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The NIST MicroClock1

Quartz crystal clocks: 1 second over few days.
NIST chip-scale atomic clock: 1 second over 300 years
High-Perf. atomic clocks: 1 second over 100 million years.

1NIST: National Institute of Standards and Technology, web-site:
http://tf.nist.gov/timefreq/index.html.



The principle: Coherent Population Trapping2

2From the web-site: http://tf.nist.gov/timefreq/index.html.



The synchronization via extremum seeking

Here u = ωdiode and
y = f (ωdiode) where f
admits a sharp maxi-
mum at the unknown
value ū = ωatom. s =
d
dt , constant parame-
ters (k ,a, ω).

Extremum seeking via feedback: u(t) = v(t) + a sin(ωt) where
v(t) ≈ ωatom is adjusted via a dynamic time-varying output
feedback (with ω,a,

√
k � ωatom):

d
dt v(t) = −k sin(ωt)

y︷ ︸︸ ︷
f
(

v(t) + a sin(ωt)︸ ︷︷ ︸
u

)
This lecture describes a real-time synchronization scheme
when the atomic cloud is replaced by a single atom3.

3M-R, SIAM J. Control and Optimization, 2009.



The system and its synchronization scheme

Input: Ω̃1, Ω̃2 ∈ C and u =
d
dt ∆. Output: photo-detector
click times corresponding to
stochastic jumps from |e〉 to |g1〉
or |g2〉.
Synchronization goal: stabilize
the unknown detuning ∆ to 0.
Two time-scales:
|Ω̃1|, |Ω̃2|, |∆e|, |∆| � Γ1, Γ2

Modulation of Rabi complex amplitudes Ω̃1 and Ω̃2:
Ω̃1(t) = Ω1 − ıεΩ2 cos(ωt), Ω̃2(t) = ıεΩ1 cos(ωt) + Ω2,
with Ω1,Ω2 > 0 constant, ω � Γ1, Γ2 and 0 < ε� 1.

Detuning update ∆N+1 = ∆N − K 2Ω1Ω2
Ω2

1+Ω2
2

cos(ωtN)

at each detected jump-time tN . The gain K > 0 fixes the
standard deviation σK : 16

3 σ
2
K = εK Ω2

1+Ω2
2

Γ1+Γ2
.



Closed-loop quantum trajectory (Matlab M-file: SynchroCPT.m)
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Λ-system parameters: Γ1 = Γ2 = 10, ∆e = 2.0
Modulation parameters: Ω1 = Ω2 = 1.0, ω = 2.8, ε = 0.14
Feedback gain K = 0.0023 leading to a standard deviation
σK = 0.0057



Robustness
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Detector efficiency of 50%, wrong jump detection of 50%,
feedback-loop delay of τ with ωτ = π/4.



The slow/fast master equation

Master equation of the Λ-system

d
dt
ρ = −ı[H̃, ρ] +

1
2

2∑
j=1

(2QjρQ†j −Q†j Qjρ− ρQ†j Qj),

with jump operators Qj =
√

Γj
∣∣gj
〉
〈e| and Hamiltonian

H̃ =
∆

2
(|g2〉 〈g2|− |g1〉 〈g1|) +

(
∆e +

∆

2

)
(|g1〉 〈g1|+ |g2〉 〈g2|)

+ Ω̃1 |g1〉 〈e|+ Ω̃∗1 |e〉 〈g1|+ Ω̃2 |g2〉 〈e|+ Ω̃∗2 |e〉 〈g2| .

Since |Ω̃1|, |Ω̃2|, |∆e|, |∆| � Γ1, Γ2 we have two time-scales: a
fast exponential decay for "|e〉" and a slow evolution for
"(|g1〉 , |g2〉)".



The slow master equation

Geometric reduction via center manifold techniques4 leads to a
reduced master equation that is still of Lindblad type with a
slow Hamiltonian H and slow jump operators Lj :

d
dt
ρ = −ı[H, ρ] +

1
2

2∑
j=1

(2LjρL†j − L†j Ljρ− ρL†j Lj),

with H = ∆
2 σz = ∆(|g2〉〈g2|−|g1〉〈g1|)

2 and Lj =
√
γ̃j
∣∣gj
〉 〈

b
Ω̃

∣∣ and

where γ̃j = 4 |Ω̃1|2+|Ω̃2|2
(Γ1+Γ2)2 Γj and

∣∣bΩ̃

〉
is the bright state:

∣∣b
Ω̃

〉
=

Ω̃1√
|Ω̃1|2 + |Ω̃2|2

|g1〉+
Ω̃2√

|Ω̃1|2 + |Ω̃2|2
|g2〉

For ∆ = 0, ρ converges towards the dark state
∣∣dΩ̃

〉 〈
dΩ̃

∣∣:∣∣d
Ω̃

〉
= −

Ω̃∗2√
|Ω̃1|2 + |Ω̃2|2

|g1〉+
Ω̃∗1√

|Ω̃1|2 + |Ω̃2|2
|g2〉 .

