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Recall: measurements and backaction in LKB photon box

m projective measurement: meter qubit, Hilbert space C2 = span(|g), |e)),
detected in 11 € {g, e} and projected in |u) with proba. |(t|u)|?

B non-projective measurement: cavity, measured indirectly through
interaction with meter qubit, undergoes with proba.
Pujp = Tr (M.pM},):

p, = M,pM} /P,, associated to meas.result x
m decoherence: interaction with environment which is not measured, e.g.
p+ = MgpMj; + McpM} or p. = M_1pM' | + M, pM', + MopM

B measurement errors: when “true” output i € {g, e} is read as
y € {g, e} with probability ny,.:

p. =Ky(p) / Tr(Ky(p)) with proba. Tr(K,(p)) ,
where Ky(p) = 3= ,ny..M,.oM},

These are the general forms of quantum measurement and
associated evolution in discrete-time.



Projective measurement

For the system defined on Hilbert space #, take
m an observable O (Hermitian operator) defined on H:

0=> MNP,
w

where ), are the eigenvalues of O and P,, is the projection
operator over the associated eigenspace.

Often P, = |¢,)(&,| rank-1 projection onto eigenstate |¢,,) € H.
m a quantum state given by the wave function |¢) in H.

Projective measurement of the physical observable 0 =3 A, P, for
the quantum state |¢):
Probability of obtaining the value ), is given by P,, = (¢|P,.|¢).
(Note that >~ , PP, =1as >, P, = Iy identity operator on #.)
After the measurement, the conditional (a posteriori) state |¢;)
of the system, given the outcome A, is

Py [¥)
lpy) = —£-—=L (collapse of the wave packet).
V IP)IL



Positive Operator Valued Measurement (POVM) (1)

System S of interest interacts with the meter M and the experimenter
measures projectively the meter M.
Measurement process in three consecutive steps:

Initially the quantum state is separable

Hs @ Hm > [V) = [s) @ [Ym)
with a well defined and known state |iy) for M.

Then a Schrédinger evolution (unitary operator Us y) of the
composite system from |¢g) ® |¢y) produces
Usu(|vs) @ [¥um)), entangled in general.®

Finally we make a projective measurement of the meter M:
Oun =Is® (>, A\.P,) the measured observable for the meter,
usually P, = [¢,,)(&,] a rank-1 projection in #y onto the
eigenstate |£,) € Hu.

_ ®Astate is entangled if it cannot be written as |V) = [{s) ® [¢u) for some
|¥s), |¥m). Entanglement leads to very peculiar quantum correlations.



Positive Operator Valued Measurement (POVM) (2)

We can always decompose in the basis of eigenstates {|¢,,)}:
Usm([vs) @ [vm) = 3, (M |s)) @ [€,)

which define the measurement operators M,,. Then 3_ | MLMH =Is.
The set {M,,} defines a Positive Operator Valued Measurement
(POVM). Note M,, includes the known value of |¢y).

Projective meas. of Oy = Is @ (X_, \ul€u)(€ul) = 22, AP, on
quantum state US,M(|¢3> ® |¢M>) in Hs ® Hp, summarized on Hg:
The probability of obtaining the value X, is given by
P = (| M},M,|¢s)

After the measurement, the conditional (a posteriori) state of the
system on Hg, given the outcome i, is

M
bs.) = Dulbs)

N



Stochastic processes attached to quantum measurement

m To the POVM (M,,) on Hs is attached a stochastic process of quantum
state [¢)

M. |¢y)
V.

m Knowing the state |+), the conditional expectation value for any
observable A on Hs after applying the POVM is

E (04l | 19)) = I(3 MLAM,)[0) = Tr (AK(w) (W)

) = with probability P, = (| M}, M,,|¢))

with Kraus map K(p) = 3=, M,.pM], with p = |¢)) (1} density operator
corresponding to [1).
m Imperfection and errors described by left stochastic matrix (ny,.),

>,y =1, where 7y, is the probability of detector outcome y
knowing that the ideal detection should be i. Then Bayes law yields

E ({0 A1) | ), ¥) = %

with completely positive linear maps Ky(p) = >, Ny, M, oM,
depending on y. Probability to detect y knowing p is Tr (K, (p)).



Stochastic Master Equation (SME) and quantum filtering

Discrete-time open quantum models are Markov processes

Ky (k)
Pki1 = Tr(ﬂgyikf:k)), with proba. Py, (ox) = Tr (Ky, (pk))-

Each K, is a linear completely positive map depending on

meas. outcomes, Ky (p) = >, Ky .pK ,, with - K} K, =1.

