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Model of classical systems
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For the harmonic oscillator of pulsation ω with measured
position y , controlled by the force u and subject to an additional
unknown force w .

x = (x1, x2) ∈ R2, y = x1
d
dt x1 = x2,

d
dt x2 = −ω2x1 + u + w



Feedback for classical systems
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Proportional Integral Derivative (PID) for d2

dt2 y = −ω2y + u + w
with the set point v = y set point

u = −Kp
(
y − y set point

)
− Kd

d
dt

(
y − y set point

)
− Kint

∫ (
y − y set point

)
with the positive gains (Kp,Kd ,Kint) tuned as follows
(0 < Ω0 ∼ ω, 0 < ξ ∼ 1, 0 < ε� 1:

Kp = Ω2
0, Kd = 2ξΩ0, ,Kint = εΩ3

0.



Control of a classical harmonic oscillator

Controllability: the control u can steer the state x to any
location ( d

dt x1 = x2, d
dt x2 = −ω2x1 + u).

Observability: from the knowledge of u and y one can
recover without ambiguity the state x . (y = x1 and
x2 = d

dt y ).
Feed-forward u = ur (t) associated to reference trajectory
t 7→ (x r (t),ur (t), y r (t)) (performance).
Feed-back u = ur (t) + ∆u where ∆u depends on the
measured output error ∆y = y − y r (t) (stability).
Stability and robustness : asymptotic regime for t large of
∆x and ∆y , sensitivity to perturbations and errors.



LKB Photon-box: feedback stabilization of photon-number states



Control of quantum harmonic oscillator: LKB photon-box

“ x ”= |
|g
|e

Detection in |g or |e
Control “ u” =

Output “y”

Simple schematic of LKB experiment for control of cavity field

A discrete-time system: non-linear Markov chain of state |ψ〉

|ψ〉k+1 =



DαMg |ψ〉k∥∥∥Mg |ψ〉k
∥∥∥
H

Detect. in |g〉
(

proba.
∥∥∥Mg |ψ〉k

∥∥∥2

H

)
DαMe |ψ〉k∥∥∥Me |ψ〉k

∥∥∥
H

Detect. in |e〉
(

proba.
∥∥∥Me |ψ〉k

∥∥∥2

H

)



Photon-box: experimental data in closed-loop2

2C. Sayrin et al.: Real-time quantum feedback prepares and stabilizes
photon number states. To appear in Nature. (http://arxiv.org/abs/1107.4027);



Photon-box: simulations in closed-loop
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Photon-box (1): measurement process

|
|g
|e

Detection in |g or |e

Simple schematic of LKB experiment for measurement of cavity field



Photon-box (2) : atom-field entanglement
Initial state Atom in |g〉 and cavity in |ψ〉 ∈ H where

H =

{ ∞∑
k=n

cn |n〉 | (cn) ∈ l2(C)

}
.

We can write the initial state as

|g〉 ⊗ |ψ〉 ∈ C2 ⊗H.
State before detection a joint unitary evolution implies an entangled
state

|g〉 ⊗Mg |ψ〉+ |e〉 ⊗Me |ψ〉
whereMg andMe are operators acting on H.
The unitarity condition implies:

M†
gMg +M†

eMe = 1

Example of non-resonant interaction

Mg = cos(ϑN + ϕ), Me = sin(ϑN + ϕ), N = diag(n)



Photon-box (3): entanglement

Final state is inseparable: we can not write

|g〉 ⊗Mg |ψ〉+ |e〉 ⊗Me |ψ〉 6=
(
α̃ |g〉+ β̃ |e〉

)
⊗
(∑

n

c̃n |n〉
)
.

We can not associate to the cavity (nor to the atom) a
well-defined wavefunction just before the measurement.

However, we can still compute the probability of having the
atom in |g〉 or in |e〉:

Pg =
∥∥∥Mg |ψ〉

∥∥∥2

H
, Pe =

∥∥∥Me |ψ〉
∥∥∥2

H
.



