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Recall: measurements and backaction in LKB photon box

projective measurement: meter qubit, Hilbert space C2 = span(|g〉, |e〉),
detected in µ ∈ {g, e} and projected in |µ〉 with proba. |〈ψ|µ〉|2

non-projective measurement: cavity, measured indirectly through
interaction with meter qubit, undergoes with proba.
Pµ|ρ = Tr

(
MµρM†µ

)
:

ρ+ = MµρM†µ /Pµ|ρ associated to meas.result µ

decoherence: interaction with environment which is not measured, e.g.

ρ+ = MgρM†g + MeρM†e or ρ+ = M−1ρM†−1 + M+1ρM†+1 + M0ρM†0

measurement errors: when “true” output µ ∈ {g, e} is read as
y ∈ {g, e} with probability ηy,µ:

ρ+ = Ky (ρ) / Tr (Ky (ρ)) with proba. Tr (Ky (ρ)) ,

where Ky (ρ) =
∑
µηy,µMµρM†µ

These are the general forms of quantum measurement and
associated evolution in discrete-time.



Projective measurement

For the system defined on Hilbert space H, take

an observable O (Hermitian operator) defined on H:

O =
∑
µ

λµPµ,

where λµ are the eigenvalues of O and Pµ is the projection
operator over the associated eigenspace.
Often Pµ = |ξµ〉〈ξµ| rank-1 projection onto eigenstate |ξµ〉 ∈ H.

a quantum state given by the wave function |ψ〉 in H.

Projective measurement of the physical observable O =
∑
µ λµPµ for

the quantum state |ψ〉:
1 Probability of obtaining the value λµ is given by Pµ = 〈ψ|Pµ|ψ〉.

(Note that
∑
µ Pµ = 1 as

∑
µ Pµ = IH identity operator on H.)

2 After the measurement, the conditional (a posteriori) state |ψ+〉
of the system, given the outcome λµ, is

|ψ+〉 =
Pµ |ψ〉√

Pµ
(collapse of the wave packet).



Positive Operator Valued Measurement (POVM) (1)

System S of interest interacts with the meter M and the experimenter
measures projectively the meter M.
Measurement process in three consecutive steps:

1 Initially the quantum state is separable

HS ⊗HM 3 |Ψ〉 = |ψS〉 ⊗ |ψM〉

with a well defined and known state |ψM〉 for M.

2 Then a Schrödinger evolution (unitary operator US,M ) of the
composite system from |ψS〉 ⊗ |ψM〉 produces
US,M

(
|ψS〉 ⊗ |ψM〉

)
, entangled in general.5

3 Finally we make a projective measurement of the meter M:
OM = IS ⊗

(∑
µ λµPµ

)
the measured observable for the meter,

usually Pµ = |ξµ〉〈ξµ| a rank-1 projection in HM onto the
eigenstate |ξµ〉 ∈ HM .

5A state is entangled if it cannot be written as |Ψ〉 = |ψ̃S〉 ⊗ |ψ̃M〉 for some
|ψ̃S〉, |ψ̃M〉. Entanglement leads to very peculiar quantum correlations.



Positive Operator Valued Measurement (POVM) (2)

We can always decompose in the basis of eigenstates {|ξµ〉}:

US,M
(
|ψS〉 ⊗ |ψM〉

)
=
∑
µ

(
Mµ|ψS〉

)
⊗ |ξµ〉

which define the measurement operators Mµ. Then
∑
µ M†µMµ = IS.

The set {Mµ} defines a Positive Operator Valued Measurement
(POVM). Note Mµ includes the known value of |ψM〉.

Projective meas. of OM = IS ⊗
(∑

µ λµ|ξµ〉〈ξµ|
)

=
∑
µ λµP̃µ on

quantum state US,M
(
|ψS〉 ⊗ |ψM〉

)
in HS ⊗HM , summarized on HS:

1 The probability of obtaining the value λµ is given by
Pµ = 〈ψS|M†µMµ|ψS〉

2 After the measurement, the conditional (a posteriori) state of the
system on HS, given the outcome µ, is

|ψS,+〉 =
Mµ|ψS〉√

Pµ
.



