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Time-adiabatic approximation without gap conditions5

Take m + 1 Hermitian matrices n × n: H0, . . . ,Hm. For u ∈ Rm

set H(u) := H0 +
∑m

k=1 uk Hk . Assume that u is a slowly
varying time-function: u = u(s) with s = εt ∈ [0,1] and ε a small
positive parameter. Consider a solution

[
0, 1

ε

]
3 t 7→ |ψ〉εt of

i
d
dt
|ψ〉εt = H(u(εt))|ψ〉εt .

Take [0,1] 3 s 7→ P(s) a family of orthogonal projectors such
that for each s ∈ [0,1], H(u(s))P(s) = E(s)P(s) where E(s) is
an eigenvalue of H(u(s)). Assume that [0,1] 3 s 7→ H(u(s)) is
C2, [0,1] 3 s 7→ P(s) is C2 and that, for almost all s ∈ [0,1],
P(s) is the orthogonal projector on the eigenspace associated
to the eigenvalue E(s). Then

lim
ε7→0+

 sup

t∈[0,1ε ]

|‖P(εt)|ψ〉εt ‖2 − ‖P(0)|ψ〉ε0‖2|
 = 0.

5Theorem 6.2, page 175 of Adiabatic Perturbation Theory in Quantum
Dynamics, by S. Teufel, Lecture notes in Mathematics, Springer, 2003.



Chirped control of a 2-level system (1)

i d
dt |ψ〉 =

(ωeg
2 σz + u

2σx
)
|ψ〉 with quasi-

resonant control (|ωr − ωeg| � ωeg)
u(t) = v

(
ei(ωr t+θ) + e−i(ωr t+θ)

)
where v , θ ∈ R, |v | and | dθdt | are small and
slowly varying:

|v |,
∣∣ dθ

dt

∣∣� ωeg,
∣∣ dv

dt

∣∣� ωeg|v |,
∣∣∣ d2θ

dt2

∣∣∣� ωeg
∣∣ dθ

dt

∣∣ .
Passage to the interaction frame |ψ〉 = e−i ωr t+θ

2 σz |φ〉:

i
d
dt
|φ〉 =

(
ωeg−ωr− d

dt θ

2 σz + ve2i(ωr t+θ)+v
2 σ+ + ve−2i(ωr t−θ)+v

2 σ-

)
|φ〉.

Set ∆r = ωeg − ωr and w = − d
dt θ, RWA yields following

averaged Hamiltonian

Hchirp

~
= ∆r +w

2 σz + v
2σx

where (v ,w) are two real control inputs.



Chirped control of a 2-level system (2)

In
Hchirp

~ = ∆r +w
2 σz + v

2σx set, for s = εt varying in [0, π], w = a cos(εt)
and v = b sin2(εt). Spectral decomposition of Hchirp for s ∈]0, π[:

Ω− = −
√

(∆r +w)2+v2

2 with |−〉 =
cosα|g〉 − (1− sinα)|e〉√

2(1− sinα)

Ω+ =

√
(∆r +w)2+v2

2 with |+〉 =
(1− sinα)|g〉+ cosα|e〉√

2(1− sinα)

where α ∈]−π2 , π2 [ is defined by tanα = ∆r +w
v . With a > |∆r | and b > 0

lim
s 7→0+

α = π
2 implies lim

s 7→0+
|−〉s = |g〉, lim

s 7→0+
|+〉s = |e〉

lim
s 7→π−

α = −π2 implies lim
s 7→π−

|−〉s = −|e〉, lim
s 7→π−

|+〉s = |g〉.

Adiabatic approximation: the solution of i~ d
dt |φ〉 = Hchirp(εt)|φ〉

starting from |φ〉0 = |g〉 reads

|φ〉t = eiϑt |−〉s=εt , t ∈ [0, πε ], with ϑt time-varying global phase.

At t = π
ε , |ψ〉 coincides with |e〉 up to a global phase: robustness

versus ∆r , a and b (ensemble controllability).



Stimulated Raman Adiabatic Passage (STIRAP) (1)

H
~

= ωg |g〉〈g|+ωe|e〉〈e|+ωf |f 〉〈f |

+ uµgf
(
|g〉〈f |+ |f 〉〈g|

)
+ uµef

(
|e〉〈f |+ |f 〉〈e|

)
.

Set ωgf = ωf − ωg , ωef = ωf − ωe
and u = ugf cos(ωgf t)+uef cos(ωef t)
with slowly varying small real am-
plitudes ugf and uef .

