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Control of a classical harmonic oscillator

Control of a quantum harmonic oscillator: the LKB
photon-box in closed-loop

Measurement process in the LKB-photon box
Control input in the LKB photon-box

Outline of the lectures



Model of classical systems

perturbation lw

ol system

contro

U d Yy = h(ﬂi)

—| —z = f(z,u,w) >
dt measure

For the harmonic oscillator of pulsation w with measured
position y, controlled by the force u and subject to an additional
unknown force w.

X = (X1, X%2) € R?, Y = Xq

Ix1 =X, Ixo=-wixi+u+w



Feedback for classical systems

lw perturbation

observer/controller, B system measure
d, u="k(y,&v)|d y = h(z)
%6 = a(y,ﬁ,v) I

control dt

~
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r= [z, u,w)

set pointl

feedback

Proportional Integral Derivative (PID) for %;y _ 7w2y+ U+ w
with the set point v = ysetront

u= _Kp(y _ ysetpoint) o Kd%(y o ysetpoint) _ Kint/ (y . ysetpoint)

with the positive gains (Kp, Ky, Kint) tuned as follows
0<Qprw0<f~1,0<ex1:

Kp = an Kd = 25907 ) Kint = GQS



Control of a classical harmonic oscillator

m Controllability: the control u can steer the state x to any
location (&x1 = Xo, Fxo = —w?xy + ).

m Observability: from the knowledge of u and y one can
recover without ambiguity the state x. (y = x4 and

- 4a

X2 = dt-y)'

m Feed-forward u = u'(t) associated to reference trajectory
t— (X"(1), u'(t),y"(t)) (performance).

m Feed-back u = u'(t) + Au where Au depends on the
measured output error Ay = y — y'(t) (stability).

m Stability and robustness : asymptotic regime for t large of
Ax and Ay, sensitivity to perturbations and errors.



LKB Photon-box: feedback stabilization of photon-number states




Control of quantum harmonic oscillator: LKB photon-box

Ollt t [1Pi
Control “u” = a put Y
Detection in |g) or |e)

Simple schematic of LKB experiment for control of cavity field

A discrete-time system: non-linear Markov chain of state |¢)

o D./Cl;\|/l¢g>|:/’>; Detect. in |g) (proba. HMg 1) Hi)
k1 E/)Cl:\r;;:ﬁ); Detect. in |e) (proba. ”Me|¢>k Hi)




Photon-box: experimental data in closed-loop?

ny, = 3 photons

ng = 2 photons
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2C. Sayrin et al.: Real-time quantum feedback prepares and stabilizes
photon number states. To appear in Nature. (http://arxiv.org/abs/1107.4027);



Photon-box: simulations in closed-loop

Pop P‘*u > [ ]
Pu
E v Real Pop
PhotonBox > ’—‘
Coherent
pulse
U
Y ¢
Pop_Est
QuantumFilter_Controller




Photon-box (1): measurement process

Detection in |g) or |e)

Simple schematic of LKB experiment for measurement of cavity field



Photon-box (2) : atom-field entanglement

Initial state Atom in |g) and cavity in |¢)) € H where

{chm (cy) € PP(C )}.

We can write the initial state as
19) ® ) € CP @ H.

State before detection a joint unitary evolution implies an entangled
state
19) @ Mg ) + |€) @ Me [¢))

where M, and M, are operators acting on #.
The unitarity condition implies:

MIMg+ MEMe =1

Example of non-resonant interaction

Mg =cos(IN+ ), Me=sin(IN+¢), N=diag(n)



Photon-box (3): entanglement

Final state is inseparable: we can not write

19) ® Mgl) + l&) © Me i) # (51g) + Fle)) (chyn>.

We can not associate to the cavity (nor to the atom) a
well-defined wavefunction just before the measurement.
However, we can still compute the probability of having the
atomin|g) orin |e):

2 2
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Photon-box (4): measurement and collapse

Measurement in |g)

19) & Mg ) +e) © M ) — L2 Mal¥)
HMQ ) H%
Measurement in |e)
[6) ® Me|¥)

19) @ Mg |Y) +|€e) @ Me ) — :
HMeW) H?—L



Photon-box (5): quantum Monte-Carlo trajectories

Stochastic evolution: v, the wave function after the
measurement of atom number k — 1.

Do Mg |¥)
HMQ ) HH
Da Me |Q/)>k
HMe ) HH

Detect. in |g) (proba- HMng Hi)

V) kit =
k+1 Detect. in |e) (proba- HMeW)k Hi)

We have a Markov chain



Photon-box (6): imperfect measurement

The atom-detector does not always detect the atoms.
Therefore 3 outcomes:
Atomin |g), Atomin|e), No detection

Best estimate for the case

E (19) | ) = || Mg o) |

This is not a wel

|, Malo)+||Melw) |, Melw)
I-defined wavefunction

Barycenter in the sense of geodesics of S(H)
not invariant with respect to a change of global phase

We need a barycenter in the sense of the projective space
CP(H) = S(H)/S!



Photon-box (7): density matrix language

Projector over the state [¢): Py = |¢) (¢]
Detection in |g): the projector is given by

Mgl WIMy Mgy (BIME Mg ) (| M
IMglwd |, | (1 Mbrg )] T (Mo ) (w1 A1)

[4)

Detection in |e): the projector is given by

Me ) (9] M
Tr (Me [4) (v] ML)

P|1/1+> =

Probabilities:

po=Tr (Mglu) (Wl M§) and  po=Tr (Mev) (v M})



Photon-box (8): density matrix language

Imperfect detection: barycenter

Mgl) WMy Mold) (9] ME
N+ Pe -
T (Mg o) (I ME) T (Me o) (] ML)
= Mg [9) (] M + Mo [9) (¢ ME.

|9) (¥| — pg

This is not anymore a projector: no well-defined wave function
Adapted state space

X={peLH)|pl =pp>0Tr(p)=1}



A classical control input
Control “u” = a Output “y”
Detection in |g) or |e)

The control input u = « is classical and acts on the state [1))
according to the unitary transformation D, (displacement of
amplitude «):

() = Do 1) = €327 [y .



Outline of the lectures

Introduction: LKB Photon-Box, experimental data and simulations,
non-linear state feedback stabilizing Fock states.

Spin systems: two-level systems, Dirac notations, Pauli matrices, density
matrix as a Bloch vector, RWA, averaging, Rabi oscillation,
adiabatic invariance and propagator.

Spin-Spring systems: harmonic oscillator, creation/annihilation operators,
unitary displacement operator, coherent states,
Jaynes-Cummings model, composite systems and tensor
products, RWA and dressed states, dispersive and resonant
propagators.

Quantum Non-Demolition (QND) measurement: LKB photon Box, QND
photon counting, Positive Operator Valued Measurement
(POVM), discrete-time quantum trajectories and Markov
chains, Kraus maps.

Feedback stabilization with QND measures: martingales and Lyapunov

functions, stochastic convergence, construction of strict
control Lyapunov function, feedback stabilization.

State estimations: quantum filtering, ideal case, experimental case including
detection errors, Bayes law.
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