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Projective measurement (1)

For the system defined on Hilbert space #, take
m an observable O (Hermitian operator) defined on H.:

O:ZAVPZM

where \,’s are the eigenvalues of O and P, is the
projection operator over the associated eigenspace; O can
be degenerate and therefore the projection operator P, is
not necessarily a rank-1 operator.

m a quantum state (a priori mixed) given by the density
operator p on ‘H, Hermitian, positive and of trace 1;
Tr (v?) < 1 with equality only when p is an orthogonal
projector on some pure quantum state [¢), i.e., p = [¢) (¢].



Projective measurement (2)

Projective measurement of the physical observable
O = >, A\, P, for the quantum state p:

The probability of obtaining the value A, is given by
p, =Tr(pP,);notethat " p,=1asd P, =14 (1y4
represents the identity operator of #).
After the measurement, the conditional (a posteriori) state
p+ of the system, given the outcome \,, is
Py = Puok (collapse of the wave packet)

14

E When P !¢> (W1, Py = (W[Pu[Y), p+ = [¢4) (¥4| with
lv4) =
O non degenerate: von Neumann measurement.
Example: £ = C?, ) = (|g) + |€))/V2, O = o,; measuring
consists in turning on, for a small time, a laser resonant
between |g) and a highly unstable third state |f); fluorescence
means |¢4) = |g), no fluorescence means [i;) = |e).




Positive Operator Valued Measurement (POVM) (1)

System S of interest (a quantized electromagnetic field)
interacts with the meter M (a probe atom), and the
experimenter measures projectively the meter M (the probe
atom). Need for a Composite system: Hg ® Hy where Hg
and Hy, are the Hilbert space of S and M.

Measurement process in three successive steps:

Initially the quantum state is separable
Hs @My 2 |V) = [vg) ® 0u)

with a well defined and known state |6y,) for M.

Then a Schrédinger evolution during a small time (unitary
operator Us y) of the composite system from |¢s) @ |6u)
and producing Us u( |1s) ® |0um) ), entangled in general.

Finally a projective measurement of the meter M:

Om =1s® (X, A P,) the measured observable for the
meter. Projection operator P, is a rank-1 projection in Hy
over the eigenstate |\,) € Hy: P, = |A\) (A



Positive Operator Valued Measurement (POVM) (2)

Define the measurement operators M, via

Vivs) € Hs, Usm(lbs) @ 10m)) =D (Mylebs)) @A) .

Then )", MM, =1g. The set {M,} defines a Positive
Operator Valued Measurement (POVM).
In Hs ® Hu, projective measurement of Oy =1s® (>, A Py)
with quantum state Us y( |vs) ® |0um) ):
The probability of obtaining the value A, is given by
Py = <'¢S| MZT/MV |¢S>

After the measurement, the conditional (a posteriori) state
of the system, given the outcome )., is

|7/}S> M, |71[}S>

R
For mixed state p (instead of pure state |¢g)):
_ i _ _MypM]
p, = Tr (Mpry) and p;. = - T



Quantum Non-Demolition (QND) measurement (1)

Us. u is the propagator generated by H = Hs + Huy + Hsy where Hs
(resp. Hu, Hsy) describes the system (resp. the meter ,
system-meter interaction). For time-invariant H: Us y = e~ '™ where
7 is the interaction time.

A necessary condition for meter measurement to encode some
information on the system S itself: [H, Oy] # 0. When Hy = 0, this
necessary condition reads [Hsy, Om] # 0.

Proof: otherwise OMUS,M = US,MOM- With Oy = ZV Mg ® ‘)\,,> we
have

Vv, OmUsm(|vs)®IA)) = UsmOum([vs)®|A) ) = A Usm(|1hs)®[A) ).

Thus, necessarily Us u(|vs) @ [A)) = (Us [vs) ) ® |A,) where U, is
a unitary transformation on #Hg only. With |6y) = >, 6, |\,), we get:

V[1ps) € HsUsm(|vs) @ [0m)) =0, (U 1hs)) @ |A)

Then measurement operators M, are equal to 6, U,. The probability
to get measurement outcome v, (| MM, |vs) = 16, [, is
completely independent of systems state |¢s).



Quantum Non-Demolition (QND) measurement (2)

The POVM (M, (system S, interaction with the meter M via

H = Hs + Hy + Hsy, von Neumann measurements on the meter via
Opu) is a QND measurement of the system observable Og if the
eigenspaces of Og are invariant with respect to the measurement
operators M,,. A sufficient but not necessary condition for this is
[H,0s] = 0.

Under this condition Og and Us y commute. Assume Og non
degenerate and take the eigenstate |u:) to the eigenvalue i € R:

OsUsm( 1) @ 10m) ) = UsmOs(|) @ 10m) ) = pUsm( 1) @ 0um) ).

