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Photon Box: a key example of indirect measurement
State evolution under measurement imperfections

Decoherence seen as unread measurements



Models of open quantum systems are based on three features®

Schrédinger: wave funct. i) € H or density op. p ~ |)(¢]
d . d .

Entanglement and tensor product for composite systems (S, M):

m Hilbert space H = Hs @ Hu
m Hamiltonian H = Hs ® Iy + Hipt + 1s @ Hy
m observable on sub-system M only: O = Is ® Op.

Randomness and irreversibility induced by the measurement of
observable O with spectral decomp. > AP,

® measurement outcome p with proba.
P, = (¥|P,|v) = Tr(pP,) depending on |¢), p just before
the measurement
B measurement back-action if outcome p = y:
Py ) PypPy
) = )y = ——L e, prp, = YO
V(WP ) BT (pPy)
®S. Haroche, J.M. Raimond: Exploring the Quantum: Atoms, Cavities and
Photons. Oxford University Press, 2006.




Photon Box: a key example of indirect measurement



Composite system built with a harmonic oscillator and a qubit.

m System S corresponds to a quantized harmonic oscillator:

Hs = Ho = {i caln)

n=0

(Cn)nlo € IQ(C)} 5

where |n) represents the Fock state associated to exactly n
photons inside the cavity

m Meter M is a qubit, a 2-level system: #, = H, = C?, each
atom admits two energy levels and is described by a wave
function cg|g) + cel€) with |cg|? + |cel? = 1;

m State of the full system |V) € Hs @ Hpy = He @ Ha:

+oo
(W) =" Cngln) @ |9) + Creln) @ |6),  Cne, Cng € C.

n=0

Orthonormal basis: (|n) ® |g),|n) @ |€))nen.



Markov model (1)

C
R
R2
W =

m When atom exits B, |V)g of the full system is separable
W)g =) ®19).

m Just before the measurement in D, the state is in general
entangled (not separable):

V)R, = Usm(|v) ®19)) = (Mg|t)) @ |g) + (Melv))) ® |€)

where Ugy is a unitary transformation (Schrédinger propagator)
defining the linear measurement operators My and M on Hs.

Since Usgy is unitary, MMy + MM = I.



Markov model (2)

Just before D, the field/atom state is entangled:

My|y) @ |g) + Me|i) © |e)

Denote by 1 € {g, e} the measurement outcome in detector D: with
probability P, = <1/z\MLM,L|z/;> we get p. Just after the measurement
outcome p = y, the state becomes separable:

|W>D:ﬁ(”’}’|w>)®‘y (\/W > ®‘y>

Markov process: [1x) = [)i—kar, k € N, At sampling period,

Mot with y, = g, probability Py = (i | MEM, |y ):
_ (x| M Mg| ) Ye= 9P Y% <wk| 9 g|¢k>’
o) =0 " gy

, B . B :
(o My Mo ) with yx = e, probability Pe = <1/’k|MeMe|¢k>.



Dispersive case

Ur, = 5 (I +1g)(el - |e)(gl)
Up, = (I+ e"|g)(e| — e’i"!e><9|>
Uc = [g)(gle™ ™ + [e)(e|e ™™

where ¢(N) = 9o + UN.
With 1 = 2(¢g — ) — ¥ — 7, the measurement operators My
and M. are the following bounded operators:

Mgy = cos(po + NU), Me = sin(po + N©J)

up to irrelevant global phases.
Exercise: Show that M{Mg + MM, = I.



Resonant case: Usy = Ug,UcUR,

Up, = /3% =cos (%) +sin (%) (1g)(e| — |e)(g]) and Ug, =1
and

Uc =9)(g| cos (%m) + |e){e| cos (% N + I)

in( £ sin )
+1g)(el (%m)) a' —le)(gla (%m))

The measurement operators My and M, are the following bounded
operators:

sin( S VN
Mg = cos (%) cos (%W) —sin (%) (<WN>) al

3

Me:—sin(i‘)cos<e\/7) —cos(%)a (S"](z\m))

Exercise: Show that MMy + MM, = I.



State evolution under measurement imperfections



Updating p with detection inefficiency (1)

m Thus starting with p = |¢) (|, we have:

Py = Vi) (il = MHPML

Tr (MupMD

when the atom collapses in i € {g, e} with proba. Tr (MupML).

m Two consecutive measurements with results ¢ then po:

M, pM'
M, (=2l ) MY
) B ne <Tr(M,L1 pr”)) o MM, oM M,
+uipe T + -
M, oM t gt )
Tr (M,U.z (1'r(IW,11pI|;i1)> ML2> Tr (MNZMPH pM;,h M;,Lz

with proba.
Pl izlp) = Pluslo) Plualuse) = Tr (Musz pM/Tu MLz)

What can we say for 2 when p4 is unknown?



Updating p with detection inefficiency (2)

m Distribution of the second measurement output:
Pluste) = O Tt (M. M, oMl ML, ) = Tr (M, p,M1,)
Ha

with the linear Kraus map

p1 =) M. oM, = MgpM} + MepM, = K(p) = " p. . Ppjp
123!

M1

m lterating this argument, the distribution of further measurement
outputs, knowing p» but not w4, is given by just replacing

Mﬂ2p+1m MLz M#ZK(p)MLZ

p+7#1#2 = by p+,#2 = :
Tr (Muzp+,u1 MLz) Tr (MMK(p)ML)

i.e. in fact just replacing p, , by p1 = K(p).

“True” value of i is inaccessible through any future measurement.