When discarding meas. outcomes, state update follows Kraus map
(quantum channel, completely positive trace-preserving map (CPTP),
ensemble average)

pret = K(pk) = 3, Ky (o) = 32, Ky upkKT ..
Quantum filtering (Belavkin quantum filters)

data: initial quantum state pg, past measurement outcomes
yeforte{0,....k—1};

goal: estimation of p, via the recurrence (quantum filter)

K.Vz(pi)
=" (=0,...,k—1.
PE = T Ky, (p0))
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LKB photon box : open-loop dynamics, dispersive interaction

Markov process: |1k) = |[¥)i=kat, kK € N, At sampling period,

__Mlv _ \ith y, = g, probability Py = { x| Ml M|tk );
Wpt) = (x| M Mg | ) Yek=0,pP y g <1/Jk| g g|wk>,
k1l = M| v)

T ity B — (o MM
L) with yx = e, probability Pe <¢k| A e|¢k>,

with
Mgy = cos(po + NI¥), Mg = sin(po + N©).



QND measurement of photons

Markov process: density operator px = |1x)(1k| as state.

Mg/’k"/’T . _ . . ).

Dt = Tr(Tpkan’,;) with yx = g, probability Py = Tr (MgpkMg>,
Moy M} G " B

W with y, = e, probability P = Tr (Mepij;),

with
Mgy = cos(po + NI), Mg = sin(po + NY).

Experimental data

Quantum Non-Demolition (QND) measurement

The measurement operators My . commute with the photon-number
observable N: photon-number states |n)(n| are fixed points of the
measurement process. We say that the measurement is QND for the
observable N.



Asymptotic behavior: numerical simulations

100 Monte-Carlo simulations of Tr (p,|3)(3|) versus k

Fidelity between pPK and the Fock state &3
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Some definitions ©

Convergence of a random process

Consider (Xx) a sequence of random variables defined on the probability
space (£, F,P) and taking values in a metric space X. The random process
Xy is said to,

converge in probability towards the random variable X if for all e > 0,

klim P(| Xk — X| >¢€) = klim P(w e Q|| Xk(w) — X(w)| >¢€) =0;
converge almost surely towards the random variable X if
]P’(Iim Xk:X) =IP’<wGQ| lim Xk(w)ZX(w)) =1;
k— oo k— oo

converge in mean towards the random variable X if
Iimk_mo E(|Xk — X|) =0.

bsee e.g. C.W. Gardiner: Handbook of stochastic methods ... [3rd ed],
Springer, 2004




Some definitions

The sequence (Xx)z24 is called a Markov process, if for all k and ¢ satisfying
k > ¢ and any measurable function f(x) with sup, |f(x)| < oo,

E(f(Xe) | Xiy..., Xe) = E(F(Xk) | Xe) -

Martingales

The sequence (Xx)i2, is called respectively a supermartingale, a
submartingale or a martingale, if E (| Xx|) < oo for k =1,2,---, and

E(Xc | Xi,...,X) < Xo (P almost surely), k>¢
or respectively
E(Xc| X1,...,Xe) > Xe (P almost surely), k>,

or finally,

E(Xk | X1,...,Xe) = Xe (P almost surely), k>



Martingales asymptotic behavior

Stochastic version of Lasalle invariance principle for Lyapunov function of
deterministic dynamics.

H.J. Kushner invariance Theorem

Let { Xk} be a Markov chain on the compact state space S. Suppose that
there exists a non-negative function V/(x) satisfying

E (V(Xkt+1) | Xk = x) — V(x) = —o(x), where o(x) > 0 is a positive
continuous function of x. Then the w-limit set (in the sense of almost sure
convergence) of X is included in the following set

I={X|o(X)=0}.

Trivially, the same result holds true for V(x) bounded from above and
E (V(Xkt1) | Xk = x) — V(x) = o(x) with o(x) > 0.



Asymptotic behavior: QND photon measurement

Consider My = cos(yo + N9) and Mg = sin(po + N9)

e ith yi = ility By = 1.