Thus Us m( |1) @ 16m) ) = |1) @ (U, |0m) ) with U, unitary on Hy. We
also have
Usm( 1) @ 16m)) = My 1) @A) -

Thus necessarily,each M, |u) is colinear to |u).

When p = |u) (], the conditional state remains unchanged

p+ = M, (p) whatever the meter measure outcome v is.

When the spectrum of Og is degenerate: for all v, M, P, = P, M,,
where P, is the projector on the eigenspace associated to f:



Stochastic process attached to a POVM

m To the POVM (M,) on Hg is attached a stochastic process
of quantum state p

B Ml,pMJL
Tr <M,//)M1T/>

m For any observable A on #g, its conditional expectation
value after the transition knowing the state p

E(Tr(Aps) lp) =Tr(AKp)

where the linear map p — Kp = 3, M, p M}, is a Kraus
map.

m If Ais a stationary point of the adjoint Kraus map K*,
KA=%", MIAM,, then Tr (Ap) is a martingale:

E (Tr (,Z\ p4) | p) =Tr (/Z\ Kp) =Tr (p K*Z\) =Tr (p/z\).

m QND measurement of Og = 3 0,P,: K*P, = P, and
each p = P,/Tr(P,) is a fixed point of the above stochastic
process (p+ = pif p = p)

oy with probability p, = Tt (MVpM,T,).



The LKB Photon-Box: measuring photons with atoms

Atoms get out of box B one by one, undergo then a first Rabi
pulse in Ramsey zone Ry, become entangled with
electromagnetic field trapped in C, undergo a second Rabi
pulse in Ramsey zone R, and finally are measured in the
detector D.



The Markov chain model (1)

m System S corresponds to a quantized mode in C:

Hs = {Z ¥n|n) | (¥n)pZo € /Z(C)} :

n=0

where |n) represents the Fock state associated to exactly n
photons inside the cavity

m Meter M is associated to atoms : H = C2, each atom
admits two-level and is described by a wave function
Cq |9) + Ce |€) With |c4[2 + |ce|? = 1; atoms leaving B are all
in state |g)

m When atom comes out B, the state |V); € Hy ® Hg of the
composite system atom/field is separable

W)g=19)@[¢).



The Markov chain model (2)

m When atom comes out B: V) = |g) @ |¢) .

m When atom comes out the first Ramsey zone R; the state
remains separable but has changed to

W) g, = (U, @ 1) [V)p = (Ur, 19)) @ [4)

where the unitary transformation performed in R; only affects
the atom:

LN .
UR1 — e—l P (xox+y10y+z102) = COS(%)—[S”’](%)(X1 ox+Y1 o'y+z1 Uz)

corresponds, in the Bloch sphere representation, to a rotation of
angle 64 around x17+ y17+ 21k (X2 + y2 + 22 = 1)



The Markov chain model (3)

m When atom comes out the first Ramsey zone Rj:
W)g, = (U [9)) @)

m When atom comes out cavity C, the state does not remain
separable: atom and field becomes entangled and the state is
described by

|‘U>c =Uc |W>H1
where the unitary transformation Ug on Hy ® Hg is associated
to a Jaynes-Cumming Hamiltonian:

He = 50, + i%(g_aT —0.Q)

Parameters: A = weg — we, 2.



The Markov chain model (4)

m When atom comes out cavity C: W), = Uc((Ug, |9)) @ [¥) ).

m When atom comes out second Ramsey zone R, the state
becomes

.0,
W) g, = (Ur, 1) W) With Up, = e~z Cerrvortzzes)
m Just before the measurement in D, the state is given by

(W)g, = Usu(1g) @ [v)) = 19) ® Mg |v)) + |€) @ Me )

where Usy = Ug, Uc Up, is the total unitary transformation
defining the linear measurement operators My and M, on Hs.



The Markov chain model (5)

Just before the measurement in D, the atom/field state is:
9) @ Mg|¢) +|€) @ Me )
Denote by s € {g, e} the measurement outcome in detector D: with

probability ps = <w|MlMS\w> we get s. Just after the measurement
outcome s, the state becomes separable:

[8) ® (Ms[¢))

JOmimas)

Markov process (density matrix formulation)

W)p = ol [8) ® (Male)) =

MgpM} . -
My(p) = Mﬁz), with probability py = Tr (MgpMD;

t . "
Me(p) = %, with probability pe = Tr (MepML

Exercice

Show that, for any density matrix p, Mgp M}, + MepM} does not
depend on (62, X2, ¥», Z2), the parameters of the second Ramsey
pulse in Ro.

P+ =



Atom-cavity coupling

The composite system lives on the Hilbert space
C? ® L?(R; C) ~ C? ® [?(C) with the Jaynes-Cummings
Hamiltonian

T
5 5 ox(a — a),

with the usual scales Q < we, weg, |we — wWeg| K we, weg @and
|dQ/dt| < wed, wegfd.



