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Control of a classical harmonic oscillator

Control of a quantum harmonic oscillator: LKB photon-box
Outline of the 8 lectures

Measurement process in the LKB-photon box

Quantum harmonic oscillator



Model of classical systems
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For the harmonic oscillator of pulsation w with measured
position y, controlled by the force u and subject to an additional
unknown force w.

X = (X1, X%2) € R?, Y = Xq

Ix1 =X, Ixo=-wixi+u+w



Feedback for classical systems

lw perturbation

observer/controller, B system measure
d, u="k(y,&v)|d y = h(z)
%6 = a(y,ﬁ,v) I

control dt

~
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r= [z, u,w)

set pointl

feedback

Proportional Integral Derivative (PID) for %;y _ 7w2y+ U+ w
with the set point v = ysetront

u= _Kp(y _ ysetpoint) o Kd%(y o ysetpoint) _ Kint/ (y . ysetpoint)

with the positive gains (Kp, Ky, Kint) tuned as follows
0<Qprw0<f~1,0<ex1:

Kp = an Kd = 25907 ) Kint = GQS



Control theory for classical systems

m Controllability: the control u can steer the state x to any
location (example: &x; = xo, X = —w?X; + u).

m Observability: from the knowledge of u and y one can
recover without ambiguity the state x.

m Feed-forward u = u'(t) associated to reference trajectory
t— (X"(t), u'(t),y"(t)) (performance).

m Feed-back u = u'(t) + Au where Au depends on the
measured output error Ay = y — y'(t) (stability).

m Stability and robustness : asymptotic regime for ¢ large of
Ax and Ay, sensitivity to perturbations and errors.



Control of quantum harmonic oscillator: LKB photon-box

Ollt t [1Pi
Control “u” = a put Y
Detection in |g) or |e)

Simple schematic of LKB experiment for control of cavity field

The model
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Outline of the 8 lectures

Lect. 1 (Oct. 4) Introduction on LKB Photon-Box. Quantum harmonic
oscillator (creation/annihilation operator, coherent state,
non-controllability).

Lect. 2 (Oct. 11) 2-level system (Pauli matrices, Bloch sphere, RWA, Rabi
oscillation, controllability). Jaynes-Cummings model (RWA,
resonant and off resonant propagator).

Lect. 3 (Oct. 25) Controllability and motion planing (RWA, resonant and
optimal control)

Lect. 4 (Nov. 22) Motion planing (adiabatic, Lyapunov, Law-Eberly)

Lect. 5 (Nov. 29) Quantum trajectories (discrete time, Kraus operators,
LKB-photon box)

Lect. 6 (Dec. 6) Feedback stabilization (Photon-box, quantum filter,
Lyapunov, separation principle, delay compensation)

Lect. 7 (Dec. 13) Quantum trajectories (continuous time with Poisson
process, Lindblad operators, time/scale reduction,
synchronization loop on a A-system)

Lect. 8 (Dec. 14) Quantum trajectories (continuous time with Wiener
process, homodyn detection, Lyapunov feedback stabilization
of entangled states).



Main references

m Mathematical system theory and control:

m H.K. Khalil. Nonlinear Systems. MacMillan, 1992.

m J.M. Coron. Control and Nonlinearity. American
Mathematical Society, 2007.

m D. D’Alessandro. Introduction to Quantum Control and
Dynamics. Chapman & Hall/CRC, 2008.

m Quantum physics and information

m S. Haroche and J.M. Raimond. Exploring the Quantum:
Atoms, Cavities and Photons. Oxford University Press,
2006.

m H.M. Wiseman and G.J. Milburn. Quantum Measurement
and Control. Cambridge University Press, 2009.

m M.A. Nielsen and I.L. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, 2000.

m D. Steck. Quantum and atom optics (notes for a course).
http://atomoptics.uoregon.edu/ dsteck/teaching/quantum-
optics/,

2010.



Photon-box (1): measurement process

Detection in |g) or |e)

Simple schematic of LKB experiment for measurement of cavity field



Photon-box (2) : atom-field entanglement

Initial state Atom in |g) and cavity in |¢)) € H where

{chm (cy) € PP(C )}.

We can write the initial state as
19) ® ) € CP @ H.

