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Reminder: discret-time stochastic master equation
Time-continuous stochastic master equations

QND measurement of a qubit and asymptotic behavior



Discrete-time Stochastic Master Equations (SME)

Trace preserving Kraus map K, depending on the classical control input u:

Ku(p) =>_ MyepM . with > M) My =1.
€ 3
Take a left stochastic matrix [ny.¢] (ny,¢ > 0and 35, 7y = 1, ¥¢) and set
Kuy(p) =3 ’I]y{Mu’gpMEyE. The associated Markov chain reads:

Ko
* Tr (Ko (Pr))

Classical input u, hidden state p, measured output y.
Ensemble average given by K, since E (py1 | px. Uk) = Ku, (px)-
Markov model useful for:

measurement yx with probability Tr (Ky,,y, (p«)) -

Monte-Carlo simulations of quantum trajectories (decoherence,
measurement back-action).

quantum filtering to get the quantum state p, from p, and (yo, . - ., Yk—1)
(Belavkin quantum filter developed for diffusive models).

feedback design and Monte-Carlo closed-loop simulations.



Time-continuous stochastic master equations



Markov process under continuous measurement

Yt

[ ) ] #
Inverse setup of photon-box: photons read out a qubit.

Two major differences

m measurement output taking values from a continuum of possible
outcomes

dy; = /i Tr ((L + LT)pt) dt + dW,.

m Time continuous dynamics.




Stochastic master equation: Markov process under continuous measurement

i 1
dp; = <_h[H’ pil + Z LpL} - E(Lj,l-yp; + PthT/Lu)> dt

+ Z Vil (Ll’pt +pLl —Tr ((LV + Ll)Pt) Pt) aw, +,

where W, ; are independent Wiener processes, associated to
measured signals

dy,t=dW, ¢+ v/, Tr ((L,, + L,T,)p,) at.
Wiener process W;:
m Wy =0;
m t — W; is almost surely everywhere continuous;

mFor0<s <t <s<b W,— W, andW,;, — W;, are
independent random variables satisfying W; — Ws ~ N(0,t — s).

Average dynamics: Lindblad master equation

dE (p) =
(~AIH.E(p)] + X, LE(p) L] — H(LILE(p) + E(p) L}L,)) .




lto stochastic calculus

Given a diffusive Stochastic Differential Equation (SDE)

aX; = F(X;, ydt + Y G, (X, )aW,.,

we have the following chain rule:

Defining f; = f(X;) a C? function of X, we have

df, — (a—f
Xi

Furthermore

F(X;, 1) + 2 66X2‘ (Gl,(Xt,t),Gl,(Xt,t))> ot

=F Z Xt, dWy fie

226)@\ (Gu (X 1), Gu(X:, ))>.



Link to partial Kraus maps (1)

i 1
dp; = <_h[Ha P+ Z LuPthT/ - E(Lll—upt + ptLlLV)> dt
+ Vi (Lopi+ ol =T (Lo + L)pr) pr) AW,

equivalent to

Md}’rptMTdy, + ZV(1 - nV)LthLj;dt
Tr (Md}’rptMTdy, + Zu(1 - nV)Lthlet>

Ptiat =

with
Mgy, = 1 + (——H - fU )t + Z NG X

Moreover, defining dy; = spv/dt = (s,¢)Vdt:

[
NS

N

P(st € [s,s+ds] | p) = Tr (Ms\/EPerm - nyuyp,det) ==

v

Bl



Link to partial Kraus maps (2)

m P defines a probability density up to a correction of order dt?:
/P(s, € [s,5+ds] | pp) = 1 + O(a2).
m Mean value of measured signal
/ S/B(s1 € [5.5+08] | ) = it Tr (L + L)y ) Valt+ O(a2).
m Variance of measured signal

/ 2 P(s: C [, 5+ ds] | py) = 1+ O(d).

Compatible with dy,,. = dW,; + /i, Tr ((Ll, + LL)p,) d.



Link to partial Kraus maps (3)

i 1
dp; = <_h[H’ P + Z LpL} - E(LlLuPt + PtLIT/LV)> at

+ Z Vi (LuPt +pL, —Tr ((L,, + Li)Pt) Pt) aw,, s,
equivalent to
May, oMy, +32,(1 — )L p; L} ot
Tr (MdertM:rjy, + Zu(1 - nu)Lthlet)

Ptyat =

m Indicates that the solution remains in the space of semi-definite
positive Hermitian matrices;

m Provides a time-discretized numerical scheme preserving
non-negativity of p.

Theorem

The above master equation admits a unique solution remaining for all
t>0in{peCVN : p=pl p>0, Tr(p)=1}



QND measurement of a qubit and asymptotic behavior



Dispersive measurement of a qubit

=]

Inverse setup of photon-box: photons read out a qubit.

Approximate model

Cavity’s dynamics are removed (singular perturbation techniques) to
achieve a qubit SME:

i r
dp; = _ﬁ[H’ psldt + Tm(o'zpto'z — p;)at

Vil'm
2

dy: = dW; + /0l Tr (0zp;) dt.

+

(02p1 + proz — 2Tr (02p¢) pr) AW,




Quantum Non-Demolition measurement

M
dp; = — [H pilat + — (UthO'z py)at
v/l
+ Y1 T (0zpt + proz — 27Tr (02p1) py)AWS,

2
dy; = dW; + /nl  Tr (ozp;) dt.

Uncontrolled case: H/k = wegoz/2.

Interpretation as a Markov process with Kraus operators

Mgy, =1 — ( w;g + —I) dt + Zrmazdyt,
T maiL = Y = nmet —2n)rmd oz.

QND measurement

Kraus operators Mgy, and /(1 — n)dtL commute with observable o:
qubit states |g)(g| and |e)(e| are fixed points of the measurement
process. The measurement is QND for the observable o.



QND measurement: asymptotic behavior

Consider the SME

dp; = [H Pt]dt+ (Uzpto'z pr)at

* Tm(azp’ + pioz — 27Tr (ozp,) p) AW,

with H = <20, and > 0.
m For any initial state p,, the solution p, converges almost surely as
t — oo to one of the states |g)(g| or |e)(e|.
m The probability of convergence to |g)(g| (respectively |e)(e|) is given by
pg = Tr(|9)(glp,) (respectively Tr (|e)(elpo))-

m The convergence rate is given by nl'y/2.

Proof based on the Lyapunov function V(p) = \/Tr (022p) — Tr? (ozp) with

TR V(o) = - TME(V(p)

Matlab open-loop simulations: ModelQubit .m



Quantum feedback

Question: how to stabilize deterministically a single qubit state |g){g]|
or |e)(e|?
Controlled SME:

i r
dp; = —[H. plat + - (zpioz — p)clt

——
+ %(Uzpt + proz — 2Tr (ozpy) pr) AW,

with

W u
H=Pou s U000

U(p) =—alr (i[UmP]ptag) + 6(1 = Tr (pptag))v a, >0 and /82 < 8an,
globally stabilizes the target state py,q = [g)(g] or |€)(e].

Matlab closed-loop simulations: FeedbackQubit.m
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