Jaynes-Cumming model: RWA

We consider the change of frame: [¢)) = e—/wel(@ at2) g=iweloz | ),
The system becomes i4 [¢) = Hiy |¢) with

A Q¢ ; ; ; i
o = 02+ 150 (6740 g) (el + € Je) (g)(e-'al — e™<"a)
where A = weg — we.

The secular terms of H,,, are given by (RWA, first order

approximation):

Fha = 31} (€l ~19) {g) + 1521 (el a' — [¢) (g] 2).

We compute the propagator for the simple case where Q(t) is
constant.



Jaynes-Cumming propagator

Exercice: Let us assume that the Jaynes-Cumming propagator Uc admits
the following form

, (A(|e><e|g><g|) ,n(|g><eaf|e><g|a))
—iT 5 +i 5
Uc =€

where 7 is an interaction time.

m Show by recurrence on integer k that

(a(1e) (el ~19)(g1) +12(Ig) (el ' ~Ie) gl ) ) =
&) (el (8% + (N -+ 1)22) " + 1g) (0] (&% + N2)

and that

2k+1

(A(le) (el ~ Ig) (g1 + i(19) (el a' e} (gl 8))" " =
@) (el & (82 + (N +1)2°)" ~ lg) (o] A (82 + N02)"

+9(1o) (el (8% + N22) & — |e) (gl a (A% + N22)").



m Deduce that
: 74/ A24NQ2
VA2 + NQ2

. T4/ A2+(N+1)Q?
Asin <f)
+ |e) (e| | cos (WAZ“"’“)QZ) —i

2

Uc = |g) (g] | cos (TV“Z*W) i

A?+ (N+1)Q2

Qsin (7” A?NQZ) Qsin (7” A?NQZ)
o) el | — e |2 10| — e

where N = a'a the photon-number operator (a is the photon annihilator
operator).



m In the resonant case, A = 0, prove that:

Uc = |g) (g| cos (%W) + |e) (e| cos (% N+ 1)

+19) (el (%W)) a' —le)(gla <(%m>>

where N = a'ais the photon number operator, the adjustable
parameter © being the Rabi angle with zero photon. What is its value?

m In the dispersive case, |A| > ||, and when the interaction time 7 is
large, A1 ~ (%)2, show that, up to first order terms in Q/A, we get

[T(A(e><e|g><g) ,n(g><e|a*e><ga))
e =

2 + 2

S ar Q%r

AT

19) (gl e’(T* aA N) +16) (el e*"< 2 +%(N+1)>'



Resonant case (A = 0)

We take
U, =€ iy —cos( )+sm( ) (lg)(el—|e)(gl) and Ug, =1.
We were looking for Mg and M. such that
Usu |9) @ [v)= Up,UcUg, |9) ® [¢) = [9) ® Mg |¢) + |€) @ Me|¢)).

We h
T (cos (%) lg)—sin(%)le)) @lw).

and then

W)g, = [W)c =
9) @ (cos (%) cos (2VN) —sin (%) (Sin(?ff)> a*) )
—le)® (sm (%)cos ($VN+1) +cos (%) a (Sm<am)>) ).




Resonant case: measurement operators

g =o0n (1)cos(3) s (%) (15" ) o
Me = —sin (%) cos (3vN+1) — cos (% ) a <<%W>>

Exercice

Verify that these Kraus operators satisfy MEM g+t MLMe =1
(hint: use, N = a'a, a f(N) = f(N +1) a and
a'f(N) =f(N—1) a').

>




Dispersive case (|A| > |Q])

We take . .

UFﬁ _ efizay and UR2 _ eflz(fsln’qo)d»cosno'y)
Therefore 9 — o)

—le
[W)g, = QT ®¥).

Then _ '

W)= J519)® e M y) — Tle)® &My
Finally

2|W)g, = (lg) —e &) @ e |y) — (e |g) + |e)) © €V [)
=|g)® (e—i¢<N) _ ei(n+¢(N+1))) 1) — &) ® (e—i(n+¢(N)) 4 ei¢(N+1)) 1)

where ¢(N) = 9o + Ni with 9o = —47 and & = — %7

Kraus operators

Taking o an arbitrary phase and n = 2(po — ¥o) — ¥ — m, we find
Mg = cos(po + NI), Me = sin(go + NV)



Markov chain model: summary

Therefore the Markov chain model is given by

M, px M,
Tr (Mol )

where s, = g or e with associated probabilities py x and pe,x given by

pr+1 = M, (pk) =

Pox =Tt (MgpkM;) and pes =Tr (MepkMz).
Here Mg and M. are given by
Mg =cos(po + N9), Me =sin(po + NI)

This is a QND measurement for the observable N of photon number. Indeed,
as the Kraus operators Mg and M. commute with N, the mean value of N
does not change through the measurement procedure:

E (Tr (Npki1) | px) = Tr (Npx).