Updating p with detection errors (1)

m Two consecutive measurements with results ;1 then po:

M, pM!
M, (2 )M
o He (Tr(MW pM:r”)) he _ MI—LZ MI—H pMIlq MLZ
P ppe = 1 (m M, pM},, M N Tr (M M pMJr M )
r 12 W Lo B2 TR g T o

with proba.
P(unuzlp) - ]P(mlp) P(uz\m,p) =Tr (Mﬂsz PML ML)

m Detection errors on first measurement:
P(y1 = e/p1 = g) = neg € [0, 1] the probability of erroneous
assignation to e when the atom collapses in g, and similarly
Ny, fOr other values of y; and u4 (given by the contrast of the
Ramsey fringes).

What can we say for uo when yy is known but ;1 is unknown?



Updating p with detection inefficiency (2)

m Distribution of the second measurement output:®

_ _ P(Y1|#1v#2:P)P(#11#2\P)
Pluoloy) = § :P(Mh#ﬂp%) = § : P
M1

yile
123!

i
Zm My 14 Tr<M”2M“1pMM1 MMQ) _ Tr

]PY1 |

(Mﬂz p+,J/1 MLZ)
where P, |, = Tr (Zm Ny My, pML) and we define

Sy vy My M,
Ph lp ’

Py =

m Repeating such arguments, the distribution of all future
measurement outputs is obtained by just

replacing p. , by p.

Use the Bayes law P(A|B, C) = P(B|A, C)P(A|C) / P(B|C) with
A = (1, p2), B=y; and C = p. In the next line, use the Markov model
Plyyiis.mz.0) = Pyt = My -



Updating p with detection inefficiency (3)

The “true” value of 4 is again inaccessible through any future
measurement.

Reformulation with linear quantum maps : set
Ky(p) = ng,gMgPMz;‘H?g,eMePML, Ke(p) = ne,gMgPM;+ne,eMePML~

Ky(p)
Tr (Ky(p))

The probability to detect y knowing p is Py, = Tr (K, (p)).

Then p, , = when we detect y € e,9 .

When we neglect the measurement result, we logically get back

Pt = Z Py Py =Kq(p) + Ke(p) = K(p) = MgPML + MopM_,.
y



LKB photon box with imperfections: Conclusion

p plays the role of a probability measure for all future measurement
outcomes, given all past observations and initial measure pg.

m The pure state p = |¢)(¢| of rank(p) =1 is a special case,
implying the minimal possible uncertainty on measurements of a
quantum system.

In general, p becomes a mixed state (rank(p) >1), through
classical uncertainties.

m the update p, = K(p) when p is lost, represents the law of total
probabilities

m the update p, , with detection errors represents the Bayes law
on probability measures

This underlies the general models for open quantum systems.



Decoherence seen as unread measurements



Decoherence: the environment is like an unread meter (1)

Limit of Markovian environment: over sampling period AT — 0, the photon
box interacts with some external system (ancilla) which was initialized in a
possibly imprecise state; the ancilla state is never read, and reset / replaced
after the interaction.

Example: resonant interaction with weakly excited spin.
m Before interaction: the spin ancilla has been reset to

[4 -0
cos 3 |g)£sin 5-|e)
with + unknown (unread meas. on ancilla before interaction).

m Resonant interaction with © < 1:
My = cos%1 cos (%W) F sin %‘ (m(?/%m)) a'
Ncosg1 ( — G’;N) 1F55|n 2.’:1T
M+ = Fsin 3 cos(cz N+1) fcosez‘a <m<(2\/i\’m>>

mq:sin%‘( (N—|—1))—§c0592‘a



Decoherence: the environment is like an unread meter (2)

m Cavity update without ever measuring the environment ancilla:

p = 5(MgpMj , + Me.pM_ )+ 5 (Mg pMj _ + Mo _pM] _)
~M_1pM' | + M. 1pM' | + MopM} + O(©°)

one photon annihilation during AT with probability ~ Tr (M_1 oM’ 1)
and corresponding state update (backaction),

M_i=%cos%a

one photon creation during AT with probability ~ Tr (M+1pML) and

backaction,
)
M., = % sin 3 a

+

zero photon annihilation during AT with probability ~ Tr (MOpM(T)) and

backaction,
Mo=1- (M, M_, + M M.)



A standard decoherence channel: cavity decay

This result is a general model for cavity decoherence, exact in the
limit AT — O:

pr~ M_ipM', + M, pM' | + MopM}

with M_y = |/ £1E00) 5

I'”_'—‘1 _ AT ny a'l‘

cav ’

Mo=1-L(M M_+M M)
m ny, the average photons in the cavity in steady state (thermal
photons, vanishes with the environment temperature);
m T, the expected lifetime of a single photon when ny, = 0;
B AT <« Tga sampling period e.g. between consecutive atoms
(N =~ 0.05, Tgay = 100 ms and AT = 100 ps for the LKB photon Box)



Experimental results ’

Valeur moyenne du nombre de photons le
long d'une longue séquence de mesure:
observation d'une trajectoire stochastique

Une trajectoire correspondant au résultat initial n=5

o
1

[ Des mesures répétées A partir de la probabilité P,(n)
confirment n=5

inférée aprés chaque atome, on
déduit le nombre moyen de photons:

)= E/zl’,(n) (6-10)

Sauts quantiques vers le vide dus &
I'amortissement du champ

2 \\ m; Premiére observation des
trajectoires stochastiques du
f
| -

Nombre moyen de photons <n)

/s!o/ecp,gn de champ, en trés bon accord avec les
I'état cohérent prédictions théoriques (simulations
surn=5 de Monte- Carlo. Voir cours

précédents).
o VN

T T T
0 100 200 300 400 500 600 700
time (ms)

See the quantum Monte Carlo simulations of the Matlab script:
RealisticModelPhotonBox.m.

"From Serge Haroche, Collége de France, notes de.cours 2007/2008.
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