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Why density matrices (1)

Measurement in |g)

9) @ Mg )

19) @ Mg |¢) +|e) @ Me[yh) — :
HMQ [+) H%

Measurement in |e)
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Why density matrices (2)

The atom-detector does not always detect the atoms.
Therefore 3 outcomes:
Atomin |g), Atomin|e), No detection

Best estimate for the case

E (19) | ) = || Mg o) |

This is not a wel

|, Malo)+||Melw) |, Melw)
I-defined wavefunction

Barycenter in the sense of geodesics of S(H)
not invariant with respect to a change of global phase

We need a barycenter in the sense of the projective space
CP(H) = S(H)/S!



Why density matrices (3)

Projector over the state [¢): Py = |¢) (¢]
Detection in |g): the projector is given by

Mgl WIMy Mgy (BIME Mg ) (| M
IMglwd |, | (1 Mbrg )] T (Mo ) (w1 A1)

[4)

Detection in |e): the projector is given by

Me ) (9] M
Tr (Me [4) (v] ML)

P|1/1+> =

Probabilities:

po=Tr (Mglu) (Wl M§) and  po=Tr (Mev) (v M})



Why density matrices (4)
Imperfect detection: barycenter

Mglv) (IMy | Moly) (9] ME
i\ T Pe t
T (Mgl (I ME) T (M) (] ME)
= Mg [v) (] M + Me [v) (] ML,

¥) (Y] — Pg

This is not anymore a projector: no well-defined wave function
New state space of quantum states p:
X={pcLH)|p =pp>0Tr(p)=1}

Pure quantum states p correspond to rank 1 projectors and
thus to wave functions |¢) with p = |¢) (¢)].



Kraus map

What if we do not detect the atoms after they exit R>?

The “best estimate” of the cavity state is given by its
expectation value

pi = PgkMg(p) + PexMe(p) = MgpM + MepME = K(p).

This linear map is called the Kraus map associated to the
Kraus operators Mg and Me.

In the same way and through a Bayesian filter we can take into
account various uncertainties.



Some uncertainties

Pulse occupation The probability that a pulse is occupied by an atom is
given by 7a (na € (0, 1] is called the pulse occupancy rate);

Detector efficiency The detector can miss an atom with a probability of
1 —ng (na € (0, 1] is called the detector’s efficiency rate);

Detector faults The detector can make a mistake by detecting an atom in |g)
while it is in the state |e) or vice-versa; this happens with a
probability of n¢ (nf € [0,1/2] is called the detector’s fault
rate);

We basically have three possibilities for the detection output:

Atom detected in |g) either the atom is really in the state |g) or the detector
has made a mistake and it is actually in the state |e);

Atom detected in |e) either the atom is really in the state |e) or the detector
has made a mistake and it is actually in the state |g);

No atom detected either the pulse has been empty or the detector has
missed the atom.



Atom detected in |g)

Either the atom is actually in the state |e) and the detector has made
a mistake by detecting it in |g) (this happens with a probability pg ) or

the atom is really in the state |g) (this happens with probability 1 — p;).

Conditional probablity p{,: We apply the Bayesian formula

pf _ NfPe
9 nipe+ (1 —n1)pg’

where py = Tr (Mgp/\/l;> and pe = Tr (Mep/\/ll).

Conditional evolution of density matrix:
pr = PyMe(p) + (1 — P})Mg(p)

1—
Ui Me,OML-i- Ui

— MgpM},.
nePe + (1 — 11)Pg ntPe + (1 — 1r)Pg 9P




Atom detected in |e)

In the same way

1 —ny
ntPg + (1 — 1f)Pe

_ 0y
ntPg + (1 — nf)Pe

P+ MgpM{ + MepML.



No atom detected

Either the pulse has been empty (this happens with a probability pna)
or there has been an atom which has not been detected by the
detector (this happens with the probability 1 — pna).

Conditional probability pn,:

_ 1— 14 _ 1 -1y
Na(1 —na) + (1 —na) 1 —nang

In such case the density matrix remains untouched.

The undetected atom case leads to an evolution of the density matrix
through the Kraus representation.

Pna

Conditional evolution:

pi = Pra p+ (1 = Pra)(MgpM{ + MepML)
11—, na(1 = na)

= +
1 —nang 1 — nanag

(MgpM + MepMb).