Put i d
dt |ψ〉 = H|ψ〉 in the interaction frame:

|ψ〉 = e−it(ωg |g〉〈g|+ωe|e〉〈e|+ωf |f 〉〈f |)|φ〉.
Rotation Wave Approximation yields i~ d

dt |φ〉 = H rwa|φ〉 with

H rwa

~
=

Ωgf
2 (|g〉〈f |+ |f 〉〈g|) + Ωef

2 (|e〉〈f |+ |f 〉〈e|)

with slowly varying Rabi pulsations Ωgf = µgf ugf and
Ωef = µef uef .



Stimulated Raman Adiabatic Passage (STIRAP) (2)

Spectral decomposition: as soon as Ω2
gf + Ω2

ef > 0,
Ωgf (|g〉〈f |+|f〉〈g|)

2 + Ωef (|e〉〈f |+|f〉〈e|)
2 admits 3 distinct eigenvalues,

Ω− = −
√

Ω2
gf +Ω2

ef

2 , Ω0 = 0, Ω+ =

√
Ω2

gf +Ω2
ef

2 .

They correspond to the following 3 eigenvectors,

|−〉 =
Ωgf√

2(Ω2
gf +Ω2

ef )
|g〉+ Ωef√

2(Ω2
gf +Ω2

ef )
|e〉 − 1√

2
|f 〉

|0〉 = −Ωef√
Ω2

gf +Ω2
ef

|g〉+
Ωgf√

Ω2
gf +Ω2

ef

|e〉

|+〉 =
Ωgf√

2(Ω2
gf +Ω2

ef )
|g〉+ Ωef√

2(Ω2
gf +Ω2

ef )
|e〉+ 1√

2
|f 〉.

For εt = s ∈ [0, 3π
2 ] and Ω̄g , Ω̄e > 0, the adiabatic control

Ωgf (s) =

{
0, for s ∈ [0, π2 ];
Ω̄g cos2 s, for s ∈ [π2 ,

3π
2 ];

, Ωef (s) =

{
Ω̄e sin2 s, for s ∈ [0, π];
0, for s ∈ [π, 3π

2 ].

provides the passage from |g〉 at t = 0 to |e〉 at εt = 3π
2 .



Stimulated Raman Adiabatic Passage (STIRAP) (3)

Exercice

Design an adiabatic passage s 7→ (Ωgf (s),Ωef (s)) from |g〉 to
−|g〉+|e〉√

2
, up to a global phase.
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gf

Ω
ef Take, e.g., s = εt ∈ [0, π]

and Ω̄ > 0, and set

Ωgf (s) = Ω̄
2 sin s − Ω̄

4 sin 2s
Ωef (s) = Ω̄ sin s

Results from |0〉 = −Ωef√
Ω2

gf +Ω2
ef

|g〉+
Ωgf√

Ω2
gf +Ω2

ef

|e〉



Principle of quantum annealing

• Consider the following classical combinatorial problem. For a large integer n > 0 and
a collection (λi,j )1≤i,j≤n of real numbers, find the argument x̄ of the minimum for

{−1,+1}n 3 x 7→ Λ(x) =
∑

1≤i,j≤n

λi,j xi xj .

• Assume that we have a n-qubit (wave function |ψ〉 in (C2)⊗n ≡ C2n
) with a scalar

control u and with Hamiltonian

H(u) =
∑

1≤i,j≤n

λi,jσ
(i)

z σ
(j)

z + u
∑

1≤i≤n

σ
(i)

x .

• Consider a smooth decreasing function f on [0, 1] with f (0)� max1≤i,j≤n |λi,j | and
f (1) = 0. Assume that, for any u ∈ [0, f (0)], the smallest eigenvalue of Hu is not
degenerate.
• By the adiabatic theorem, for ε > 0 small enough, the solution of

ı d
dt |ψ〉 = H(f (εt))|ψ〉 starting from |ψ〉0 =

(
|g〉−|e〉√

2

)⊗n
is close at time t = 1/ε to the

separable state |q1〉 ⊗ |q2〉 ⊗ . . .⊗ |qn〉 where |qi 〉 = |g〉 (resp |e〉) when x̄i = −1
(resp. x̄i = +1).
• The measure of σz for each qubit gives then the solution x̄ of such a combinatorial
problem.
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Gradient ascent pulse engineering (GRAPE)

Goal: transfer the population from |ψi〉 to |ψf 〉 for

i
d
dt
|ψ〉 =

(
H0 +

m∑
k=1

uk (t)H1

)
|ψ〉.