4M-R 2009, IEEE-AC.



The stochastic differential slow model with the synchronization feedback

The reduced density matrix ρ obeys to

dρ = −ı∆
2

[σz , ρ] dt +
(
γ̃
〈
b

Ω̃

∣∣ ρ ∣∣b
Ω̃

〉
ρ
)

dt

− γ̃
2

(
ρ
∣∣b

Ω̃

〉 〈
b

Ω̃

∣∣+
∣∣b

Ω̃

〉 〈
b

Ω̃

∣∣ ρ) dt

+ (|g1〉 〈g1| − ρ)dN1
t + (|g2〉 〈g2| − ρ)dN2

t

d∆ = K 2Ω1Ω2
Ω2

1+Ω2
2

cos(ωt)(dN1
t + dN2

t ) + saturation at ±γ
2

with

E
(

dN1
t

)
= γ̃1Tr

(∣∣b
Ω̃

〉 〈
b

Ω̃

∣∣ ρ) dt ,

E
(

dN2
t

)
= γ̃2Tr

(∣∣b
Ω̃

〉 〈
b

Ω̃

∣∣ ρ) dt

and Ω̃1(t) = Ω1 − ıεΩ2 cos(ωt), Ω̃2(t) = ıεΩ1 cos(ωt) + Ω2



A convergence result

Claim

Take the above stochastic differential system with state ρ and
∆. Assume that the angle α = arg(Ω1 + ıΩ2) belongs to ]0, π2 [.
Then for sufficiently small ε and K , for sufficiently large ω,

lim
N→∞

E (∆N) = 0,

and
lim sup

N→∞
E
(

∆2
N

)
≤ O(ε2).

Corollary

One has
lim sup

N→∞
P
(
|∆N | >

√
ε
)
≤ O(ε).



Steps of the convergence analysis

1 We start by analyzing the asymptotic behavior of the
no-jump dynamics. We prove that the trajectories of the
no-jump dynamics converge towards a unique small limit
cycle around the dark state (Poincaré Bendixon theory).

2 This gives the asymptotic probability distribution of the
jump times which will be a periodic function of time.

3 We will compute the conditional evolution of the
expectation value of the detuning and its square. We will
see that this evolution induces a contraction and we have
the proof.



Poincaré-Bendixon theory

There are 4 types of asymptotic behaviors for a trajectory of an
ordinary differential system d

dt x = v(x) where x belongs to R2

or S2 ∼ R2 ∪ {∞}.



Single frequency averaging (0 ≤ ε� 1)

Take the perturbed system

dx
dt

= εf (x , t , ε)

with f smooth T -periodic versus t . Then exists a change of
variables

x = z + εw(z, t)

with w smooth and T -periodic versus t , such that

dz
dt

= εf (z) + ε2f1(z, t , ε)

where

f (z) =
1
T

∫ T

0
f (z, t ,0) dt

and f1 smooth and T -periodic versus t
The average system reads: d

dt z = εf̄ (z) .



Single frequency averaging (end)

if x(t) and z(t) are, respectively, solutions of the perturbed
and average systems, with initial conditions x0 and z0 such
that ‖x0 − z0‖ = O(ε), then ‖x(t)− z(t)‖ = O(ε) on a
time-interval of length of order 1/ε.
If z is an hyperbolic equilibrium of the average system,
then exists ε > 0 such that, for all ε ∈]0, ε], the perturbed
system admits a unique hyperbolic periodic orbit γε(t),
close to z, γε(t) = z + O(ε), that could be reduced to a
point, with a stability similar to those of z 5.
In particular, if z is asymptotically stable, then γε is also
asymptotically stable and the approximation, up to O(ε), of
the trajectories of the perturbed system by those of the
average ones is valid for t ∈ [0,+∞[.

5The number of characteristic multipliers of γε with modulus > 1 (resp.
< 1) is equal to the number of characteristic exponents of z with real part > 0
(resp. < 0).



Quantum trajectories

In the absence of the quantum jumps, ρ evolves on the Bloch
sphere according to (γ̃ = 4 |Ω̃1|2+|Ω̃2|2

Γ1+Γ2
)

1
γ̃

d
dt ρ = −ı ∆

2γ̃
[σz , ρ]−

∣∣b
Ω̃

〉 〈
b

Ω̃

∣∣ ρ+ ρ
∣∣b

Ω̃

〉 〈
b

Ω̃

∣∣
2

+
〈
b

Ω̃

∣∣ ρ ∣∣b
Ω̃

〉
ρ.