Cavity decay

Absorption of photon by cavity mirrors characterized by photon
life-time inside the cavity T.oy = 1/Kioss-
When T, > 7, (7, sampling time, time interval between two atoms)’:

MlosspMIToss — apaT
0SSP loss rop. T4 It ”P ;
r(Mmsslet)sTs) Tr(Np) P ob HlossTa ( ),
M prob 1-— :‘iloss7a|r(Np).
ﬁ‘ . b
r(/\/1"04033pj\/lr]:o-loss)

where, up to second order terms in Kiyss7a,
Mioss = \/FiossTa@, Mioioss =1 — %3T3~

Associated Kraus map:

p = MlosspMI)ss + Mno-losspMIo.k,ss
= p+ kiossTa (@pa' — 3alap — pa'a),

'LKB Experimental setup: 72 ~ 10™* s and Teay ~ 107 ':s.



Cavity decay and thermal photons (1)

The thermal photon gain can be treated through the measurement
operator Mgain = \/maT instead of Msss = /Kioss7a@ WHETE Fijgss
and kgn are expressed in term of cavity decay time T.,, and ny,
thermal photon number?

o — 1+, P Min
loss — ) gain — .
Tcav Tcav

Up to second order term in 2 we have

_MiosspMypsg _ apal_ _ _
T(MiogspMi ) T(Np) Prob. Pioss = KiossTaTr (Np);
MgainPMgain at pa
- rob. Pgain = igan7a 1 (N + 1)p);

r TI'</Vlgain9/\/tgjain) TI'((Nﬂ)p) Prob. Pgain = rigain7alr (N +1)p);
_ MnopMpo B o
Tr(./\/lnop,/\/lﬁo) prOb 1 plOSs pgam,

with

) R
Mno —1— f%;g‘ra aTa “gaunTa aaf (1 _ ”ga2|n7'a)1 _ (Kloss :gam)TaN.

2LKB Experimental setup: nin ~ 5.



Cavity decay and thermal photons (2)

The Kraus map reads:

P = MlosspMIt)ss + Mgaiangain =+ MnOpMIo

— p4 Utmm)7a (apaT_ latap— %paTa>

7—C av

+ o <ana — laa'p - %paaT>

Tcav



Stability and convergence of stochastic processes (1)

Convergence of a random process

Consider (X») a sequence of random variables defined on the probability
space (£, F,P) and taking values in a Banach space X'. The random
process X, is said to,

converge in probability towards the random variable X if for all ¢ > 0,

lim P (1% — X| > ) = lim P(w € Q|[|IXa(w) — X(w)] > €) = 0;

converge almost surely towards the random variable X if

]P’(Iim xn:x) :P(wem niman(w):X(w)) =1;

n—oo
converge in mean towards the random variable X if

lim I (I, — X]) = 0.

Mean convergence implies convergence in probability.
Almost sure convergence implies convergence in probability.



Stability and convergence of stochastic processes (2)

Markov process

The sequence (X;):2, is called a Markov process, if for ' > n and any
measurable real function f(x) with sup, |f(x)| < oo,

E(F(Xo) | X1, ... X0) = E(F(Xo) | X).-

Martingales

The sequence (X»)n is called respectively a supermartingale, a
submartingale or a martingale, if I£ (|| Xa||) < coforn=1,2, ..., and

EX | X,...,Xn) < Xn  (Palmostsurely), n>m,

or

EX | Xi,...,Xm) > Xn (P almost surely), n>m,
or finally,

EX | Xi,...,Xn) = Xmn (P almost surely), n>m.



Stability and convergence of stochastic processes (3)

Doob’s Inequality

Let { X} be a Markov chain on state space X'. Suppose that there is a
non-negative function V/(x) satisfying € (V(X1) | Xo = x) — V(x) = —k(x),
where k(x) > 0 on the set {x : V(x) < A} = Qx. Then

]P’( sup V(X,,)Z)\|X0:x>gvg\x).

co>n>0

Corollary: stability in probability

Consider the same assumptions as in the above theorem. Assume moreover
that there exists x € X such that V(x) = 0 and that V(x) # 0 for all x
different from x. Then the Doob’s inequality implies that the Markov process
X is stable in probability around X, i.e.

lim P (sup X0 — X|| > € | Xo = x) =0, Ve>0.
X—X n



Stability and convergence of stochastic processes (4)

Kushner’s invariance Theorem

Consider the same assumptions as that of the Doob’s inequality. Let po = o
be concentrated on a state xo € Qx, i.e. o(xo) = 1. Assume that

0 < k(X»n) — 0in Q» implies that X, — {x | k(x) =0} N Q\ = K.. For the
trajectories never leaving Q,, X, converges to K, almost surely. Also, the
associated conditioned probability measures /i, tend to the largest invariant
set of measures M., C M whose support set is in K. Finally, for the
trajectories never leaving Qx, X, converges, in probability, to the support set
of Mso.