Derived from the unitary operator Uu(t), generated by the
above Schrödinger equation, we set the functional

u([0,T ]) 7→ F (u) =
∣∣∣〈ψend|Uu(T )|ψini〉

∣∣∣2.
We wish to reach the maximum of this functional.



Gradient ascent pulse engineering (GRAPE)
We discretize the problem

optimizations, where the performance can be expressed
in terms of the eigenvalues and eigenfunctions of the to-
tal propagator.

The paper is organized as follows. In Section 2, we
present the basic theoretical ideas and numerical optimi-
zation algorithms directly applicable to the problem of
pulse design. To illustrate the method, we present three
simple but non-trivial applications to coupled spin sys-
tems both in the presence and in the absence of relaxa-
tion. In Section 3.1, we look at the problem of finding
maximum coherence transfer achievable in a given time
and the design of pulse sequences that achieve this trans-
fer. In Section 3.2, the algorithm is used to find relaxa-
tion optimized pulse sequences that perform desired
coherence transfer operations with minimum losses. In
Section 3.3, we design pulse sequences that produce a
desired unitary propagator in a network of coupled
spins in minimal time. In all examples, we compare the
results obtained by the numerical optimization algo-
rithm with optimal solutions obtained by analytical
arguments based on geometric optimal control theory.
In the conclusion section, we discuss the convergence
properties of the proposed algorithm and possible
extensions.

2. Theory

2.1. Transfer between Hermitian operators in the absence

of relaxation

To fix ideas, we first consider the problem of pulse de-
sign for polarization or coherence transfer in the absence
of relaxation. The state of the spin system is character-
ized by the density operator q (t), and its equation of
motion is the Liouville–von Neuman equation [15]

_qðtÞ ¼ �i H0 þ
Xm
k¼1

ukðtÞHk

 !
; qðtÞ

" #
; ð1Þ

where H0 is the free evolution Hamiltonian, Hk are the
radiofrequency (rf) Hamiltonians corresponding to the
available control fields and u (t) = (u1 (t), u2 (t), . . .,um (t))
represents the vector of amplitudes that can be changed
and which is referred to as control vector. The problem
is to find the optimal amplitudes uk (t) of the rf fields that
steer a given initial density operator q (0) = q0 in a spec-
ified time T to a density operator q (T) with maximum
overlap to some desired target operator C. For Hermi-
tian operators q0 and C, this overlap may be measured
by the standard inner product

hCjqðT Þi ¼ tr CyqðT Þ
� �

: ð2Þ

(For the more general case of non-Hermitian operators,
see Section 2.2). Hence, the performance index U0 of the
transfer process can be defined as

U0 ¼ hCjqðT Þi: ð3Þ
In the following, we will assume for simplicity that

the chosen transfer time T is discretized in N equal steps
of duration Dt = T/N and during each step, the control
amplitudes uk are constant, i.e., during the jth step the
amplitude uk (t) of the kth control Hamiltonian is given
by uk (j) (cf. Fig. 1). The time-evolution of the spin sys-
tem during a time step j is given by the propagator

Uj ¼ exp �iDt H0 þ
Xm
k¼1

ukðjÞHk

 !( )
: ð4Þ

The final density operator at time t = T is

qðT Þ ¼ UN � � �U 1q0U
y
1 � � �U

y
N ; ð5Þ

and the performance function U0 (Eq. (3)) to be maxi-
mized can be expressed as

U0 ¼ hCjUN � � �U 1q0U
y
1 � � �U

y
N i: ð6Þ

Using the definition of the inner product (cf. Eq. (2))
and the fact that the trace of a product is invariant un-
der cyclic permutations of the factors, this can be rewrit-
ten as

U0 ¼ hU y
jþ1 � � �U

y
NCUN � � �Ujþ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kj

j Uj � � �U 1q0U
y
1 � � �U

y
j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

qj

i;

ð7Þ
where qj is the density operator q (t) at time t = jDt and
kj is the backward propagated target operator C at the
same time t = jDt. Let us see how the performance U0

changes when we perturb the control amplitude uk (j)
at time step j to uk (j) + duk (j). From Eq. (4), the change
in Uj to first order in duk (j) is given by

dUj ¼ �iDtdukðjÞHkUj ð8Þ

with

HkDt ¼
Z Dt

0

UjðsÞHkUjð�sÞds ð9Þ

Fig. 1. Schematic representation of a control amplitude uk (t),
consisting of N steps of duration Dt = T/N. During each step j, the
control amplitude uk (j) is constant. The vertical arrows represent
gradients dU0=dukðjÞ, indicating how each amplitude uk (j) should be
modified in the next iteration to improve the performance function U0.
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F (u) =
∣∣∣〈ψend|UNUN−1 · · ·U1|ψini〉

∣∣∣2, Uj = exp

(
−i∆t(H0 +

m∑
k=1

uk (j)Hk )

)
.

