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RWA and multi-frequency averaging
The 2-level system

Jaynes-Cummings model



Bilinear Schrddinger equation

Un-measured quantum system — Bilinear Schrédinger equation

d

i 1) = (Mo + u(t)Fh) 6)

m [)) € H the system’s wavefunction with H [¥) HH =1;

m the free Hamiltonian, H,, is a Hermitian operator defined
onH;

m the control Hamiltonian, H, is a Hermitian operator
defined on #H;

m the control u(t) : R* — R is a scalar control.

Here we consider the case of finite dimensional H.



Almost periodic control

We consider the controls of the form
r . .
u(ty =e > ue™t +ure ™!
j=1

m ¢ > 0 is a small parameter;

B cu; is the constant complex amplitude associated to the
pulsation w; > 0;

m r stands for the number of independent pulsations (w; # wk
for j # k).

We are interested in approximations, for ¢ tending to 0™, of
trajectories t +— |¢); of

.
4 |1he) = (Ao +e (Z u;e™it + u;-‘e"“’”) A1) |¥e)

j=1
where Ay = —iHp and Ay = —iH; are skew-Hermitian.



Rotating frame

Consider the following change of variables

‘we>t = ert ’¢e>t :

The resulting system is said to be in the “interaction frame”
& 10e) = eB(t) [de)

where B(t) is a skew-Hermitian operator whose
time-dependence is almost periodic:

r
B(t) _ Z ujelw/teontA1 ert + u}kef/wjteontA1 ert.
J=1

Main idea

We can write B _
B(t) = B+ 4B(t),

where B is a constant skew-Hermitian matrix and E(t) is a
bounded almost periodic skew-Hermitian matrix.



Multi-frequency averaging: first order

Consider the two systems

and

Theorem: first order approximation (Rotating Wave
Approximation)

Consider the functions |¢.) and )¢25t> initialized at the same

state and following the above dynamics. Then, there exist
M > 0 and n > 0 such that for all € €]0, [ we have

max 190 = |o1™) || < Me

Ve



Multi-frequency averaging: first order

Proof’s idea
Almost periodic change of variables:

Xe) = (1 = eB(1)) |c)

well-defined for ¢ > 0 sufficiently small.
The dynamics can be written as

gt IXe) = (eB+ €#F (e, 1) [xe)

where F(e, t) is uniformly bounded in time.



Multi-frequency averaging: second order

More precisely, the dynamics of |x.) is given by
% x0) = (eB+ [B.B()] - B()GB(1) + E(e, 1)) Ix.)

m E(e, 1) is still almost periodic but its entries are no more
linear combinations of time-exponentials;

m B(t) 3 B(t) is an almost periodic operator whose entries
are linear combinations of oscillating time-exponentials.

We can write B B
B(1)gB(t) = D+ &D(1)

where 5(1‘) is almost periodic. We have
9 Ixo) = (B— D+ (1B, C(1)] - D() + E(e. 1) xo)

where the skew-Hermitian operators B and D are constants
and the other ones C, D, and E are almost periodic.



Multi-frequency averaging: second order

Consider the two systems

9100 = (B+ 4B(1) 16

2”d>7
end>0 = |¢e>0 :

Theorem: second order approximation

and

Q“)Snd> (eB—¢2D)

dt

initialized at the same state

Consider the functions |¢.) and ’¢>§"d> initialized at the same

state and following the above dynamics. Then, there exist
M > 0 and n > 0 such that for all € €]0, n[ we have

max. {160, = [¢£7) || < Me
te [OZ:|




Multi-frequency averaging: second order

Proof’s idea
Another almost periodic change of variables

&) = (1- ¢ (1B, €] - D(1) ) Ixo)-
The dynamics can be written as
9 e = (eB — 2D + SG(e, t)) I€)

where G is almost periodic and therefore uniformly bounded in
time.