Corollary: global stability

Consider the same assumptions as in the above theorem and assume
moreover that X € X is the only point in Q, such that V(x) = 0 and
furthermore that the set K, is reduced to {x} (strict Lyapunov function). Then
the equilibrium X is globally stable in probability in the set Q,, i.e. x

is stable in probability and moreover

P( lim X, = X | X, never leaves QA) =1.
n—oo



Open-loop convergence of LKB-photon box (1)

Restriction to finite dimensional subspace spanned by the
n™& 4 1 first modes {|0), [1),...,|n™&)}.

N = diag(0,1,. .., n™&), alo)=0, aln)=+vnln—-1).

The truncated creation operator a' is the Hermitian conjugate

of a. We still have N = a'a, but truncation does not preserve

the usual commutation [a, af] = 1 (this is only valid when

nmAX = o).

The Markov chain of state p (o' = p, p > 0 and Tr(p) = 1):

MgpM§ .

M = 9 9 rob. =Tr ( )

g(pk) Tr(Mgﬁ,«ML) , P pg,k Mgpk./\/lg

Me(pk) = m, prob. pex = Tr (MePkML>-

Pk+1 =

with Mgy and M. diagonal operators (dispersive atom/cavity
interaction)

Mg = cos(pg + NI), Mg = sin(pg + NI)



100 Monte-Carlo simulations ((3|p|3) versus k)

Fidelity between p and the goal Fock state
T T T T T




Open-loop convergence of LKB-photon box (2)

Theorem

Consider the Markov process defined above with an initial density
matrix po. Assume that the parameters g, ¥ are chosen in order to
have Mg = cos(po + N9), Me = sin(po + N9) invertible and such

that the spectrum of M{Mgq = M2 and MEMe = M are not
degenerate. Then

forany n € {0,...,m"}, Tr(p|n) (n]) = (nl pk |n) is @
martingale

pk converges with probability 1 to one of the n™® + 1 Fock state
|n) (n| with n € {0,...,n"&}.

the probability to converge towards the Fock state |n) (n| is given
by Tr(po |n) (n[) = (nl po n)-

The proof of point 2 is based on the Lyapunov functions

Va(p) = f((n|p|n)) = {nlp|n) +2(<n|p|n>)

where f(x) = *5-.



Open-loop convergence of LKB-photon box (3)

Since f(x) = # obeys to the following convexity identity
V(x.y,60) € [0,1], 6f()+(1-0)(y) = 52 (x—y)>+H(6x+(1-0)y)
we have for any n, (on = ¢g + )

E (Va(pks1) | k) = Vnlpk) =

2
Tr(MgpkM$>Tr(MepkM£)(<n|Pk|n>)2 cos®pn o sin2<pn
2 TI’(MngM;) Tr(MepkML> '

Thus Vi(pk) = f((n|pk|n)) is also a sub-martingale,
E (Va(pk+1) | p) = Vilpx)-
Moreover, E (Vi(pk+1) | pk) = Vn(pk) implies that either

(n|px|n) =0 or Tr <MgpkM;) = cos?yp.



Open-loop convergence of LKB-photon box (4)

For each n, we apply now the Kushner’s invariance theorem to
the Markov process p, and the sub-martingale V;,(pk). This
theorem implies that the Markov process p, converges in
probability to the largest invariant subset of

{p | Tr (Mgng) = cos?p, or (n|p|n) = 0} .

We have
m the set {p | (n|p|n) = 0} is invariant.
m The largest invariant subset included in
{p | Tr (Mgp/\/lg) = coszwn} is reduced to {|n) (n|}
This yields convergence in probability.
Additional technical arguments (dominate convergence and

Doob’s first martingale convergence theorem, see the notes)
ensure almost-sure convergence.



LKB-photon box: feedback control

Controlled coherent field injection inside the cavity between two
atom passages.



LKB-photon box: model with control

Coherent field injection:

p1 = Dalp) := DapDy,

where D, = exp(aa' — a*a) is a unitary operator called the
displacement operator.
Remember that DIY =D ,and Dy =1 and

o) =D =e T3
’ n=0 \/m '
Controlled Markov chain:

Pk+1 = Msk(pk+1§)v kar% = ]D)ock(pk)'



Quantum filter for feedback control

et =Ms(py 1) Py = Danlpr)-

We wish to find the control o as a function of the k first measured
jumps. In this aim we need to estimate the state of the system.