At each time step dt , ρ may jump towards the state |g1〉 〈g1| or
|g2〉 〈g2| with a jump probability given by:

Pjump dt =
(
γ̃
〈
b

Ω̃

∣∣ ρ ∣∣b
Ω̃

〉)
dt

Since Ω̃1(t) = Ω1− ıεΩ2 cos(ωt) and Ω̃2(t) = ıεΩ1 cos(ωt) + Ω2,

γ̃
∣∣b

Ω̃

〉 〈
b

Ω̃

∣∣ = γ (|b〉+ ıε cos(ωt) |d〉) (〈b| − ıε cos(ωt) 〈d |)

with γ = 4 |Ω1|2+|Ω2|2
Γ1+Γ2

, |b〉 = Ω1|g1〉+Ω2|g2〉√
Ω2

1+Ω2
2

and |d〉 = −Ω2|g1〉+Ω1|g2〉√
Ω2

1+Ω2
2



Quantum trajectories in Bloch-sphere coordinates

With β = 2 arg(Ω1 + ıΩ2) = 2α and
ρ = 1+X(|b〉〈d |+|d〉〈b|)+Y (ı|b〉〈d |−ı|d〉〈b|)+Z (|d〉〈d |−|b〉〈b|)

2 :

d
dt X = −∆ cosβY − γ

(
ε cos(ωt)Y +

1− ε2 cos2(ωt)
2

Z
)

X

d
dt Y = ∆ cosβX −∆ sinβZ + γε cos(ωt)

− γ
(
ε cos(ωt)Y +

1− ε2 cos2(ωt)
2

Z
)

Y

d
dt Z = ∆ sinβY + γ

(
1− ε2 cos2(ωt)

2

)
− γ

(
ε cos(ωt)Y +

1− ε2 cos2(ωt)
2

Z
)

Z

The jump probability per unit of time is

Pjump =
γ

2
(1− Z − 2ε cos(ωt)Y + ε2 cos2(ωt)(1 + Z )).

Just after a jump (X ,Y ,Z ) is reset to ±(sinβ,0, cosβ).



Convergence of the no-jump dynamics
d
dt X = −∆ cosβY − γ

(
ε cos(ωt)Y + 1−ε2 cos2(ωt)

2 Z
)

X

d
dt Y = ∆ cosβX −∆ sinβZ + γε cos(ωt)− γ

(
ε cos(ωt)Y + 1−ε2 cos2(ωt)

2 Z
)

Y

d
dt Z = ∆ sinβY + γ

(
1−ε2 cos2(ωt)

2

)
− γ

(
ε cos(ωt)Y + 1−ε2 cos2(ωt)

2 Z
)

Z

For |∆| < γ
2 and 0 < ε� 1, the above time-periodic nonlinear

system admits a quasi-global asymptotically stable periodic
orbit (proof: Poincaré-Bendixon with ε = 0 and averaging using
ω � γ).
This periodic orbit reads

(X ,Y ,Z ) =
(

0 , −2 sinβ∆
γ + 2γ2 cos(ωt)+4γω sin(ωt)

4ω2+γ2 ε , 1
)

up to second order terms in ε and ∆
γ .

When ω � γ, Pjump ≈ γ
(
ε cos(ωt) + ∆ sinβ

γ

)2
if the last jump

occurs more that few − log ε/γ second(s) ago.6.

6Replace Z by 1 − X2+Y 2

2 in previous formula giving Pjump.



Detuning update as a discrete-time stochastic process

Our analysis neglects the transient just after a jump.
When a jump occurs at tN , we have

∆N+1 = ∆N − K sinβ cos(ωtN)

and its probability was proportional to
(
ε cos(ωtN) + ∆N sinβ

γ

)2
.

The phase ϕ = ωtN can be seen as a stochastic variable in
[0,2π] with the following probability density P∆N (ϕ) on [0,2π]:

P∆N (ϕ) =

(
ε cos(ϕ) + ∆N sin β

γ

)2

2π
(
ε2

2 +
∆2

N sin2 β

γ2

)
The de-tuning update is thus a discrete-time stochastic

process
∆N+1 = ∆N − K sinβ cosϕ

where the probability of ϕ ∈ [0,2π] depends on ∆N .



Convergence proof

We assume here |∆| � εγ (remember γ � ω � Γ1 + Γ2):

∆N+1 = ∆N − K sinβ cosϕ

with ϕ of probability density P∆N (ϕ) ≈ cos2 ϕ
π + 2∆N sinβ

πεγ cosϕ .
Simple computations yield to7

E (∆N+1 / ∆N) =
(

1− 2K sin2 β
εγ

)
∆N

For 0 < K ≤ εγ

sin2 β
, E(∆N) tends to zero.

Similarly, we have

E
(

∆2
N+1 / ∆N

)
=
(

1− 4K sin2 β
εγ

)
∆2

N + 3K 2 sin2 β
8

For 0 < K ≤ εγ

2 sin2 β
, E(∆2

N) converges to σ2
K = 3εγK

32 .