Approximation recipes

We consider the Hamiltonian

m r
H=H,+ Z Uy Hy, ug(t) = Z uk,jewff + u,?je’wft.
k=1 j=1

The Hamiltonian in interaction frame

Ha(t) = <Uk,je°’/t + u*,;,je*“/t> Mol Hy g~ ot
k,j

We define the first order Hamiltonian

Hrlvs: = Fipt = Ilm T/ I_Ilnt

and the second order Hamiltonian

/‘I2nd = Hrl,j - .(I'Iim - m) </t(l_l|m - Hm))




Slowly varying amplitudes

REINES

In the above analysis we have assumed the complex
amplitudes uy ; to be constant. However, the whole analysis
holds for the case where each one ug ’s is of a small
magnitude, admits a finite number of discontinuities and,
between two successive discontinuities, is a slowly time varying
function that is continuously differentiable.



2-level system (1/2 spin)

The simplest quantum system: a ground
state |g) of energy wg; an excited state |e) of
U energy we. The quantum state |¢) € C?is a
linear superposition |¢) = 14 |g) +1e|€) and
obey to the Schrédinger equation (g and e
|g> depend on 1).
Schrodinger equation for the uncontrolled 2-level system
(h=1):

m—c)

&) = Ho |v) = (we€) (€] +wg |g) (g]) [4)

where Hy is the Hamiltonian, a Hermitian operator HI = Hy.
Energy is defined up to a constant: Hy and Hy + @ ()1 (w(t) € R
arbitrary) are attached to the same physical system. If |¢) satisfies
ih& ) = Ho [¢) then |x) = e~ |y) with 29 = w obeys to
ih&|x) = (Ho + wl) |x). Thus for any ¥, |)) and e~ |¢)) represent
the same physical system: The global phase of a quantum system
|1) can be chosen arbitrarily at any time.



The controlled 2-level system

Take origin of energy such that wg (resp. we) becomes —<°5¢
(resp. “*5*9) and set weg = we — wy
The solution of i g |v) = Ho WJ> = 52(le) (el = 19) (gl) [¥) is

|¢>z—¢goe E |Q>+¢eoe h; le).

With a classical electromagnetic field described by u(t) € R,
the coherent evolution the controlled Hamiltonian

H(t) = “20,+ 205, = “9(16) (6 1g) (al)+ ) (le) (g1 +10) (&)

The controlled Schrédinger equation ih% [) = (Ho + uHs) |¢)
reads:

id e\ _Weg (1 O Ve I @ 0 1> <¢e>
@ \pg) 2 \0 —1) \¢yg 2 \1 0)\wy)
The 3 Pauli Matrices'

ox = |€) (gl+]g) (el , oy = —ile) (gl+ilg) (el , oz = |e) {e|—|g) (g

"They correspond, up to multiplication by i, to the 3 imaginary quaternions.




Pauli matrices and some formula

ox = |e) (gl +|g) (el, oy = —ile) (g +ilg) (e], o2 = |€) (€] — [9) (g
0% =1, ooy =io, |ox,0y] = 2ic,, circular permutation ...

m Since for any 6 € R, e/ = cos ) + i sin o, (idem for o,
and o), the solution of i |1) = “Zo, |1)) is

V), = e_h;egtcrz 1) = (COS <wzgt> 1—Jsin (uj;gt> Uz> V)

m Foroa,B8=x,y,z, a # 3 we have

. . ) -1 . t .
Uaeleag — e_IHUﬁO'a, (eIGUQ) — (elﬂaa> — e—l@aa'
and also

i0 i0 H H
e—%aa O'/Be,?ga — e—l¢900< o= O_ﬁeleoa



RWA and resonant control

In i ) = (“Lo; + Yox) 1), take a resonant control
u=uewesl  ure” "”69’ with u slowly varymg complex amplitude
|Gu| < weg|u\ Set Hy = “20, and eH; = 4o, and consider