We start with the ideal case (no measurement uncertainties nor
decoherence): Best estimate is given by the system dynamics itself.

Quantum filter

est __ est est est
Pk+1 —Msk(PkJr%)a Prt} = Day (k)

where the values for sk € {g, e} are given by the measurement
results and ay is a function of p§': i = a(p§).



A quantum separation principle

System+Filter dynamics:
Pk+1 = Msk(pk_;’_%)’ Pk+% = Dak(pk))
pii1 = Msk(pii:%)’ pii% = Dak(p?(St)a

where s takes the values g or e with probabilities pgy x and pe x given
by

Pg.k = Tr (Mgkar%ML)v Pex =Tr (MepH%ML)
and where ay = a(pf).

Theorem: a quantum separation principle

Consider a closed-loop system of the above form. Assume moreover
that, whenever pgt = pq (so that the quantum filter coincides with the
closed-loop dynamics, p°t = p), the closed-loop system converges
almost surely towards a fixed pure state p. Then, for any choice of the
initial state p§*, such that kerp§® C kerpo, the trajectories of the
system-filter converge almost surely towards the same pure state:

PkaPiSt — p.



Proof (1)

IE (Tr (oxp) | po, p§') depends linearly on po even though we are applying a
feedback control.

Indeed, we can write
t
Qk = a(pgs » 805+ - Sk,1)7

and simple computations imply

E (TI’ (Ppi) | POvp(e)St) = Z Tr (ﬁ Msk—1 0Dgy_;0... OI’@ISO oDao(pO))

505+ Sk—1

where _
Msp = MSPM;

So, we easily have the linearity of [£ (Tr (k) | po, p5>) with respect to po.

The rest of the proof follows from the assumption kerp$® C kerpy which
implies the existence of a constant v > 0 and a density matrix pg, such that

est

po" =vpo + (1 —7)ps.



Proof (2)

We know that if both the system and filter start at o', we have the almost
sure convergence. This, together with dominated convergence theorem
implies

lim E (Tr (pxp) | pgst,pSSt) =1.
k— oo

By the linearity of £ (Tr (pxp) | po. p§™) with respect to po, we have

E (Tr (k) | P3, pSS‘) =+E (Tr (kD) | o, pSS’)+(1 -nE (Tr(pkf)) | o5, pSS‘) :

and as both IE (Tr (pxp) | po, p5™) and IE (Tr (pkp) | 0§, p) are less than or
equal to one, we necessarily have that both of them converge to 1:

Jim E (T (o) | po,p8™) = 1.

This implies the almost sure convergence of the physical system towards the
pure state p.



Controlled Markov chain

Hilbert space after a Galerkin approximation:

nmax
H= {Z cnln) | (co)iy € c}

n=0

Dynamics:

pr+1/2 = Dy (pk) := D(ak)pk D(c)’
Mskpk+1/2MsTk
Tr (MSkpk+1/2M;rk>

P+t = Mg, (pry1/2) = ., Sk=g.e.

where

B « is the feedback control (function of px) and D(«) is a unitary
operator (coherent evolution semi-group),

D(a) := exp(aa’ —a*a), foracC.



Choosing ak such that I (Tr (pkp)) is increasing.

We have
_ MopsijoMs with probability Tr (M M|
e Tr(Mgpk+1/2M;)7 p y ( gpk+1/2 g>7
+1 = /\/lepk+1/2’V’Jr ; ili t
—rePkr/aTe with probability Tr ( M, M),
- (Mepk+1/2M£) P y ( ePk+1/2 e)
So

E (T (ps17) | pir1/2) = T (17) (Pl Mgps1/2M§ ) + T (1) (Pl Mepicsr 2ML )
=Tr (\ﬁ> (n| Pk+1/2)7

as
M 17) (3| My + ML |7) (B Me = (cos® +sin®) [F) (| = |F) (A



Lyapunov control: continued

Furthermore
pr+1/2 = D(ak)pkD(—ak),
and we can show in H, that
Da,ODJ; _ eaana*apef(aana*a) =p+ [aa’r _ a*a, p] + O(|0z\2)

So
T (prs1/27) = T (pup)+a T ([17) (7, &l ) —ailTr ([17) (7. alpi) + Ol ).

Therefore, taking
ak = €T (17) (Al [ox, &) = € (Tr (1) (A1, alox) )
for sufficiently small ¢ > 0, we have

Tr (pks1/20) = Tr(pkp) = E(Tr(pks1p) | k) > Tr (pkp)

Tr (pkp) is a sub-martingale



Bad attractors

We do not have semi-global stabilization ...