State before detection a joint unitary evolution implies an entangled
state
19) @ Mg ) + |€) @ Me [¢))

where M, and M, are operators acting on #.
The unitarity condition implies:

MIMg+ MEMe =1

Example of non-resonant interaction

Mg =cos(IN+ ), Me=sin(IN+¢), N=diag(n)



Photon-box (3): entanglement

Final state is inseparable: we can not write

19)© Molu) + le) & Melv) = (alg) + Fle)) @ (chyn>.

We can not associate to the cavity (nor to the atom) a
well-defined wavefunction just before the measurement.
However, we can still compute the probability of having the
atomin|g) orin |e):

2 2
IR S P



Photon-box (4): measurement and collapse

Measurement in |g)

19) & Mg ) +e) © M ) — L2 Mal¥)
HMQ ) H%
Measurement in |e)
[6) ® Me|¥)

19) @ Mg |Y) +|€e) @ Me ) — :
HMeW) H?—L



Photon-box (5): quantum Monte-Carlo trajectories

Stochastic evolution: v, the wave function after the
measurement of atom number k — 1.

Do Mg |¥)
HMQ ) HH
Da Me |Q/)>k
HMe ) HH

Detect. in |g) (proba- HMng Hi)

V) kit =
k+1 Detect. in |e) (proba- HMeW)k Hi)

We have a Markov chain



Photon-box (6): imperfect measurement

The atom-detector does not always detect the atoms.
Therefore 3 outcomes:
Atomin |g), Atomin|e), No detection

Best estimate for the case

E (19) | ) = || Mg o) |

This is not a wel

|, Malo)+||Melw) |, Melw)
I-defined wavefunction

Barycenter in the sense of geodesics of S(H)
not invariant with respect to a change of global phase

We need a barycenter in the sense of the projective space
CP(H) = S(H)/S!



Photon-box (7): density matrix language

Projector over the state [¢): Py = |¢) (¢]
Detection in |g): the projector is given by

Mgl WIMy Mgy (BIME Mg ) (| M
IMglwd |, | (1 Mbrg )] T (Mo ) (w1 A1)

[4)

Detection in |e): the projector is given by

Me ) (9] M
Tr (Me [4) (v] ML)

P|1/1+> =

Probabilities:

po=Tr (Mglu) (Wl M§) and  po=Tr (Mev) (v M})



Photon-box (8): density matrix language

Imperfect detection: barycenter

Mgl) WMy Mold) (9] ME
N+ Pe -
T (Mg o) (I ME) T (Me o) (] ML)
= Mg [9) (] M + Mo [9) (¢ ME.

|9) (¥| — pg

This is not anymore a projector: no well-defined wave function
New state space

X={peLH)|pl =pp>0Tr(p)=1}



Control of quantum harmonic oscillator: LKB photon-box

Control “u” = a Output “y*
Detection in |g) or |e)

Simple schematic of LKB experiment for control of cavity field



Harmonic oscillator! (1): quantization and correspondence principle

. . . . 2
Classical Hamiltonian formulation of %x = —w?x

OH OH w

d d 2 2
Quantization: probability wave function [¢); ~ (1(X, t))xer With
l), ~ (., t) € L3(R,C) obeys to the Schrédinger equation

(A =1 in all the lectures)

i) = Hlp), H=w(P?+X2)=-22 | 9y

where H results from H by replacing x by position operator
v/2X and p by impulsion operator v/2P = —ia%.

. ;0 9?

PDE model: i%%(x,t) = =455 (x, 1) + $x%(x, 1), x €R.
"Two references: C. Cohen-Tannoudii, B. Diu, and F. Lalo&. Mécanique

Quantique, volume 1& Il. Hermann, Paris, 1977.

M. Barnett and P. M. Radmore. Methods in Theoretical Quantum Optics.

Oxford University Press, 2003.




Harmonic oscillator (2): annihilation and creation operators

Averaged position (X), = (| X|¢) and impulsion <P>t = (|PJy) 2

+o0 .
=35 [P, (P =—Js [ wGh
Annihilation a and creation operators a':

0 0
_ i T ip — 1 _
a_X+IP_f(X+8x> a=X-IiP= 2(x 8x)

Commutation relationships:
X, Pl=4 laa]=1 H=wP?+X2)=uw <aTa+ %) .
Set X, = § (e~a+ ea') for any angle A:

% X15) = %

2We assume everywhere that for each t, x — (x, t) is of the Schwartz
class (fast decay at infinity + smooth).