Defining

|ψj,end〉 = U†j+1 · · ·U
†
N |ψend〉, |ψj,ini〉 = U j · · ·U1|ψini〉

We have (up to second terms in ∆t):
∂F

∂uk (j)
≈ −i∆t

(
〈ψj,end|Hk |ψj,ini〉 〈ψj,ini | ψj,end〉−〈ψj,ini|Hk |ψj,end〉 〈ψj,end | ψj,ini〉

)
.



GRAPE algorithm

1 Start with an initial control guess uk (j) (important because of local
maxima).

2 Calculate for all j , |ψj,ini〉 = U j · · ·U1|ψini〉.
3 Calculate for all j , |ψj,end〉 = U†j+1 · · ·U

†
N |ψend〉.

4 Evaluate ∂F
∂uk (j) and update the m × N control amplitudes uk (j)

according to

uk (j)→ uk (j) + ε
∂F

∂uk (j)
.

with ε > 0 and small enough.

5 Go to step 2.

Algorithm terminates if the change in functional is smaller than a threshold.

Limited control amplitudes: we add a penalty functional parameterized by
αk > 0 with k = 1, . . . ,m. Functional F is replaced by F + Fpen with

Fpen = − 1
2

N∑
j=1

m∑
k=1

αk u2
k (j)∆t , with

∂Fpen

∂uk (j)
= −αk uk (j)∆t .



Another approach: two optimal control problems

For given T , |ψini〉 and |ψend〉, find the open-loop control
[0,T ] 3 t 7→ u(t) such that

min
uk ∈ L2([0,T ],R)

i d
dt |ψ〉 = (H0 +

∑m
k=1 ukHk )|ψ〉

|ψ〉t=0 = |ψini〉, | 〈ψend|ψ〉 |2t=T = 1

1
2

∫ T

0

(
m∑

k=1

u2
k

)

Since the initial and final constraints are difficult to satisfy
simultaneously from a numerical point of view, consider the
second problem where the final constraint is penalized with
α > 0:

min
uk ∈ L2([0,T ],R)

i d
dt |ψ〉 = (H0 +

∑m
k=1 ukHk )|ψ〉

|ψ〉t=0 = |ψini〉

1
2

∫ T

0

(
m∑

k=1

u2
k

)
+α

2

(
1−|〈ψend|ψ〉|2T

)



First order stationary conditions

For two-points problem, the first order stationary conditions
read: 

i d
dt |ψ〉 = (H0 +

∑m
k=1 ukHk )|ψ〉, t ∈ (0,T )

i d
dt |p〉 = (H0 +

∑m
k=1 ukHk )|p〉, t ∈ (0,T )

uk = −=
(
〈p|Hk |ψ〉

)
, k = 1, . . . ,m, t ∈ (0,T )

|ψ〉t=0 = |ψini〉, | 〈ψend|ψ〉 |2t=T = 1

For the relaxed problem, the first order stationary conditions
read: 

i d
dt |ψ〉 = (H0 +

∑m
k=1 ukHk )|ψ〉, t ∈ (0,T )

i d
dt |p〉 = (H0 +

∑m
k=1 ukHk )|p〉, t ∈ (0,T )

uk = −=
(
〈p|Hk |ψ〉

)
, k = 1, . . . ,m, t ∈ (0,T )

|ψ〉t=0 = |ψini〉, |p〉t=T = −α 〈ψend|ψ〉t=T |ψend〉.



Monotone numerical scheme for the relaxed problem (1)6

Take an L2 control [0,T ] 3 t 7→ u(t) (dim(u) = 1 here) and
denote by

|ψu〉 the solution of forward system i d
dt |ψ〉 = (H0 + uH1)|ψ〉

starting from |ψini〉.
|pu〉 the adjoint associated to u, i.e. the solution of the
backward system i d

dt |pu〉 = (H0 + uH1) |pu〉 with
|pu〉T = −αP|ψu〉T , P projector on |ψend〉,
P|φ〉 ≡ 〈ψend|φ〉 |ψend〉.
J(u) = 1

2

∫ T
0 u2 + α

2 (1− |〈ψend|ψu〉|2T ).

Starting from an initial guess u0 ∈ L2([0,T ],R), the monotone
scheme generates a sequence of controls uν ∈ L2([0,T ],R),
ν = 1,2, . . ., such that the cost J(uν) is decreasing,
J(uν+1) ≤ J(uν).