[v) = e™ “5o |p) to eliminate the drift Hy and to get the
Hamiltonian in the |nteract|on frame:

gtgz iw eqt,,

Idt‘¢> oxe 2 W) =Him\¢>
a+:|e>< | o~ =|g){el
Ox + IUy IO'y

with H,,, = %eiOJsgt _‘_%e*iwegt Ox 5
The RWA consists in neglecting the oscillating terms at
frequency 2weg When |u| < Q:

2iwegt * * a—2iwegt
ue™e" +u u+ue eq _
o= (A o (U

Thus N
— Ut +Uuoc”
Hint = — 5



Second order approximation and Bloch-Siegert shift

The decomposition of H,,

Ho=%0, + Y0 uee, | ue e,
Hit Hint— Hhot
provides the first order approximation (RWA)
Hiy = Hy = limr_oo + fo (1)dt, and also the second order
approximation H2Y = HY% — i(Hu — Hi) (f,(Ho — Ho))- Since
ft it — Hit = uiijezgtU—&— - i,;j;:egt o_, we have

. _ 2
(I_Iint - I_Iim) </(I_I|nt - I_Iim)) = _%O_Z

(use 02 =02 =0ando, =00 —o_0y).
The second order approximation reads:

n s 2 2
Hriad:ijath('u' )02— J+—|-2c7 +<\UI )JZ.

8weg

IU\

The 2nd order correction 4 -0 is called the Bloch-Siegert shift.



Exercise: controllability of the 2-level systems and Rabi oscillation

Take the first order approximation

&) 1510 = W), W6 uig e,

with control u € C.

Take constant control u(t) = Q,e" for t € [0, T], T > 0. Show
that ’dt |¢> cos«90§+sm Ooy) |¢>

Set©, = Q' T. Show that the solution at T of the propagator
U e SU(2) iU = WU Uy = 1 is given by

Ur =cos©,1—isin©, (cosfoy + sinboy),

Take a wave function |¢). Show that exist 2, and 6 such that
Ur|g) = € |¢), where « is some global phase.

Prove that for any given two wave functions |¢,) and |¢p) exists a
piece-wise constant control [0,27] 5 t — u(t) € C such that the
solution of (X) with |¢), = |¢a) satisfies |¢); = €' |¢p) for some
global phase 5.



Composite system: 2-level and harmonic oscillator

The quantum harmonic oscillator lives on L2(R, C) ~ /?(C) with
controlled Hamiltonian

_we 9 we P t
> g2 T 9 X +V2ux wc(aa+§>+u(a+a)

(remember that @ = X + iP = 5 (x + £;))-
The 2-level system lives on C? with Hamiltonian H, = %az.
The composite system lives on the tensor product
C? ® L2(R,C) ~ C? ® [2(C) with controlled Hamiltonian

% 0z ® 1L2(R7(C) + we 1((:2 ® (aTa+ %) +u 1@2 & (a+ aT)

—i$oy® (a — a)
Shortcut notations for the Jaynes-Cummings Hamiltonian:
Hjc = “Eo + we (a*a + %) +u(a+a)-ifoy(a — a)

with the usual scales Q < we, weg, |We — wWeg| K We, weg @and
|u| < We, Weg-



The Jaynes-Cummings PDE

The Schradinger system
i%10) = (“goz+we(ala+ ) +u(a+al) - ifox(a - a)) )

corresponds to two coupled scalar PDE’s:

OYg (2 0? Weg 3
Iait—? <X —ﬁ wg‘F(\/éUX—T)wg‘i‘

\fﬁx
OVe o (2 92 weg Q 0
181‘_2()( — oz we+(\fux+ )¢e+l\f8x

since a = % (x + 2) and |¢) corresponds to

(1/’9()(, t)a ¢e(Xa t)) where ¢g(-7 t)a ¢e('7 t) € L2(R7 (C) and
lgl? + llvell? = 1.



