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Controllability of bilinear Schrédinger equations’

Schrédinger equation

ig ) = (Ho +) Uka> 1)
k=1

State controllability

For any |¢4) and |¢) on the unit sphere of #, there exist a time
T > 0, a global phase 6 € [0, 27[ and a piecewise continuous
control [0, T] > t — u(t) such that the solution with initial
condition |), = |1a) satisfies [¢)) 7 = € |1hp).

'See, e.g., Introduction to Quantum Control and Dynamics by
D. D’Alessandro. Chapman & Hall/CRC, 2008.



Controllability of bilinear Schrédinger equations

Propagator equation:

m
iU = <H0+Zuka> U, U0)=1

k=1

We have [1), = U(t) [+),.

Operator controllability

For any unitary operator V on 7, there existatime T > 0, a
global phase # and a piecewise continuous control

[0, T] > t — u(t) such that the solution of propagator equation
satisfies Ur = € V.

Operator controllability implies state controllability



Lie-algebra rank condition
%U: <Ao + zm:UkAk> U

k=1
with A, = Hy/i are skew-Hermitian. We define

Lo = span{Ao, A1,...,An}
£1 = Span(‘COa [L:Oa ‘CO])
Lo = span(Ly,[Lq, L1])

L= EV = Span(£V71 y [£ll71 ’ £1/71])
Lie Algebra Rank Condition

Operator controllable if, and only if, the Lie algebra generated by
the m + 1 skew-Hermitian matrices {—iHyp, —iH, ..., —iHpn} is either
su(n) or u(n).

Exercice

Show that i § |¢) = (“go, + 4ox) |¥), [¥) € C2 is controllable.



A simple sufficient condition

We assume H |j) = wj|j) where w; € R, we consider a graph G:
V=A1),....Im}, E={(h),l2) [ 1 <ji <j2<n, (ji|Hiljz) #0}.

G amits a degenerate transition if there exist (|j1), |j2)) € E and
(Jh),]k)) € E, admitting the same transition frequencies,

‘wh - w/zl = |W/1 - w/2|'

A sulfficient controllability condition

Remove from E, all the edges with identical transition frequencies.
Denote by E C E the reduced set of edges without degenerate
transitions and by G = (V, E). If G is connected, then the system is
operator controllable.



Controllability of a 2-qubit in Ising interaction

The dynamics of the 2-qubit system (state |¢)) € C2 ® C?) obey
iG 1) = (Ho+ ubh) [v) = (Z1Z2 + u(Xi + X)) [¥) (1)

with u € R as control.

Prove that X; X> commutes with Hy and with H;.

Is the system controllable ?

Use the spectral basis of X; X> and the decomposition
span{|00),|01),[10),|11)} =
span{|++), [-—)} @ span{|+-) , |—+)} with |+) = 12511,
|—) = |°>\;§“>, to deduce a splitting of this system into two
separated systems on span{|++),|——)} and on
span{|+—),[—+)}.

Prove that one of these sub-systems is controllable and
that the other one is not controllable.




Lyapunov control

Bilinear Schrédinger equation:

1) = (o + u()h) )
Control task: to prepare |¢) such that
Ho i) =& [¢) .
The states |¢/) and e'¢ ) represent the same physical states

We add a fictitious control:

,-jt ) = (Ho + u(t)Hr) [1)+eo(t) 1)

) is a stationary solution for u(t) = 0 and w(t) = —a.



Lyapunov control

We look for feedback laws u(t) = f(|¢)) and w(t) = g(|v)) such
that the solution of

igt [¥) = (Ho + (1) Hr + g(19))) [¥)

converges asymptotically towards }@

Remark

These feedback laws are calculated off-line and by simulating
the closed-loop system and are then applied in open-loop on
the real system.



A Lyapunov function

We consider

V() = 5 19 = 9P = 1 = R(T | 9)).

We have

d

GtV = US| Hi ) = (w(t) +B)3((? | )

Choice of feedback laws

uty=aS((¢ | Hi[v)) and  w(t)=-&+b3((P|v)),

where a, b > 0.



LaSalle’s invariance principle

Theorem (Lyapunov function and Lasalle invariance principle)

Take Q2 C R™ an open and non-empty subset of R" and

Q > x — v(x) € R" continuously differentiable function of x. Consider
Q > x — V(x) € R a continuously differentiable function of x and
assume that

there exits ¢ € R such that the subset V., = {x € Q| V(x) < ¢}
of R" is compact (bounded and closed) and non-empty.