Fidelity between [] and the goal Fock state
T

i i i i i
50 100 150 200 250 300 350 400
Step number

Tr (pkp) converges almost surely towards a random variable with
values 0 or 1



Modified feedback law

€Tr (plpk; &) it Tr (Ppk) = n
akx = § argmax Tr (pDa(pk)) if Tr(ppk) <n
lal<a

Fidelity between [] and the goal Fock state
T T T T T

i i i i i i i
50 100 150 200 250 300 350 400
Step number



Main result

Closed-loop Markov chain:

Pk+1 :MSk(pk+%)7 kar% :]D)uk(pk)s

with _
€Tt (lox. &) it Tr (7pk) =
ak =4 argmax Tr(pDy(pk)) if Tr(ppk) <n
lo| <&

Theorem

Consider the above closed-loop quantum system. For small enough
parameters €, > 0 in the feedback scheme, the trajectories
converge almost surely toward the target Fock state p.



Proof’s scheme

Four steps:

First, we show that for small enough 7, the trajectories
starting within the set S, = {p | Tr(pp) < n} always reach
in one step the set S>o, = {p | Tr(pp) > 2n};

next, we show that the trajectories starting within the set
S>o,, Will never hit the set S, with a uniformly non-zero
probability p, > 0 (Doob’s inequality);

we prove an inequality showing that, for small enough e,
V(pk) = (Tt (ppx)) with f(x) = X3 is a sub-martingale
within S>, = {p [ Tr (pp) = n};

finally, we combine the previous step and the Kushner’s
invariance principle, to prove that almost all trajectories
remaining inside S>,, converge towards p.



Step 2: Doob’s inequality

Doob’s Inequality

Let { X} be a Markov chain on state space X'. Suppose that there is a
non-negative function V(x) satisfying [£ (V(X1) | Xo = x) — V(x) = —k(x),
where k(x) > 0 on the set {x : V(x) < A} = Qx. Then

IP( sup V(Xn)z)\|Xo=x>§Vg\X).

co>n>0

Here we take V(px) = 1 — Tr(pp«) which is a super-martingale. We have:

1-Tr(p 1-2
P(sup(1 —=Tr(ppw))) 21 —n | px € Sz2q) < (Pex) < 2
K >k 1-n 1-7n

and thus
P ( inf Tr (ppir) > n | Tr (ppi) > 27]) =1—P(sup(1 = Tr(ppx)))
k' >k K >k
>1—n|Tr(ppx) > 2n)
_ 1-2n o

> 1 1 —p,.
> il




Realistic simulations (Matlab script PhotonBox.m) (1)

We take into account the detector’s efficiency (nq), detection faults (), pulse
occupation (na), decoherence (1*72)72), thermal photons (272).

System simulation:
Pt = My o Mg, o Do, (pk),

where s¢ € {g, e, u}, rx € {loss, gain,no} are random variables admitting
probability distributions depending of px and ax:

P(sx = g) = 7alr (MgMngak(pk)),
P(sk = &) = naTt (MEMeDay () )
P(sk = u) =1 —1na,
P(rx = loss) = %Tr (a*a M, © ]D)ak(pk)),
P(rc = gain) = 72 Tr (aaT M, o ]D)ak(pk)),
P(r, = no) =1 — P(r, = loss) — P(rx = gain).



Realistic simulations (Matlab script PhotonBox .m) (2)

Filter simulation:
est est

Pk+1 = TOBS;( ODak(Pk )>

where the s € {g, e, u} is the detection result (atom in |g), in |e) or
undetected).
Furthermore Bs is the Bayesian filter given by:

1= i nt T
Bo(p) = o MopMy+ T MopML,
ole) (= n)pg +mipe” 20 T (A = n)pg + mipe” F77e

T —n n t
Be(p) = ————1— MepMi+ ——— 1 MgpM],
(r) (1 = nr)Pe + nrPyg epMet (1 — nr)Pe + ntPg 9P ¥l

1—7a na(1 = na) i t
B = + MgpMG+ MepMsg ),
u(p) I ( gPMyg ep e)

where p; = Tr (M;Mgp), Pe=Tr (MLMep), 7 is the detection fault rate,

na is the pulse occupation rate and 7y is the detection’s efficiency rate.
The super-operator T, modeling the decoherence, is given by:

T(p) = p+ (””‘“)Ta (apaT —la'ap - Ipa'a )+ dnTs (ana — laa'p - %paaf)
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