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The NIST MicroClock'’
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m Quartz crystal clocks: 1 second over few days.
m NIST chip-scale atomic clock: 1 second over 300 years
m High-Perf. atomic clocks: 1 second over 100 million years.

'NIST: National Institute of Standards and Technology, web-site:
http://tf.nist.gov/timefreq/index.html.



The principle: Coherent Population Trapping?
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2From the web-site: http://tf.nist.gov/timefreq/index.html.



The synchronization via extremum seeking

Here u = wgjoge and
¥y = f(wdiode) Where f
admits a sharp maxi-
mum at the unknown
/T v| -k value U = waiom- S =
= 5 g, constant parame-
ters (k, a,w).

asin(wt) sin(wt)
Extremum seeking via feedback: u(t) = v(t) + asin(wt) where
v(t) ~ watom is adjusted via a dynamic time-varying output
feedback (with w, @, vVk < watom):

y

2v(t) = —ksin(wt) f( v(t) + aSin(wt)j
~—

u

This lecture descrlbes a real-time synchronization scheme

ced by a single atom?.
3M-R, SIAM J. Control and Optimization, 2009.



The system and its synchronization scheme

Input: 4, € C and u =
4A. Output: photo-detector
click times corresponding to
stochastic jumps from |e) to |g1)
or [gz).

Synchronization goal: stabilize
the unknown detuning A to 0.
Two time-scales:

o) 1], [Q22], [Ael, [A] < T4,T2

Modulation of Rabi complex amplitudes € and Q»:
Qq(t) = Q1 —1eQacos(wt), Qa(t) = Q4 cos(wt) + Qo,
with Q4,5 > 0 constant, w < Ny, and 0 < e <« 1.

Detuning update Anit = Ay — K291Q2 cos(wiy)

at each detected jump-time fy. The gain K > 0 fixes the
Q2402
PRSP

standard deviation ox: 20% = K



Closed-loop quantum trajectory (Matlab M-file: SynchroCPT .m)
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A-system parameters: 1 =2 =10, A =2.0

Modulation parameters: Q1 = Q> =1.0,w =2.8,¢ =0.14
Feedback gain K = 0.0023 leading to a standard deviation
ok = 0.0057
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Detector efficiency of 50%, wrong jump detection of 50%,
feedback-loop delay of 7 with wr = 7 /4.



The slow/fast master equation

Master equation of the A-system
2

d ~ 1
gi7 = "UH A+ 5 > (2QpQf - QIQ)p - pQ[ @),
j=1

with jump operators Q; = /T |g;) (6| and Hamiltonian

I\>\l>

(Ig2) (g2] — I91) (g1]) + (Ae+ A) (Ig+) (g1 + lge) (g2 )
+Q1191) (6] + Q5 ) (g1] + Q2 |ga) (e] + Q3 |e) (ga] -

Since |Q4], [Q2], |Ael, |A] < T4, T2 we have two time-scales: a
fast exponential decay for "|e)" and a slow evolution for

"(191) +192))".



The slow master equation

Geometric reduction via center manifold techniques® leads to a
reduced master equation that is still of Lindblad type with a
slow Hamiltonian H and slow jump operators L;:
d 1y gt t
gi? = UMl + 5 > (@LipL] — LiLjp— pLILy),
j=1
with H = %Uz _ A(\92><92\2*|Q1><Q1|) and L; = \/’7]‘9j> <b§‘ and

where 7, = 4% [jand |bg) is the bright state:
Q
L [g1) + ————02)
1/ + [Q2/? Q12 + Q22
For A = 0, p converges towards the dark state |dx) (dg|:
Q; Q
|05) = ———2——01) + ————=102)-
Q12 + |Q2 11/ + [Q2/?

“M-R 2009, IEEE-AC.



The stochastic differential slow model with the synchronization feedback

The reduced density matrix p obeys to

dp = —z%[az, pl dt+ (7 (bg| p|bg) p) dt
~3 (p|bg) (bg| + |bg) (bg| ) dt
+ (lgr) (g1] — p)AN] + (192) (92| — p)aNF

dA = K 522?413225 cos(wt)(dN] + dN?) + saturation at +3
with

B (N]) = 5175 (1g) (B3] )

E (dN?) = 32T (|bg) (bg| p) ot

and Q(t) = Q1 — 1eQ, cos(wt), Qa(t) = 1 cos(wt) + Qo



A convergence result

Claim

Take the above stochastic differential system with state p and
A. Assume that the angle o = arg(€4 + «22) belongs to |0, Z[.
Then for sufficiently small e and K, for sufficiently large w,

i (@) =0
and
limsupE (A,%,) < O(é?).

N—oo

Corollary

One has
limsupP (|An| > ve) < OCe).

