantum state (a priori mixed) given by the density
operator p on ‘H, Hermitian, positive and of trace 1;
Tr (v?) < 1 with equality only when p is an orthogonal
projector on some pure quantum state [¢), i.e., p = [¢) (¢].



Projective measurement (2)

Projective measurement of the physical observable
O = >, A\, P, for the quantum state p:

The probability of obtaining the value A, is given by
p, =Tr(pP,);notethat " p,=1asd P, =14 (1y4
represents the identity operator of #).
After the measurement, the conditional (a posteriori) state
p+ of the system, given the outcome \,, is
Py = Puok (collapse of the wave packet)

14

E When P !¢> (W1, Py = (W[Pu[Y), p+ = [¢4) (¥4| with
lv4) =
O non degenerate: von Neumann measurement.
Example: £ = C?, ) = (|g) + |€))/V2, O = o,; measuring
consists in turning on, for a small time, a laser resonant
between |g) and a highly unstable third state |f); fluorescence
means |¢4) = |g), no fluorescence means [i;) = |e).




Positive Operator Valued Measurement (POVM) (1)

System S of interest (a quantized electromagnetic field)
interacts with the meter M (a probe atom), and the
experimenter measures projectively the meter M (the probe
atom). Need for a Composite system: Hg ® Hy where Hg
and Hy, are the Hilbert space of S and M.

Measurement process in three successive steps:

Initially the quantum state is separable
Hs @My 2 |V) = [vg) ® 0u)

with a well defined and known state |6y,) for M.

Then a Schrédinger evolution during a small time (unitary
operator Us y) of the composite system from |¢s) @ |6u)
and producing Us u( |1s) ® |0um) ), entangled in general.

Finally a projective measurement of the meter M:

Om =1s® (X, A P,) the measured observable for the
meter. Projection operator P, is a rank-1 projection in Hy
over the eigenstate |\,) € Hy: P, = |A\) (A



Positive Operator Valued Measurement (POVM) (2)

Define the measurement operators M, via

Vivs) € Hs, Usm(lbs) @ 10m)) =D (Mylebs)) @A) .

Then )", MM, =1g. The set {M,} defines a Positive
Operator Valued Measurement (POVM).
In Hs ® Hu, projective measurement of Oy =1s® (>, A Py)
with quantum state Us y( |vs) ® |0um) ):
The probability of obtaining the value A, is given by
Py = <'¢S| MZT/MV |¢S>

After the measurement, the conditional (a posteriori) state
of the system, given the outcome )., is

|7/}S> M, |71[}S>

R
For mixed state p (instead of pure state |¢g)):
_ i _ _MypM]
p, = Tr (Mpry) and p;. = - T



Quantum Non-Demolition (QND) measurement (1)

Us. u is the propagator generated by H = Hs + Huy + Hsy where Hs
(resp. Hu, Hsy) describes the system (resp. the meter ,
system-meter interaction). For time-invariant H: Us y = e~ '™ where
7 is the interaction time.

A necessary condition for meter measurement to encode some
information on the system S itself: [H, Oy] # 0. When Hy = 0, this
necessary condition reads [Hsy, Om] # 0.

Proof: otherwise OMUS,M = US,MOM- With Oy = ZV Mls® ‘)\,,> <)\,,|
we have

Vv, OmUsm(|vs)®IA)) = UsmOum([vs)®|A) ) = A Usm(|1hs)®[A) ).

Thus, necessarily Us u(|vs) @ [A)) = (Us [vs) ) ® |A,) where U, is
a unitary transformation on #Hg only. With |6y) = >, 6, |\,), we get:

V[1ps) € HsUsm(|vs) @ [0m)) =0, (U 1hs)) @ |A)

Then measurement operators M, are equal to 6, U,. The probability
to get measurement outcome v, (| MM, |vs) = 16, [, is
completely independent of systems state |¢s).



Quantum Non-Demolition (QND) measurement (2)

The POVM (M, (system S, interaction with the meter M via

H = Hs + Hy + Hsy, von Neumann measurements on the meter via
Opu) is a QND measurement of the system observable Og if the
eigenspaces of Og are invariant with respect to the measurement
operators M,,. A sufficient but not necessary condition for this is
[H,0s] = 0.

Under this condition Og and Us y commute. Assume Og non
degenerate and take the eigenstate |u:) to the eigenvalue i € R:

OsUsm( 1) @ 10m) ) = UsmOs(|) @ 10m) ) = pUsm( 1) @ 0um) ).

Thus Us m( |1) @ 16m) ) = |1) @ (U, |0m) ) with U, unitary on Hy. We
also have
Usm( 1) @ 16m)) = My 1) @A) -

Thus necessarily,each M, |u) is colinear to |u).

When p = |u) (], the conditional state remains unchanged

p+ = M, (p) whatever the meter measure outcome v is.

When the spectrum of Og is degenerate: for all v, M, P, = P, M,,
where P, is the projector on the eigenspace associated to f:



Stochastic process attached to a POVM

m To the POVM (M,) on Hg is attached a stochastic process
of quantum state p

B Ml,pMJL
Tr <M,//)M1T/>

m For any observable A on #g, its conditional expectation
value after the transition knowing the state p

E(Tr(Aps) lp) =Tr(AKp)

where the linear map p — Kp = 3, M, p M}, is a Kraus
map.

m If Ais a stationary point of the adjoint Kraus map K*,
KA=%", MIAM,, then Tr (Ap) is a martingale:

E (Tr (,Z\ p4) | p) =Tr (/Z\ Kp) =Tr (p K*Z\) =Tr (p/z\).

m QND measurement of Og = 3 0,P,: K*P, = P, and
each p = P,/Tr(P,) is a fixed point of the above stochastic
process (p+ = pif p = p)

oy with probability p, = Tt (MVpM,T,).