Stochastic processes attached to quantum measurement

To the POVM (Mµ) on HS is attached a stochastic process of quantum
state |ψ〉

|ψ+〉 =
Mµ|ψ〉√

Pµ
with probability Pµ = 〈ψ|M†µMµ|ψ〉

Knowing the state |ψ〉, the conditional expectation value for any
observable A on HS after applying the POVM is

E
(
〈ψ+|A|ψ+〉

∣∣∣ |ψ〉) = 〈ψ|(
∑
µ

M†µAMµ)|ψ〉 = Tr (A K(|ψ〉〈ψ|))

with Kraus map K(ρ) =
∑
µ MµρM†µ with ρ = |ψ〉〈ψ| density operator

corresponding to |ψ〉.
Imperfection and errors described by left stochastic matrix (ηy,µ),∑

y ηy,ν ≡ 1, where ηy,µ is the probability of detector outcome y
knowing that the ideal detection should be µ. Then Bayes law yields

E
(
〈ψ+|A|ψ+〉

∣∣∣ |ψ〉, y
)

=
Tr (AKy (ρ))

Tr (Ky (ρ))

with completely positive linear maps Ky (ρ) =
∑
µ ηy,µMµρM†µ

depending on y . Probability to detect y knowing ρ is Tr (Ky (ρ)).



Stochastic Master Equation (SME) and quantum filtering

Discrete-time open quantum models are Markov processes
ρk+1 =

Kyk (ρk )

Tr(Kyk (ρk ))
, with proba. Pyk (ρk ) = Tr (Kyk (ρk )).

Each Ky is a linear completely positive map depending on
meas. outcomes, Ky (ρ) =

∑
µ K y,µρK †y,µ, with

∑
y,µ K †y,µK y,µ = I .

When discarding meas. outcomes, state update follows Kraus map
(quantum channel, completely positive trace-preserving map (CPTP),
ensemble average)

ρk+1 = K(ρk ) =
∑

yKy (ρk ) =
∑

y,µK y,µρk K †y,µ.

Quantum filtering (Belavkin quantum filters)

data: initial quantum state ρ0, past measurement outcomes
y` for ` ∈ {0, . . . , k − 1};

goal: estimation of ρk via the recurrence (quantum filter)

ρ`+1 =
Ky`(ρ`)

Tr (Ky`(ρ`))
, ` = 0, . . . , k − 1.
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LKB photon box : open-loop dynamics, dispersive interaction
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Markov process: |ψk 〉 ≡ |ψ〉t=k∆t , k ∈ N, ∆t sampling period,

|ψk+1〉 =


Mg |ψk 〉√
〈ψk |M†g Mg |ψk〉

with yk = g, probability Pg =
〈
ψk |M†gMg |ψk

〉
;

Me|ψk 〉√
〈ψk |M†e Me|ψk〉

with yk = e, probability Pe =
〈
ψk |M†eMe|ψk

〉
,

with
Mg = cos(ϕ0 + Nϑ), Me = sin(ϕ0 + Nϑ).



QND measurement of photons

Markov process: density operator ρk = |ψk 〉〈ψk | as state.

ρk+1 =


Mgρk M†g

Tr(Mgρk M†g )
with yk = g, probability Pg = Tr

(
Mgρk M†g

)
;

Meρk M†e
Tr(Meρk M†e )

with yk = e, probability Pe = Tr
(

Meρk M†e
)

,

with
Mg = cos(ϕ0 + Nϑ), Me = sin(ϕ0 + Nϑ).

Experimental data

Quantum Non-Demolition (QND) measurement

The measurement operators Mg,e commute with the photon-number
observable N : photon-number states |n〉〈n| are fixed points of the
measurement process. We say that the measurement is QND for the
observable N .