V is a decreasing time function for solutions of iX = V(x) inside
Ve:

Vx € Ve, gvu)_vvuyv()jig:()WW)go

Then for any initial condition x° € V., the solution of %x = v(x)
remains in Vy, is defined for all t > 0 (no explosion in finite time) and
converges towards the largest invariant set included in

{xe V.| 2V(x)=0}.



Application to Schrédinger equation

dV/dt = 0 and invariance

(¥ | ¥)) =0,
S((¥ | Hi | ) =0,
R((P | [Ho, H1] | ¥)) =0,

S((¥ | adfHo | )) =0,
R((P | adft Ho | 1)) =,

Assume that the spectrum of H, is not o-degenerate: i.e. H; is
not degenerate and for any two eigenvalues w, # wg,
lwa — @] # |wg — &3
Q-limit set
Intersection of S2"~" with R [¢)) |, C [#%), Where [¢,) is any
eigenvector of Ho non co-linear with |¢/) and satisfying

<1Z|H1|wa>:0




Convergence Analysis

Theorem

Under the assumption of Hy not w-degenerate and
mono-photonic transitions to |¢) (( | Hy | 1ha) # 0 for all
eigenvector [t,) of Hp), the Q-limit set reduces to {|¢) , — [¢)}.
The equilibrium — [+) is unstable and the attraction region for
the equilibrium [v) is exactly S2"=1/{—|4)}.

Remark

Assumptions of Hy not -degenerate and mono-photonic
transitions to [¢))

<~

Controllability of linearized system around

([), u,w) = (|&> ,0, —®)



Relaxing the assumptions: tracking

Main idea: stabilizing around another reference trajectory,
around which the linearized system is controllable.

Reference trajectory:

I(?t |’¢Jr> = (Ho + Ur(t)H1 + Wr(t)) |¢r>

Same Lyapunov function: V(¢, [¢)) =1 — R((¢r (1) | ).

Feedback laws:

u(t, [9)) = ur(t) + aS((¢r(t) | Hy [ 4)),
w(t, [9)) = wr(t) + bI((Yr(t) [ ¥))



Tracking and quantum gate design

We consider a drift-less propagator dynamics:

d i
iU = (m +k§_:1uk/-/k> U, U‘t:O —1.

Periodic reference trajectory: u; and w, periodic and odd.

Main idea

By a Coron’s result, as soon as Lie(Hs, ..., Hn) = su(n), one
can find reference controls w" and uj, around which the
linearized system is controllable.

Lyapunov function: V(U, U") = n— R(Tr (UTU")).
Feedback laws:

U = uf, — aS(Tr (UTHU")),
w =" = bS(Tr (UTU")).



REINES

The LaSalle’s invariance principle also works for time-periodic
systems; only one needs to be be careful about the notion of
invariance:

A set S is said to be invariant for the time-periodic system

gtx = v(x, t) if, for all xo € S there exists a time , > 0 such that
the solution starting from xg at time f, remains in the set S for

all t > lo.



Two optimal control problems

For given T, |¢4) and |¢y), find the open-loop control
[0, T] > t — u(t) such that

. 1 T (& 2
min 1 u
Ug € L2([IO, T],R) 2/0 (; k)
i% ) = (Ho + Y jq UkHk) [¥)
) 1—0 = [¥a), (Vb)) 7 =1

Since the initial and final constraints are difficult to satisfy
simultaneously from a numerical point of view, consider the
second problem where the final constraint is penalized with

a > 0:
UkeLg?[i& ) / (Zuk> 5 (1-1welv) 2 )

i%Y) = (Ho + Y jq UkHk) )
%)= = |tha)



First order stationary conditions

For two-points problem, the first order stationary conditions
read:

) = (Ho + >y ukHk) [¥), t€ (0, T)
Ip) = (Ho + >_k_ 1Uka)|P>, te(0,7)

=3 (tplHde) )oK =1.com. e ©.T)
o = W 10161 Er =

For the relaxed problem, the first order stationary conditions

i d

A
‘a
ot

read:

(HO + er(n:1 Uka) ‘¢> ) te (07 T)
= (Ho+ > x_q ukHk) lp), t€(0,T)

p|Hk|w>) —t,.m, te(0,T)
>7 \p>t:T = —Oé<’l/)b\¢>t:T Wfb>-

ig|
dg
Iar

V) =
p

Ug =

W)t:o =

—/\



The underlying classical Hamiltonian dynamics

The dynamical system

'dt [¥) = (Ho + Xjq UkHk) [4), € (0, T)
(D) igGle) = (Ho+ >, Uka)\ p), te(0,T)
Ue = =S ((p[Hklv))  k=1,....m, f€ 0,7)

is Hamiltonian with |¢)) and |p) being the conjugate variables. The
underlying Hamiltonian function is given by (Pontryaguin Maximum

Principle): F(|1) , [0)) = minucen H(J1) , [p) , u) where
)

H(|v), <Z Uk) +3 <<P
o m 2
H(J) . [p)) = S ((p|Hol ) — 1 (Z %(<p|Hk|¢>) ) .