The LKB Photon-Box: measuring photons with atoms

Atoms get out of box B one by one, undergo then a first Rabi
pulse in Ramsey zone Ry, become entangled with
electromagnetic field trapped in C, undergo a second Rabi
pulse in Ramsey zone R, and finally are measured in the
detector D.



The Markov chain model (1)

m System S corresponds to a quantized mode in C:

Hs = {Z ¥n|n) | (¥n)pZo € /Z(C)} :

n=0

where |n) represents the Fock state associated to exactly n
photons inside the cavity

m Meter M is associated to atoms : H = C2, each atom
admits two-level and is described by a wave function
Cq |9) + Ce |€) With |c4[2 + |ce|? = 1; atoms leaving B are all
in state |g)

m When atom comes out B, the state |V); € Hy ® Hg of the
composite system atom/field is separable

W)g=19)@[¢).



The Markov chain model (2)

m When atom comes out B: V) = |g) @ |¢) .

m When atom comes out the first Ramsey zone R; the state
remains separable but has changed to

W) g, = (U, @ 1) [V)p = (Ur, 19)) @ [4)

where the unitary transformation performed in R; only affects
the atom:

LN .
UR1 — e—l P (xox+y10y+z102) = COS(%)—[S”’](%)(X1 ox+Y1 o'y+z1 Uz)

corresponds, in the Bloch sphere representation, to a rotation of
angle 64 around x17+ y17+ 21k (X2 + y2 + 22 = 1)



The Markov chain model (3)

m When atom comes out the first Ramsey zone Rj:
W)g, = (U [9)) @)

m When atom comes out cavity C, the state does not remain
separable: atom and field becomes entangled and the state is
described by

|‘U>c =Uc |W>H1
where the unitary transformation Ug on Hy ® Hg is associated
toa Jaynes-Cumming Hamiltonian:

Hc = z—i—l(t)(a a —o.a)
Parameters: A(t) = weg — we, (1) depend on time t.



The Markov chain model (4)

m When atom comes out cavity C: W), = Uc((Ug, |9)) @ [¥) ).

m When atom comes out second Ramsey zone R, the state
becomes

.0,
W) g, = (Ur, 1) W) With Up, = e~z Cerrvortzzes)
m Just before the measurement in D, the state is given by

(W)g, = Usu(1g) @ [v)) = 19) ® Mg |v)) + |€) @ Me )

where Usy = Ug, Uc Up, is the total unitary transformation
defining the linear measurement operators My and M, on Hs.



The Markov chain model (5)

Just before the measurement in D, the atom/field state is:
9) @ Mg|¢) +|€) @ Me )
Denote by s € {g, e} the measurement outcome in detector D: with

probability ps = <w|MlMS\w> we get s. Just after the measurement
outcome s, the state becomes separable:

[8) ® (Ms[¢))

JOmimas)

Markov process (density matrix formulation)

W)p = ol [8) ® (Male)) =

MgpM} . -
My(p) = Mﬁz), with probability py = Tr (MgpMD;

t . "
Me(p) = %, with probability pe = Tr (MepML

Exercice

Show that, for any density matrix p, Mgp M}, + MepM} does not
depend on (62, X2, ¥», Z2), the parameters of the second Ramsey
pulse in Ro.

P+ =



Dispersive case with adiabatic coupling

We start from W), = |g) |¢) and apply the transformations:

UH1 — efl'%o'y7 UC _ |g> <g| el¢(N)+|e> <e‘ efl(b N#»I)7 UH2 _ e—i%(—sin 170'X+COST70'y).

Therefore ) — |e)
_1g)—1e
[W)p, = B ® |9) -
Then i)
W)e = 2519) ® €7 [g) — 15 |e) @ e N [y
Finally

2W)g, = (lg) — &7 le)) @ &*V [v) - (¢7|g) + &) ) @ &~V )
=1g9)® (el¢(N) gl(n=#(N+1)) ) 1Y) — &) ® (e—i(n—¢(N)) I e_;¢(/v+1)) ).
With linear approximation of ¢ (valid when A >> o), ¢(N) = 9o + N9, we get

Kraus operators

Taking oo an arbitrary phase and n = 2(J — o) + 9 — m, we find
V)5, = €% 19) ® Mglw) + €% |e) ® M |)
where 64 and 6. are constant phases and

Mg = cos(po + N¥), Me = sin(po + N¥)



Markov chain model: summary

Therefore the Markov chain model is given by

M, px M,
Tr (Mol )

where s, = g or e with associated probabilities py x and pe,x given by

pr+1 = M, (pk) =

Pox =Tt (MgpkM;) and pes =Tr (MepkMz).
Here Mg and M. are given by
Mg =cos(po + N9), Me =sin(po + NI)

This is a QND measurement for the observable N of photon number. Indeed,
as the Kraus operators Mg and M. commute with N, the mean value of N
does not change through the measurement procedure:

E (Tr (Npki1) | px) = Tr (Npx).

Also, the eigenstates of the observable N (the Fock states) are invariant with
respect to the measurement procedure:

Mg(|n) (n|]) = |n) (n] and Mse(|n) (n|) = |n) (n| for all n.
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