Asymptotic behavior: numerical simulations

100 Monte-Carlo simulations of Tr (ρk |3〉〈3|) versus k
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Some definitions 6

Convergence of a random process

Consider (Xk ) a sequence of random variables defined on the probability
space (Ω,F ,P) and taking values in a metric space X . The random process
Xk is said to,

1 converge in probability towards the random variable X if for all ε > 0,

lim
k→∞

P (|Xk − X | > ε) = lim
k→∞

P (ω ∈ Ω | |Xk (ω)− X (ω)| > ε) = 0;

2 converge almost surely towards the random variable X if

P
(

lim
k→∞

Xk = X
)

= P
(
ω ∈ Ω | lim

k→∞
Xk (ω) = X (ω)

)
= 1;

3 converge in mean towards the random variable X if
limk→∞ E (|Xk − X |) = 0.

6see e.g. C.W. Gardiner: Handbook of stochastic methods . . . [3rd ed],
Springer, 2004



Some definitions

Markov process

The sequence (Xk )∞k=1 is called a Markov process, if for all k and ` satisfying
k > ` and any measurable function f (x) with supx |f (x)| <∞,

E (f (Xk ) | X1, . . . ,X`) = E (f (Xk ) | X`) .

Martingales

The sequence (Xk )∞k=1 is called respectively a supermartingale, a
submartingale or a martingale, if E (|Xk |) <∞ for k = 1, 2, · · · , and

E (Xk | X1, . . . ,X`) ≤ X` (P almost surely), k ≥ `

or respectively

E (Xk | X1, . . . ,X`) ≥ X` (P almost surely), k ≥ `,

or finally,

E (Xk | X1, . . . ,X`) = X` (P almost surely), k ≥ `.



Martingales asymptotic behavior

Stochastic version of Lasalle invariance principle for Lyapunov function of
deterministic dynamics.

H.J. Kushner invariance Theorem

Let {Xk} be a Markov chain on the compact state space S. Suppose that
there exists a non-negative function V (x) satisfying
E (V (Xk+1) | Xk = x)− V (x) = −σ(x), where σ(x) ≥ 0 is a positive
continuous function of x . Then the ω-limit set (in the sense of almost sure
convergence) of Xk is included in the following set

I = {X | σ(X ) = 0}.

Trivially, the same result holds true for V (x) bounded from above and
E (V (Xk+1) | Xk = x)− V (x) = σ(x) with σ(x) ≥ 0.



Asymptotic behavior: QND photon measurement

Theorem

Consider Mg = cos(ϕ0 + Nϑ) and Me = sin(ϕ0 + Nϑ)

ρk+1 =


Mgρk M†g

Tr(Mgρk M†g )
with yk = g, probability Pg = Tr

(
Mgρk M†g

)
;

Meρk M†e
Tr(Meρk M†e )

with yk = e, probability Pe = Tr
(

Meρk M†e
)

,

with an initial density matrix ρ0 defined on the subspace
span{|n〉 | n = 0,1, · · · ,nmax}. Also, assume the non-degeneracy
cos2(ϕm) 6= cos2(ϕn) ∀n 6= m ∈ {0,1, · · · ,nmax}, where ϕn = ϕ0 + nϑ.
Then

for any n ∈ {0, . . . ,nmax}, Tr (ρk |n〉〈n|) = 〈n|ρk |n〉 is a martingale

ρk converges with proba. 1 to one of the nmax + 1 Fock states
|n〉〈n| with n ∈ {0, . . . ,nmax}.

the probability to converge towards the Fock state |n〉〈n| is given
by Tr (ρ0|n〉〈n|) = 〈n|ρ0|n〉.



Proof based on QND super-martingales

For any function f , Vf (ρ) = Tr (f (N)ρ) is a martingale:
E (Vf (ρk+1) | ρk ) = Vf (ρk ) (basic computation).

V (ρ) =
∑

n 6=m

√
〈n|ρ|n〉 〈m|ρ|m〉 ≥ 0 is a strict super-martingale:

E (V (ρk+1) | ρk )

=
∑
n 6=m

(
| cosφn cosφm|+ | sinφn sinφm|

)√
〈n|ρ|n〉 〈m|ρ|m〉

≤ rV (ρk )

with r = maxn 6=m
(
| cosφn cosφm|+ | sinφn sinφm|

)
< 1.