Photon-box (4): measurement and collapse

Measurement in |g〉

|g〉 ⊗Mg |ψ〉+ |e〉 ⊗Me |ψ〉 −→
|g〉 ⊗Mg |ψ〉∥∥∥Mg |ψ〉

∥∥∥
H

,

Measurement in |e〉

|g〉 ⊗Mg |ψ〉+ |e〉 ⊗Me |ψ〉 −→
|e〉 ⊗Me |ψ〉∥∥∥Me |ψ〉

∥∥∥
H

,



Photon-box (5): quantum Monte-Carlo trajectories

Stochastic evolution: ψk the wave function after the
measurement of atom number k − 1.

|ψ〉k+1 =



DαMg |ψ〉k∥∥∥Mg |ψ〉k
∥∥∥
H

Detect. in |g〉
(

proba.
∥∥∥Mg |ψ〉k

∥∥∥2

H

)
DαMe |ψ〉k∥∥∥Me |ψ〉k

∥∥∥
H

Detect. in |e〉
(

proba.
∥∥∥Me |ψ〉k

∥∥∥2

H

)

We have a Markov chain



Photon-box (6): imperfect measurement

The atom-detector does not always detect the atoms.
Therefore 3 outcomes:

Atom in |g〉, Atom in |e〉, No detection

Best estimate for the no-detection case

E
(
|ψ〉+ | |ψ〉

)
=
∥∥∥Mg |ψ〉

∥∥∥
H
Mg |ψ〉+

∥∥∥Me |ψ〉
∥∥∥
H
Me |ψ〉

This is not a well-defined wavefunction

Barycenter in the sense of geodesics of S(H)
not invariant with respect to a change of global phase

We need a barycenter in the sense of the projective space
CP(H) ≡ S(H)/S1



Photon-box (7): density matrix language

Projector over the state |ψ〉: P|ψ〉 = |ψ〉 〈ψ|

Detection in |g〉: the projector is given by

P|ψ+〉 =
Mg |ψ〉 〈ψ|M†

g∥∥Mg |ψ〉
∥∥∥2

H

=
Mg |ψ〉 〈ψ|M†

g∣∣∣〈ψ | M†
gMg | ψ

〉∣∣∣2 =
Mg |ψ〉 〈ψ|M†

g

Tr
(
Mg |ψ〉 〈ψ|M†

g

)
Detection in |e〉: the projector is given by

P|ψ+〉 =
Me |ψ〉 〈ψ|M†

e

Tr
(
Me |ψ〉 〈ψ|M†

e

)
Probabilities:

pg = Tr
(
Mg |ψ〉 〈ψ|M†

g

)
and pe = Tr

(
Me |ψ〉 〈ψ|M†

e

)



Photon-box (8): density matrix language

Imperfect detection: barycenter

|ψ〉 〈ψ| −→ pg
Mg |ψ〉 〈ψ|M†g

Tr
(
Mg |ψ〉 〈ψ|M†g

) + pe
Me |ψ〉 〈ψ|M†e

Tr
(
Me |ψ〉 〈ψ|M†e

)
=Mg |ψ〉 〈ψ|M†g +Me |ψ〉 〈ψ|M†e.

This is not anymore a projector: no well-defined wave function

Adapted state space

X = {ρ ∈ L(H) | ρ† = ρ, ρ ≥ 0,Tr (ρ) = 1}



A classical control input

“ x ”= |
|g
|e

Detection in |g or |e
Control “ u” =

Output “y”

The control input u = α is classical and acts on the state |ψ〉
according to the unitary transformation Dα (displacement of
amplitude α):

|ψ〉 7→ Dα |ψ〉 = eαa†−α∗a |ψ〉 .



Outline of the lectures

Introduction: LKB Photon-Box, experimental data and simulations,
non-linear state feedback stabilizing Fock states.

Spin systems: two-level systems, Dirac notations, Pauli matrices, density
matrix as a Bloch vector, RWA, averaging, Rabi oscillation,
adiabatic invariance and propagator.

Spin-Spring systems: harmonic oscillator, creation/annihilation operators,
unitary displacement operator, coherent states,
Jaynes-Cummings model, composite systems and tensor
products, RWA and dressed states, dispersive and resonant
propagators.

Quantum Non-Demolition (QND) measurement: LKB photon Box, QND
photon counting, Positive Operator Valued Measurement
(POVM), discrete-time quantum trajectories and Markov
chains, Kraus maps.

Feedback stabilization with QND measures: martingales and Lyapunov
functions, stochastic convergence, construction of strict
control Lyapunov function, feedback stabilization.

State estimations: quantum filtering, ideal case, experimental case including
detection errors, Bayes law.
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