Harmonic oscillator (3): spectral decomposition and Fock states

[a, a'] = 1 implies that the spectrum of a'a is non-degenerate
and is N.

Fock state with n photon(s): the eigen-state of afa associated
to the eigen-value n:

aalny=nln), aln)=+vnln—-1), a'lny=vn+1|n+1).

The ground state |0) (0O photon state or vacuum state) satisfies
al0) = 0 and corresponds to the Gaussian function:

0) ~ vo(x) = 7 Xp(~x2/2).

The operator a (resp. a') is the annihilation (resp. creation)
operator since it transfers |n) to |n — 1) (resp. |n+ 1)) and thus
decreases (resp. increases) the quantum number n by one unit.



Harmonic oscillator (4): displacement operator

Quantization of g—;x = —w?x —wV2u
H=uw (aTaJr %) +u(a+a).

The associated controlled PDE
O L wdy
ot 0= "3 0
Glauber displacement operator D,, (unitary) with a € C:

(x,t) + (%x2 + \@ux) W(x, b).

Da _ eaaT—a*a _ eZi%aX—Zz?RaF’

From Baker-Campbell Hausdorf formula valid for any operators
Aand B,

e’Be " = B+ [A B] + A [A Bl + %[A [A[AB]]] + ...
we get the Glauber formula when [A, [A, B]] = [B, [A, B]] = 0:
ATB _ oA oB o 3lIAB]

e =€



Harmonic oscillator (5): identities resulting from Glauber formula

With A = aa' and B = —a*a, Glauber formula gives:

7@ aat .—a*a +ﬁ —a*aaat
D,=¢e 2 e*e =e 2 e e

D_,aD,=a+a«a and D_,a'D,=a +a".

With A = 2iSaX ~ ivV23ax and B = —2iRaP ~ —\FZ?RO[%,
Glauber formula gives®:

D, = e—i%a%cx eiﬂ%axe—\@%a%
(Da W}))X,t — e—i%a%a ei\/é%axw(x . \/§§Ra, t)

For any «, 8, ¢ € C, we have

Oé*ﬁ—aﬁ*
Da+5 =e 2 DaDB

DoteD-o = (1+275%) 1 +ea’ — *a+ O(|ef?)

doo ed
(800) Do = (SHE ) 14 (o) &l — () 2

d
_rZ

3Remember that a time-delay of r corresponds to the operator-e™"dt.



Harmonic oscillator (6): lack of controllability

Take | solution of the controlled Schrddinger equation
i9 1) = (w(ala+3) + u(a+a)) ). Set(a) = (|ay). Then

g(a) = —iw(a) — iu.

From a= X + iP, we have (a) = (X) + i(P) where
(X) = (Y| XYy € Rand (P) = (¢|P|y) € R. Consequently:

(¥
#X)=w(P), G(P)=—w(X)-u.
¥

Consider the change of frame [¢) = e Dy, [x) with

t
0 :/ <!<a>|2 + u%((a})) . D), = elad—(aa
0
Then |x) obeys to autonomous Schrédinger equation

i lx) =wa'alx).
The dynamics of |¢)) can be decomposed into two parts:

m a controllable part of dimension two for (a)
m an uncontrollable part of infinite dimension for |x).



Harmonic oscillator (7): coherent states as reachable ones from |0)

Coherent states

n=0

are the states reachable from vacuum set. They are also the
eigen-state of a: ala) = a/|a).

A widely known result in quantum optics*: classical currents
and sources (generalizing the role played by u) only generate
classical light (quasi-classical states of the quantized field
generalizing the coherent state introduced here)

We just propose here a control theoretic interpretation in terms
of reachable set from vacuum?®

4See complement By, page 217 of C. Cohen-Tannoudji, J. Dupont-Roc,
and G. Grynberg. Photons and Atoms: Introduction to Quantum
Electrodynamics.Wiley, 1989.

5see also: MM-PR, IEEE Trans. Automatic Control, 2004 and MM-PR,
CDC-ECC, 2005.



Control of quantum harmonic oscillator: LKB photon-box

Control “u” = a Output “y*
Detection in |g) or |e)

Simple schematic of LKB experiment for control of cavity field



The LKB photon-box
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