Resonant control and passage to the interaction frame

In Hyc = 2o, +we (a'a+}) + u(a+ a) — igox(a — a),
Weg = W = w, and u(t) = ugirt 1 uteirt with slowly varying
complex amplitude u and ||, |u| < w,. Then Hyc = Hy + eH;
where € is a small parameter and

1
Ho = %o, + wr (aTa + 5)

eHy = (ue™! +ure ™M (a+a') — iZoy(a - a).

H,. is obtained by setting |v) = e~rt(a'a+2) g=5" 7z | 4) in
iG¥) = Hyc ) to get i |¢) = Hint |¢) with

I_Iint _ (ue/wrt + u*e—iwrt) (e—/wria+ eiwrta’[)
_ 1527( —iwrt |g> <e| + elwrt |e> <g| )( Iw,taT . e—iwrta)

where we used

i _io _j i i tgal _j g1 _j
e%% g0 2% — e 0, +el90+, el@(a aty) ae io(atatd) _ e



RWA and associated PDE

The secular terms in H,,, are given by (RWA, first order
approximation)

H» =ua+u*a’ —i2(|g) (e|a - |e) (9] a)

Set H* = Hy + uyHy + upHp where u = J5(ur + i),
uy, U € R:

= V2P.

Q
Ho = —% (Xoy + Poy), Hy = a+a* =V2X, Hy = f

The quantum state |¢) is described by two elements of
L?(R,C), ¢g and ¢, Whose time evolution is given by

0¢ 0

/a—tg (u1x+/u2 >¢g+/2\[ <x+ >¢e

.0¢ 0

/ate <u1x+/u2 >¢e+12f <x+ >¢g
since X stands for X 5 and P for — %%.



Exercise: JC systems with impulse controls

Consider the average JC model (resonant case, u € C as control.).

i) = (i%(ma —o_a)+ua + u*a) )

Set v € C solution of Zv = —ju and consider the following change of

frame |¢) = D_y |2)) with the displacement operator D_, = g valtvia,
Show that, up to a global phase change, we have, with i = i%v,

i210) = (2 (0ra—o-a) + (o, +T'0-))|9)

Take the orthonormal basis {|g, n), |e, n)} with n € N being the photon
number and where for instance |g, n) stands for the tensor product

|9) ® [n). Set|¢) = >, bg.n|g.n) + denle, ) With ¢gn, pen € C
depending on t and 3° [¢g,n|? + |pe,n|? = 1. Show that, for n > 0

. .Q .- . , -
’%¢g,n+1 = _IE VN4 1¢en+U" ¢e i1, l%(be,n = /% VN4 1¢g np14+Udg n

and i%(ﬁgp = l’]*(f)e,o.

Assume that [¢), = |g,0). Construct an open-loop control
[0, T] > t— Q(t) such that |¢) ; = |g, 1).

Generalize the above open-loop control when the goal state |¢) ; is
|g, n) with any arbitrary photon number n.



Slide from Lecture 1 "Harmonic oscillator (5): identities resulting from Glauber formula"

With A = aa' and B = —a*a, Glauber formula gives:

7@ aat .—a*a +ﬁ —a*aaat
D,=¢e 2 e*e =e 2 e e

D ,aD,=a+a and D_,a'D,=a+a"

With A = 2iSaX ~ ivV23ax and B = —2iRaP ~ —\FZ?RO[%,
Glauber formula gives?:

D, = e—i%a%cx eiﬂ%axe—\@%a%
(Da W}))x,t — e—i%a%a ei\/é%axw(x . \/§§Ra, t)

For any «, 8, ¢ € C, we have

a*ﬁ_aﬂ*
Da+5 =e 2 DaDlg

DateD-o = (1+295%) 1+ ea’ —*a+ O(Jef?)

doo ed
(402) -0 = (“EZA) 1+ (o) af - (§o) o

d
_rZ

2Remember that a time-delay of r corresponds to the operator-e™"dt.
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