Also, the eigenstates of the observable N (the Fock states) are invariant with
respect to the measurement procedure:

Mg(|n) (n|]) = |n) (n] and Mse(|n) (n|) = |n) (n| for all n.



Why density matrices (1)

Measurement in |g)

9) @ Mg )

19) @ Mg |¢) +|e) @ Me[yh) — :
HMQ [+) H%

Measurement in |e)

16) ® Me |v)

19) @ Mg |Y) +|€e) @ Me ) — :
HMeW) H?—L



Why density matrices (2)

The atom-detector does not always detect the atoms.
Therefore 3 outcomes:
Atomin |g), Atomin|e), No detection

Best estimate for the case

E (19) | ) = || Mg o) |

This is not a wel

|, Malo)+||Melw) |, Melw)
I-defined wavefunction

Barycenter in the sense of geodesics of S(H)
not invariant with respect to a change of global phase

We need a barycenter in the sense of the projective space
CP(H) = S(H)/S!



Why density matrices (3)

Projector over the state [¢): Py = |¢) (¢]
Detection in |g): the projector is given by

Mgl WIMy Mgy (BIME Mg ) (| M
IMglwd |, | (1 Mbrg )] T (Mo ) (w1 A1)

[4)

Detection in |e): the projector is given by

Me ) (9] M
Tr (Me [4) (v] ML)

P|1/1+> =

Probabilities:

po=Tr (Mglu) (Wl M§) and  po=Tr (Mev) (v M})



Why density matrices (4)
Imperfect detection: barycenter

Mglv) (IMy | Moly) (9] ME
i\ T Pe t
T (Mgl (I ME) T (M) (] ME)
= Mg [v) (] M + Me [v) (] ML,

¥) (Y] — Pg

This is not anymore a projector: no well-defined wave function
New state space of quantum states p:
X={pcLH)|p =pp>0Tr(p)=1}

Pure quantum states p correspond to rank 1 projectors and
thus to wave functions |¢) with p = |¢) (¢)].



Kraus map

What if we do not detect the atoms after they exit R>?

The “best estimate” of the cavity state is given by its
expectation value

pi = PgkMg(p) + PexMe(p) = MgpM + MepME = K(p).

This linear map is called the Kraus map associated to the
Kraus operators Mg and Me.

In the same way and through a Bayesian filter we can take into
account various uncertainties.



Some uncertainties

Pulse occupation The probability that a pulse is occupied by an atom is
given by 7a (na € (0, 1] is called the pulse occupancy rate);

Detector efficiency The detector can miss an atom with a probability of
1 —ng (na € (0, 1] is called the detector’s efficiency rate);

Detector faults The detector can make a mistake by detecting an atom in |g)
while it is in the state |e) or vice-versa; this happens with a
probability of n¢ (nf € [0,1/2] is called the detector’s fault
rate);

We basically have three possibilities for the detection output:

Atom detected in |g) either the atom is really in the state |g) or the detector
has made a mistake and it is actually in the state |e);

Atom detected in |e) either the atom is really in the state |e) or the detector
has made a mistake and it is actually in the state |g);

No atom detected either the pulse has been empty or the detector has
missed the atom.



Atom detected in |g)

Either the atom is actually in the state |e) and the detector has made
a mistake by detecting it in |g) (this happens with a probability pg ) or

the atom is really in the state |g) (this happens with probability 1 — p;).

Conditional probablity p{,: We apply the Bayesian formula

pf _ NfPe
9 nipe+ (1 —n1)pg’

where py = Tr (Mgp/\/l;> and pe = Tr (Mep/\/ll).

Conditional evolution of density matrix:
pr = PyMe(p) + (1 — P})Mg(p)

1—
Ui Me,OML-i- Ui

— MgpM},.
nePe + (1 — 11)Pg ntPe + (1 — 1r)Pg 9P




Atom detected in |e)

In the same way

1 —ny
ntPg + (1 — 1f)Pe

_ 0y
ntPg + (1 — nf)Pe

P+ MgpM{ + MepML.



No atom detected

Either the pulse has been empty (this happens with a probability pna)
or there has been an atom which has not been detected by the
detector (this happens with the probability 1 — pna).

Conditional probability pn,:

_ 1— 14 _ 1 -1y
Na(1 —na) + (1 —na) 1 —nang

In such case the density matrix remains untouched.

The undetected atom case leads to an evolution of the density matrix
through the Kraus representation.

Pna

Conditional evolution:

pi = Pra p+ (1 = Pra)(MgpM{ + MepML)
11—, na(1 = na)

= +
1 —nang 1 — nanag

(MgpM + MepMb).
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