6D. Tannor, V. Kazakov, and V. Orlov. Time Dependent Quantum
Molecular Dynamics, chapter Control of photochemical branching: Novel
procedures for finding optimal pulses and global upper bounds, pages
347–360. Plenum, 1992.



Monotone numerical scheme for the relaxed problem (2)

Assume that, at step ν, we have computed the control uν , the
associated quantum state |ψν〉 = |ψuν 〉 and its adjoint
|pν〉 = |puν 〉. We get their new time values uν+1, |ψν+1〉 and
|pν+1〉 in two steps:

1 Imposing uν+1 = −=
(〈

pν |H1|ψν+1〉) is just a feedback;
one get uν+1 just by a forward integration of the nonlinear
Schrödinger equation,

i
d
dt
|ψ〉 = (H0 −= (〈pν |H1|ψ〉) H1) |ψ〉, |ψ〉0 = |ψini〉,

that provides [0,T ] 3 t 7→ |ψν+1〉 and the new control uν+1.
2 Backward integration from t = T to t = 0 of

i
d
dt
|p〉 =

(
H0 + uν+1(t)H1

)
|p〉, |p〉T = −α

〈
ψend|ψν+1

〉
T
|ψend〉

yields to the new adjoint trajectory [0,T ] 3 t 7→ |pν+1〉.



Monotone numerical scheme for the relaxed problem (3)

Why J(uν+1) ≤ J(uν) ?
Because we have the identity for any open-loop controls u
and v (P = |ψend〉〈ψend|)

J(u)− J(v) = −α
2 (〈ψu − ψv |P|ψu − ψv 〉)T

+ 1
2

(∫ T

0
(u − v) (u + v + 2= (〈pv |H1|ψu〉))

)
.

If u = −= (〈pv |H1|ψu〉) for all t ∈ [0,T ), we have

J(u)−J(v) = −α
2 (〈ψu − ψv |P|ψu − ψv 〉)T−

1
2

(∫ T

0
(u − v)2

)

and thus J(u) ≤ J(v).
Take v = uν , u = uν+1: then |pv 〉 = |pν〉, |ψv 〉 = |ψν〉,
|pu〉 = |pν+1〉 and |ψu〉 = |ψν+1〉.



Monotone numerical scheme for the relaxed problem (4)
Proof of

J(u) − J(v) = −α2 (〈ψu − ψv |P|ψu − ψv 〉)T + 1
2

(∫ T

0
(u − v) (u + v + 2= (〈pv |H1|ψu〉))

)
.

Start with

J(u)−J(v) = −
α

(
〈ψu−ψv |P|ψu−ψv 〉T +〈ψu−ψv |P|ψv 〉T +〈ψv |P|ψu−ψv 〉T

)
2 +

∫ T

0

(u − v)(u + v)

2
.

Hermitian product of i d
dt (|ψu〉 − |ψv 〉) = (H0 + vH1) (|ψu〉 − |ψv 〉) + (u − v)H1|ψu〉 with |pv 〉:

〈
pv

∣∣∣ d(ψu−ψv )
dt

〉
=
〈

pv

∣∣∣ H0+vH1
i

∣∣∣ψu − ψv
〉

+

〈
pv

∣∣∣∣ (u−v)H1
i

∣∣∣∣ψu

〉
.

Integration by parts (use |ψv 〉0 = |ψu〉0, |pv 〉T = −αP|ψv 〉T and d
dt 〈pv | = −〈pv |

( H0+vH1
i

)
):

∫ T

0

〈
pv

∣∣∣ d(ψu−ψv )
dt

〉
= 〈pv |ψu − ψv 〉T − 〈pv |ψu − ψv 〉0 −

∫ T

0

〈
dpv
dt

∣∣∣ψu − ψv
〉

= −α 〈ψv |P|ψu − ψv 〉T +

∫ T

0

〈
pv

∣∣∣ H0+vH1
i

∣∣∣ψu − ψv
〉

Thus−α 〈ψv |P|ψu − ψv 〉T =
∫ T

0

〈
pv

∣∣∣∣ (u−v)H1
i

∣∣∣∣ψu

〉
and

α<
(
〈ψv |P|ψu − ψv 〉T

)
= −

∫ T
0 = (〈pv |(u − v)H1|ψu〉). Finally we have

J(u) − J(v) = −α2 (〈ψu − ψv |P|ψu − ψv 〉)T + 1
2

(∫ T

0
(u − v) (u + v + 2= (〈pv |H1|ψu〉))

)
.
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