7E (∆N+1 / ∆N) stands for the conditional expectation-value of ∆N+1

knowing ∆N .



Summary: scales and feedback-gain design

Rabi frequency modulations:
Ω̃1(t) = Ω1 − ıεΩ2 cos(ωt)
Ω̃2(t) = ıεΩ1 cos(ωt) + Ω2
with Ω1,Ω2 � Γ = Γ1 + Γ2,
0 < ε� 1 and
Ω2

1+Ω2
2

Γ1+Γ2
= γ � ω � Γ

Detuning update
∆N+1 = ∆N − K sinβ cos(ωtN)
with K > 0, β = 2 arg(Ω1 +ıΩ2).

A discrete-time stochastic process where the gain K > 0 drives

the convergence speed with a contraction of
(

1− 2K sin2 β
εγ

)
for E(∆N) at each iteration
the precision via the asymptotic standard deviation

σK =

√
3εγK

4
√

2
.



Conservative deterministic models for closed-quantum systems

Conservative models (Schrödinger, closed-quantum systems):

i d
dt |ψ〉 = H |ψ〉 , d

dt ρ = −i[H, ρ]

showing that |ψ〉t = Ut |ψ〉0 and ρt = Utρ0U†t with propagator Ut

defined by i d
dt U = HU, U0 = 1.

H = H0 +
∑

k uk Hk : controllability (Lie algebra in finite
dimension, importance of the spectrum in infinite dimension,
Law-Eberly method), optimal control (minimum time in finite
dimension only).

Widely used motion planing based on two approximations: RWA;
adiabatic invariance (robustness).

Non commutative calculus with operators (Bra, Ket and Dirac
notations).

Key issues attached to composite systems (tensor product). Two
classes of important subsystems: finite-dimensional ones
(2-level, Bloch sphere, Pauli matrices); infinite dimensional ones
(harmonic oscillator, annihilation operator).



Dissipative models for open-quantum systems (1)

Discrete-time models are Markov chains

ρk+1 =
1

pν(ρk )
Mνρk M†ν with proba. pν(ρk ) = Tr

(
Mνρk M†ν

)
associated to Kraus maps (ensemble average, open-quantum
channel maps)

E (ρk+1/ρk ) = K (ρk ) =
∑
ν

Mνρk M†ν with
∑
ν

M†νMν = 1

Continuous-time models are stochastic differential systems

dρ = −i[H, ρ]dt

+
∑
ν

Tr
(
LνρL†ν

)
ρdt − 1

2 (L†νLνρ+ ρL†νLν)dt +

(
LνρL†

ν

Tr(LνρL†
ν)
− ρ
)

dNν
t

driven by Poisson processes dNν
t with E (dNν

t ) = Tr
(
LνρL†ν

)
dt

(possible approximations by Wiener processes) and associated to
Lindbald master equations:

d
dt ρ = −i[H, ρ] + 1

2

∑
ν

(
2LνρL†ν − L†νLνρ− ρL†νLν

)
,



Dissipative models for open-quantum systems (2)

Ensemble and average dynamics (Kraus maps (discrete-time)
or Lindbald equations (continuous-time)):

Stability induces by contraction (nuclear norm or fidelity).
Decoherence free spaces: Ω-limits are affine spaces; they
can be reduced to a point (pointer-states); design of Mν

and Lν to achieve convergence towards prescribed affine
spaces (reservoir engineering, QND measurements, . . . ).

Lindbald partial differential equation for the density operator
ρ(x , y), (x , y) ∈ R2,

d
dt ρ =

Schrödinger︷ ︸︸ ︷
[ua† − u∗a, ρ] +

cavity decay︷ ︸︸ ︷
γ(nth + 1)D[a](ρ) + +

thermal photon︷ ︸︸ ︷
γnthD[a†](ρ)

where D[L](ρ) =
(

LρL† − L†Lρ+ρL†L
2

)
. It describes a quantized

field trapped inside a finite fitness cavity (decay time 1/γ),
subject to a coherent excitation of amplitude u ∈ C and an
incoherent coupling to a thermal field with nth ≥ 0 average
photons .



Dissipative models for open-quantum systems (3)

Markov chain (discrete-time) or SDE (continuous time):

Quantum filters provides ρ̂, a real-time estimation of the
state ρ based on measurements outcomes (in the ideal
case F (ρ, ρ̂) is sub-martingale).
Feedback stabilization towards a goal pure state ρ̄: u(ρ)
based on Lyapunov function Tr (ρ̄, ρ) = F (ρ̄, ρ).
Quantum separation principle always works for u(ρ̂) in
case of global convergence with feedback u(ρ).
Coherent feedback scheme: the controller is also a
quantum system (not a classical one as above).
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