N— oo



Steps of the convergence analysis

We start by analyzing the asymptotic behavior of the
no-jump dynamics. We prove that the trajectories of the
no-jump dynamics converge towards a unique small limit
cycle around the dark state (Poincaré Bendixon theory).

This gives the asymptotic probability distribution of the
jump times which will be a periodic function of time.

We will compute the conditional evolution of the
expectation value of the detuning and its square. We will
see that this evolution induces a contraction and we have
the proof.



Poincaré-Bendixon theory

There are 4 types of asymptotic behaviors for a trajectory of an
ordinary differential system %x = v(x) where x belongs to R?
or % ~ R2 U {oc}.
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Single frequency averaging (0 < e <« 1)

Take the perturbed system

Ccfl)lf =cef(x,t,¢e)
with f smooth T-periodic versus t. Then exists a change of
variables

X=2z+ew(z,t)

with w smooth and T-periodic versus f, such that

dz

i ef(2) + 2f(z, t,¢)

where -
f(z) = 1 / f(z,t,0)dt
T Jo

and f; smooth and T-periodic versus t
The average system reads: %z =ef(2).



Single frequency averaging (end)

m if x(t) and z(t) are, respectively, solutions of the perturbed
and average systems, with initial conditions xy and z; such
that ||xo — zo|| = O(¢), then ||x(t) — z(t)|| = O(¢) on a
time-interval of length of order 1 /¢.

m If Z is an hyperbolic equilibrium of the average system,
then exists £ > 0 such that, for all ¢ €]0, £], the perturbed
system admits a unique hyperbolic periodic orbit (),
close to z, 7.(t) = Z + O(e), that could be reduced to a
point, with a stability similar to those of Z °.

m In particular, if Z is asymptotically stable, then ~. is also
asymptotically stable and the approximation, up to O(¢), of
the trajectories of the perturbed system by those of the
average ones is valid for t € [0, +o0].

5The number of characteristic multipliers of ~. with modulus > 1 (resp.
< 1) is equal to the number of characteristic exponents of Z with real part > 0
(resp. < 0).



Quantum trajectories

In the absence of the quantum jumps, p evolves on the Bloch

sphere according to (5 4%)

fdtp:—zz—:y[az,p]— 5 2 +<b§~2’p‘b§>p.

At each time step dt, p may jump towards the state |g1) (g1| or
|92) (go| with a jump probability given by:

Pjump dt = ﬁ <b§’p’bﬁ>) at
Since Q4 (t) = Q1 — 1eQy cos(wt) and Qo(t) = 2¢Q4 cos(wt) + Qy,
o |bQ> <bQ’ v (|b) + e cos(wt) |d)) ({(b| — e cos(wt) (d|)

i |24 [+ _ [91)+9|00) _ = g)+N|g)
with v = 4 , |b) and |d)

M+T2 VQ2+032 V3403



Quantum trajectories in Bloch-sphere coordinates

With g = 2arg(Q2y + Q2) = 2a and
p= 1+X(|b><d|+\d><bl)+Y(z|b><gl—z|d><bl)+Z(\d><d|—\b><b\)

1— 2 2
%X =—-AcospBY —~ <ecos(wt)Y+ eczos(wt)z) X

4Y = Acos BX — AsinBZ + e cos(wt)

1— 2 2
-7 <6COS(wt)Y+ eczos(wt)z> Y

. 1 — @ cos?(wt
8Z = AsinBY +4 <())

2

1— 2 2
-7 <6C05(wt)Y+ 6COS(WT)Z) V4

2

The jump probability per unit of time is
Piump = %(1 — Z — 2ecos(wl)Y + e cos?(wt)(1 + 2)).

Just after a jump (X, Y, Z) is reset to +(sin 3,0, cos f3).



Convergence of the no-jump dynamics

@X =—AcospY — v(ecos(wt)Y+Los(wf)Z)X
4Y = Acos X — Asin BZ + yecos(wt) — (ecos(wt)Y+ Hzczﬂz) Y

97 = AsingY +7 (52550 g (coos(wh)Y + =ogtel Z)

For |A| < 3 and 0 < € <« 1, the above time-periodic nonlinear
system admlts a quasi- gIobaI asymptotically stable periodic
orbit (proof: Poincaré-Bendixon with e = 0 and averaging using

w > ).
This periodic orbit reads

(X.Y.2)= (0 , -2sinp 4 Breslhigosniun, )

up to second order terms in € and %.

Asin g 2. ;
When w > v, Piymp = v (e cos(wt) + f) if the last jump
occurs more that few — Iog ¢/~ second(s) ago.b.

8Replace Z by 1 — XY~ in previous formula giving Piump:



Detuning update as a discrete-time stochastic process

Our analysis neglects the transient just after a jump.
When a jump occurs at ty, we have

Any1 = Ay — K sin g cos(wty)

. 2
and its probability was proportional to (e cos(wiy) + ANfS'”ﬂ .