Prss = T(T,,k,wj;) with yi = g, probability Pg = Tr (Mg P Mg)’
Mep, M} : - y B

m with yx = e, probability Pe = Tr (MepkMTe),

with an initial density matrix p, defined on the subspace

span{|n) | n=0,1,---,nm>}. Also, assume the non-degeneracy
cos?(¢m) # cos?(pn) YN # m e {0,1,--- , n"™>}, where ¢, = g + nv.
Then

m forany ne {0,...,n">}, Tr(pk|n)(n|) = (n|pk|n) is a martingale

m p, converges with proba. 1 to one of the n™®* + 1 Fock states
[n)(n| with n € {0, ..., n™>}.

m the probability to converge towards the Fock state |n)(n| is given
by Tr (po|n)(nl) = (nlpo|n).



Proof based on QND super-martingales

m For any function f, Vi(p) = Tr (f(N)p) is a martingale:
E(V,(pk+1) | px) = Vi(pk) (basic computation).

® V(p) =2 ,.mV(nlpln) {mp|m) > 0 is a strict super-martingale:

E (V(pk+1) | px)

= Z (| cos ¢n cos dm| + | sin gnsin om|)\/(n|p|n) (M| p|m)
n#m
< rV(px)

with r = maxnzm (| €OS P €OS Pm| + | sin Ppsin d>m|) < 1.

m V(p) = 0 implies that there exists n such that p = |n)(n|.

Interpretation: For large k, V(px) is very close to 0, thus px very close to
|n)(n| for an a priori random n. Information extracted by measurement makes
state “less uncertain” a posteriori but not more predictable a priori.



Asymptotic behavior: discarding measurement results

Theorem

Consider py 1 = Mgp M}, + Mep, M}, with the same definitions and
assumptions as in the previous theorem.
Then p, converges exponentially towards p = diag(po)-

Proof: Deterministic system, one easily checks that
m (nlpki1|n) = (nlpx|n)

B (n|pkg1|m) = (| cos ¢ncos dm| + | sin @psin gm|) (Npk|m) <
r {n|p«x|m) with
r = maxpzm (| cos ¢ cos om| + | sin ppsindm|) < 1.

Interpretation: Diagonal p is equivalent to a classical probability distribution
over the values of n. This distribution is not modified in absence of
measurement results.

However, the QND measurement process for N, even without recording the
output, perturbs future measurements of other observables (off-diagonal
terms in the N eigenbasis).



Exercice

Consider the Markov chain p, .y = Ky, (py) /Py x Where yx = g (resp. yx = €)
with probability Pg x = Tr (MgpkMZ,) (resp. pex = Tr (MepkM )) The Kraus
operators are now given by (resonant interaction)

M=o () o (30) - on () (2557 )

VN
Me = —sin (82)‘305 ($VN+1) —cos(%‘)a <Sm(?/%m))

with 6; = 0. Assume the initial state to be defined on the subspace {|n)}7_
and that the cavity state at step k is described by the density operator p,.

Show that
E (Tr (Npii1) | px) = Tr(Npy) — Tr (sin2 (%\/N) pk) .

Assume that for any integer n, ©/n/x is irrational. Then prove that
almost surely p, tends to the vacuum state |0)(0| whatever its initial
condition.

When ©+/n/x is rational for some integer n, describe the possible
w-limit sets for p,.



Feedback stabilization of photon number states



Quantum feedback

Question: how to stabilize deterministically a given
photon-number state |n)(n|?

Controlled Markov chain:
pk+% = M}’k(pk)) Pk1 = ]D)Uk(pk+%)’
where M, (p) = My pM},/ Tr (Mpr;) and D,(p) = D,pD}, with

D, = e"a'~v"a the displacement unitary operator of complex
amplitude u.



Control Lyapunov function

Idea: V(p) = V(p) + Xns0 f(n) Tr (pln)(nl),

Coefficients -f(n) of the control Lyapunov function

: b
o
0.8 : : o
0&) %
l¢)
0.4 o
o

0.2 lo)

% ;9 ; :

photon number n

Bounded quantum-state stabilizing feedback: take

Uk @ = argmin{E (V(pkg)lpm U = U) }

|ul <Umax

- argmin{ Tr (MgpkMg)V(Du(Mg(pk))) +Tr (MepkMe)V(]D)u (Me(pk))) }

|ul <Umax



Quantum-state feedback (stabilization around 3-photon state)

Experiment: C. Sayrin et. al., Nature 477, 73-77, 2011.
Theory: I. Dotsenko et al. Physical Review A, 80: 013805-013813, 2009.
H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.

ng = 3 photons
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