V (ρ) = 0 implies that there exists n such that ρ = |n〉〈n|.
Interpretation: For large k , V (ρk ) is very close to 0, thus ρk very close to
|n〉〈n| for an a priori random n. Information extracted by measurement makes
state “less uncertain” a posteriori but not more predictable a priori.



Asymptotic behavior: discarding measurement results

Theorem

Consider ρk+1 = Mgρk M†g + Meρk M†e with the same definitions and
assumptions as in the previous theorem.
Then ρk converges exponentially towards ρ = diag(ρ0).

Proof: Deterministic system, one easily checks that

〈n|ρk+1|n〉 = 〈n|ρk |n〉

〈n|ρk+1|m〉 =
(
| cosφn cosφm|+ | sinφn sinφm|

)
〈n|ρk |m〉 ≤

r 〈n|ρk |m〉 with
r = maxn 6=m

(
| cosφn cosφm|+ | sinφn sinφm|

)
< 1.

Interpretation: Diagonal ρ is equivalent to a classical probability distribution
over the values of n. This distribution is not modified in absence of
measurement results.
However, the QND measurement process for N , even without recording the
output, perturbs future measurements of other observables (off-diagonal
terms in the N eigenbasis).



Exercice
Consider the Markov chain ρk+1 = Kyk (ρk ) /Py,k where yk = g (resp. yk = e)

with probability Pg,k = Tr
(

Mgρk M†g
)

(resp. pe,k = Tr
(

Meρk M†e
)

). The Kraus
operators are now given by (resonant interaction)

Mg = cos
(
θ1
2

)
cos
(

Θ
2

√
N
)
− sin

(
θ1
2

)( sin

(
Θ
2
√

N
)

√
N

)
a†

Me = − sin
(
θ1
2

)
cos
(

Θ
2

√
N + 1

)
− cos

(
θ1
2

)
a

(
sin

(
Θ
2
√

N
)

√
N

)

with θ1 = 0. Assume the initial state to be defined on the subspace {|n〉}nmax

n=0
and that the cavity state at step k is described by the density operator ρk .

1 Show that

E
(
Tr
(
Nρk+1

)
| ρk

)
= Tr (Nρk )− Tr

(
sin2

(
Θ
2

√
N
)
ρk

)
.

2 Assume that for any integer n, Θ
√

n/π is irrational. Then prove that
almost surely ρk tends to the vacuum state |0〉〈0| whatever its initial
condition.

3 When Θ
√

n/π is rational for some integer n, describe the possible
ω-limit sets for ρk .
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Quantum feedback
Question: how to stabilize deterministically a given
photon-number state |n̄〉〈n̄|?

u y

Controlled Markov chain:

ρk+ 1
2

= Myk (ρk ), ρk+1 = Duk (ρk+ 1
2
),

where My (ρ) = MyρM†y/Tr
(

MyρM†y
)

and Du(ρ) = DuρD†u with

Du = eua†−u∗a, the displacement unitary operator of complex
amplitude u.



Control Lyapunov function
Idea: V (ρ) = V (ρ) +

∑
n≥0 f (n) Tr (ρ|n〉〈n|) ,
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Coefficients  -f(n) of the control Lyapunov function

Bounded quantum-state stabilizing feedback: take

uk : = argmin
|u|≤umax

{
E
(

V (ρk+1)|ρk , uk = u
)}

= argmin
|u|≤umax

{
Tr (Mgρk Mg) V

(
Du
(
Mg(ρk )

))
+ Tr (Meρk Me) V

(
Du
(
Me(ρk )

))}
.



Quantum-state feedback (stabilization around 3-photon state)

Experiment: C. Sayrin et. al., Nature 477, 73-77, 2011.
Theory: I. Dotsenko et al. Physical Review A, 80: 013805-013813, 2009.

H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.
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