The phase ¢ = wty can be seen as a stochastic variable in
[0, 2] with the following probability density P, (¢) on [0, 27]:

N2
(e cos(yp) + W)
2 A2 sin? 8
27T <% + N,Yz )

PAN(‘?) -

The de-tuning update is thus a discrete-time stochastic
process
Aniq1=An—Ksingcosy

where the probability of ¢ € [0,27] depends on Ay,.



Convergence proof

We assume here |A| < ey (remember v < w < 1 + Mo):

Any1 = Ay — Ksinfgcosp

with ¢ of probability density Pa, () ~ €% + 22158 cos o .
Simple computations yield to’
E(Ant1 / An) = (1 - Lirzﬁ) A

ForO0 < K < B
Similarly, we have

E (831 / on) = (1 - HM2) pf, 4 SKgns

(Ap) tends to zero.

3e'yK

(A%)) converges to o

"IE (Any1 / An) stands for the conditional expectation-value of Ay,
knowing Ay.



Summary: scales and feedback-gain design

Rabi frequency modulations:
Q4 (t) = Q4 — 2Qp cos(wt)
Qo (t) = 2€Q4 cos(wt) + N
with Q4,2 < T =T4 + T,

02< S 1 and
Q240
e =17 <<w Tl

Detuning update
AN+1 = AN — Ksinﬂcos(th)
with K > 0, 8 = 2arg(Q2y +1Q2).

lg1)
A discrete-time stochastic process where the gain K > 0 drives

m the convergence speed with a contraction of (1 - W)
for E(Ay) at each iteration
m the precision via the asymptotic standard deviation

oK — £/ 3evK
K= "4/ -




Conservative deterministic models for closed-quantum systems

Conservative models (Schrédinger, closed-quantum systems):

showing that |¢), = U; [¢), and p; = Uipo U,T with propagator U;
defined by i4U = HU, Uy =1.

m H = Hy+ >, uxHx: controllability (Lie algebra in finite
dimension, importance of the spectrum in infinite dimension,
Law-Eberly method), optimal control (minimum time in finite
dimension only).

m Widely used motion planing based on two approximations: RWA;
adiabatic invariance (robustness).

m Non commutative calculus with operators (Bra, Ket and Dirac
notations).

m Key issues attached to composite systems (tensor product). Two
classes of important subsystems: finite-dimensional ones
(2-level, Bloch sphere, Pauli matrices); infinite dimensional ones
(harmonic oscillator, annihilation operator).



Dissipative models for open-quantum systems (1)

Discrete-time models are Markov chains

1
= ——M,pM} with proba. p,(pk) = Tr (M, pxM;
Pk+1 0 (8) Pk p . (pi) (M. pkM;)

associated to Kraus maps (ensemble average, open-quantum
channel maps)

E (pes1/px) = K(p) = Y MopcM] - with 5~ MM, =1
Continuous-time models are stochastic differential systems
dp = —i[H, p]dt

+ 3T (LupLh) pdt — H(LELup + pLEL, )0t + ( Lopby p) dNY

Tr(LupLl)

driven by Poisson processes dNy with IE (dNy) = Tr (L, pL}) dt
(possible approximations by Wiener processes) and associated to
Lindbald master equations:

Sp=—iHpl+ 3> (2LpLl — LiL,p—pLiL,),



Dissipative models for open-quantum systems (2)

Ensemble and average dynamics (Kraus maps (discrete-time)
or Lindbald equations (continuous-time)):
m Stability induces by contraction (nuclear norm or fidelity).
m Decoherence free spaces: Q-limits are affine spaces; they
can be reduced to a point (pointer-states); design of M,
and L, to achieve convergence towards prescribed affine
spaces (reservoir engineering, QND measurements, .. .).
Lindbald partial differential equation for the density operator
p(x,y), (x.y) € R?,

Schrédinger cavity decay thermal photon
N

—_—— ———
bp=[ua' — u*a, p]+~(nm + 1)D[a](p) + + vnmDla’](p)

where D[L](p) = (LpLT - M). It describes a quantized
field trapped inside a finite fitness cavity (decay time 1/7),
subject to a coherent excitation of amplitude u € C and an
incoherent coupling to a thermal field with ny, > 0 average
photons .



Dissipative models for open-quantum systems (3)

Markov chain (discrete-time) or SDE (continuous time):

m Quantum filters provides p, a real-time estimation of the
state p based on measurements outcomes (in the ideal
case F(p, p) is sub-martingale).

m Feedback stabilization towards a goal pure state p: u(p)
based on Lyapunov function Tr (p, p) = F(p, p).

m Quantum separation principle always works for u(p) in
case of global convergence with feedback u(p).

m Coherent feedback scheme: the controller is also a
quantum system (not a classical one as above).
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