Thus for any solutions (i) , |p)) of (¥),
k=1

m
Hy + Z Uk Hk
k=1

is independent of t.
Main difficulty: such systems are not, in general, integrable in the
Arnold-Liouville sense.



Monotone numerical scheme for the relaxed problem (1)2

Take an L2 control [0, T] > t +— u(t) (dim(u) = 1 here) and
denote by

m [¢,) the solution of forward system i& |v) = (Ho + uHy) [)
starting from |¢4).

m |p,) the adjoint associated to u, i.e. the solution of the
backward system i& |py) = (Ho + uH;) |py) with
|Pu) 7 = —aP |¢pu) 7, P projector on |¢p),
Pl¢) = <¢b\¢> |Yb)-
m J(u) =3 fy P+ (1~ (Wl ).
Starting from an initial guess u° € L?([0, T],R), the monotone
scheme generates a sequence of controls u” € L2([0, T],R),
v=1,2,..., such that the cost J(u") is decreasing,
J(urt) < J(w).
2D. Tannor, V. Kazakov, and V. Orlov. Time Dependent Quantum
Molecular Dynamics, chapter Control of photochemical branching: Novel

procedures for finding optimal pulses and global upper bounds, pages
347-360. Plenum, 1992.




Monotone numerical scheme for the relaxed problem (2)

Assume that, at step v, we have computed the control v, the
associated quantum state |¢") = |¢y,») and its adjoint

|’} = |puv). We get their new time values v+, [¢**1) and
|p*T1) in two steps:

Imposing v = =& ((p” |Hi| ¥ 1)) is just a feedback;
one get u**1 just by a forward integration of the nonlinear
Schrédinger equation,

P9 ) = (Ho— S (" |Hi| ) H) [0, [1h)g = [tha) »

that provides [0, T] > t — |¢*"") and the new control u”*.
Backward integration from t = T to t = 0 of

ig1p) = (Ho+u ' (OHh ) Ip). 1P)7 = —a(uslv”*")_|vs)

yields to the new adjoint trajectory [0, T] > t — |p”+1 ).



Monotone numerical scheme for the relaxed problem (3)

Why J(u¥*+1) < J(u¥) ?
m Because we have the identity for any open-loop controls u
and v.

J(u) = J(v) = =5 ((Yu — Uv|Plvu —dv)) 7
T
+3 </ (u=v)(u+ V+2%(<pv\H1\wu>))> :
0
mIfu=—-S((pv|Hi|¢u)) forall t € [0, T), we have
T
J(U)=I(v) = ~§ (s — ol Pl — )7~} ( | - v>2>
and thus J(u) < J(v).

m Take v = u”, u = u"*': then |p,) = |p¥), [¥v) = [¥Y),
‘pu> — ‘pu+1> and W)U> _ ‘wu+1>_



Monotone numerical scheme for the relaxed problem (4)

Proof of
4 T
J) = J(v) = =G5 ((bu—Yv|PlYy —v))r + 3 (/0 (u=v)(u+v+23({py |H1|¢u>))) .
Start with
a| (Yu—YvIPlYu—vv) TH(Pu—YvIPlYv) T+ (v PlYu— >T) T (u—
J(u)_J(V) _ < v u , v v v u v +/~O (U V)2(U+ V) )

Hermitian product ofi%(\zpu) — |v)) = (Ho + vHy) (Iu) — |v)) + (u — v)Hy |2by) with |py):

<pv | d(d)ud?“IJv) > = <Pv |7HO+,-VH1 | Yy — ¢v> + <Pv 7“‘7;/)[-’1 ‘ ¢u>.

. H H.
Integration by parts (use |1y} = [¥u)os |Pv) 7 = —aP |¢v) 7 and & (py| = — (py| (F2F5L)):

T d _ T
/0 <pv‘ (wudtlpv)>:(F’V|1r/)u_¢v>T_(F’V‘wu—iﬁV)o—‘/0 <dgf,v|”/)u—7/)v>
T
:—a<’/)v|P|'¢'u—¢'v>T+/0 <Pv‘w|wu—wv>
Thus —o(Wy [Py — Pv)T = fQT <Pv m U)u> and
aR ((Yv|Plu — Pv)7) = — OT S ({pv |(u — V)Hy | 3y)). Finally we have

T
J) = J(v) = =G ((bu— [Py — )7 + % </0 (u—=v)(u+v+23({py |H1|¢u>))) .



Optimality and resonance (1)3

Forgiven T, ax>0and b > 0 (3)_, @ =Y ), b2 = 1),

;
min 1/ > luwf
2
Ux ) € LZ([O, T1,C), (k,) el 0 ((k,l)el

ig ) = (Z(k l)e/NkIUk/ k) </|> [v)
|<k|w>\?:0 :aﬁ, |(k|w)|? = b2, k=1,...,n

admits the same minimal cost as the following reduced problem

;
min / > vl
Vi, € L2([0, T],R), Vig = —Vix, 0 ((k,l)el

(k.
5160 = (Sqener muavia 1K) )
<k|¢>‘t 0 = @k, <k|¢>t T*bk, = ,.

where the components of |i)) = |¢) remain real, the uy’s are purely
imaginary, Uy = /Vk/ (Vk/ € R with Vi = —V/k).

3U. Boscain and G. Charlot. Resonance of minimizers for n-level quantum
systems with an arbitrary cost. ESAIM COCV, 10:593-614,-2004-




Optimality and resonance (2)

m Go back to resulting optimal physical controls (ux = ivy):
(1) et pus (H)e Nt = _2y (1) sin ((wx — wi)t) .

m They are in resonance with the frequency transition
between |k) and |/). They contain only amplitude
modulations (up to a = phase-shift since vy, can pass
through zero).

m For drift-less quantum systems

i% |y = ( > pwug k) </) )
(

kel

population transfer minimizing the L2 control norm is
achieved by resonant controls uy = ivyy with vy € R (the
reduction of the problem to a real case of half dimension).



Optimality and resonance (3)
Associated to any 6 = (64,62, ...,60,) consider

¢> = ‘¢9> = (Z eiak ‘k> <k|> |w> 9 Uk[ — Uz, = ei(gk_el)uk/,

k=1
These transformations leave unchanged cost and constraints of

i 1 2
Uk, € Lz([O,r?]I?CL (k. el / (g:amkll )

i ) = (Z ey ) 1),
(Kl 2o = a, [(kly)y = bF, k=1,

that coincides with

.
min %/ > juwl? |-
ux, € L3([0, T],C), (k,/) e | 0 ((k,/)e/

iglv) = (Z(k ner HiiU |K) </|) ¥,
<k|w>t:0:akv |<k|¢>t T*blzp _17"‘7n



Optimality and resonance (4)

m Setyx = (k|y) and 2 = ety G(IVKl") = 2, | ey =5
Evolution of the direction of 1 in the complex plane is governed by

UwZy + Uiz
—

Yk Sk — Yk Gk = Z

'] (k,hel

For (k. 1) € I set vig(t) = 4 I 2(t) = 0:
m For (k,/) € I set v = * (1) —u .
ki ukl(t)zklz(itl)z“;"tl;/‘(t)zkl(t) . ifzw(t) £0;
m We have vy = —vi since Uy = uy and zz = z,. Moreover |vyg| < |ugl|.

Thus each vy belongs to L2([0, T],R) and the solution |#) of
Lok=3, | (kner PaViadr, ok(0) = @, k =1,..., ncoincides with
Pk = [x]-

m To summarize: starting from complex controls uy € L3([0, T],C)
satisfying the constraints of the full problem, we have constructed real
controls vy € L2([0, T], C) satisfying the constraints of the reduced
problem; the cost associated to uy is larger than the cost associated to
Vi since |Vk/| < ‘Uk/|.



Outline of the 8 lectures

Lect. 1 (Oct. 4)

Part 1,

Part 2,

Introduction on LKB Photon-Box: control issues for classical and
quantum oscillators (creation/annihilation operator, coherent state).

open-loop control of Schrédinger systems:

Lect. 2 (Oct. 11) RWA and multi-frequency averaging; 2-level
system (half spin) and Jaynes-Cummings model
(spin-spring)

Lect. 3 (Oct. 25) Law-Eberly method for trapped ions; adiabatic
invariance and control.

Lect. 4 (Nov. 22) Controllability, Lyapounov control and optimal
control

closed-loop control of open quantum systems:

Lect. 5 (Nov. 29) Measurement and quantum trajectories (discrete
time, Kraus operators, LKB-photon box)

Lect. 6 (Dec. 6) Feedback stabilization (Photon-box, quantum filter,
Lyapunov, separation principle, delay
compensation)

Lect. 7 (Dec. 13) Quantum trajectories (continuous time with
Poisson process, Lindblad operators, time/scale
reduction, synchronization loop on a A-system)

Lect. 8 (Dec. 14) Quantum trajectories (continuous time with Wiener
process, homodyn detection, Lyapunov feedback
stabilization of entangled states).
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