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Pulse shaping with adiabatic control

Pulse shaping with optimal control



Pulse shaping with adiabatic control



Time-adiabatic approximation without gap conditions®

Take m + 1 Hermitian matrices n x n: Hy, ..., Hp. For u € R™
set H(u) := Ho + >, ux Hy. Assume that u is a slowly
varying time-function: u = u(s) with s = et € [0, 1] and € a small
positive parameter. Consider a solution [0, 1] 5 ¢ — [¢)$ of

i)t = Huet) )

Take [0, 1] > s — P(s) a family of orthogonal projectors such
that for each s € [0, 1], H(u(s))P(s) = E(s)P(s) where E(s) is
an eigenvalue of H(u(s)). Assume that [0,1] > s — H(u(s)) is
C?,10,1] > s — P(s) is C? and that, for almost all s € [0, 1],
P(s) is the orthogonal projector on the eigenspace associated
to the eigenvalue E(s). Then

lim, ( sup |||P(ff)\¢>?Hz - P(O)WBZ‘) =0.
T \ren,

5Theorem 6.2, page 175 of Adiabatic Perturbation Theory in Quantum
Dynamics, by S. Teufel, Lecture notes in Mathematics, Springer, 2003.



Chirped control of a 2-level system (1)

gy = (‘”egaz+ Yox) |w> with quasi-
resonant control (jw, — Weg)
—— ) u(t) = v (elrt+0) 4 g ?wrt+6))
U where v,0 € R, |v| and | 2| are small and
; slowly varying:
) 10119 < 1] < wnlv], [ 58] < g | %1

Passage to the interaction frame [¢) = e~ 2 %|¢):

d —w—49 2i(wrt4) —2i(wrt—0)
7’@: Weg ‘Zf & o, + ve”! f2 Vg, + Ve ! é +V o ).

Set A; = weg — wr and w = — %0, RWA yields following
averaged Hamiltonian

“chir
P Ar+w
—_— = ’2 oz + %o’x

where (v, w) are two real control inputs.




Chirped control of a 2-level system (2)

H..:
In SR _ Aciw o 4 Yo set, for s = et varying in [0, 7], w = acos(et)

and v = bsin®(et). Spectral decomposition of Hehirp for s €]0, w[:

Q= _w with |—) = cosalg) — (1 —sin a)le)
2(1 —sina)

Q, = w with | +) = (1 —sina)lg) —I— cos ale)
2(1 —sina)

where a €]=F, Z[ is defined by tana = 222 With a > |A,| and b > 0

lim a =g implies lim |-)s=1g), lim [+)s = e)
lim a=—-% implies lim |[-)s=—le), Ilm |+)s=1g).
ST ST ST
Adiabatic approximation: the solution of ih &|¢) = Hehirp(€t)|#)
starting from |¢)o = |g) reads

¢)t = €| —)eer, t € [0, ], with 9, time-varying global phase.

At t = T, [1) coincides with |e) up to a global phase: robustness
versus A,, a and b (ensemble controllability).



Stimulated Raman Adiabatic Passage (STIRAP) (1)

A
' H
7 = wolg)(gl+wele) (el +wrlf)(f]
) + upgr (1g)(f] + )(gl)
wy —_— + uper(le)f] + ) el).
gt Lef Set wgr = wr — Wy, Wef = Wi — We
; and u = Uy cos(wgrt) 4 Uer cos(wert)
We |6> with slowly varying small real am-
Wy |g) plitudes ugr and uey.

Put i%|z/z> = H|¢) in the interaction frame:
i) = e M(walg)igltwele)iel+erlN){fl)) )

Rotation Wave Approximation yields ih%\@ = Hywa|®) with

e _ % (19)(1 + 1) gl) + T (€)1 + 1) (&)

with slowly varying Rabi pulsations Qg = pgrlyr and
Qer = pefUet-




Stimulated Raman Adiabatic Passage (STIRAP) (2)

Spectral decomposition: as soon as Q7 + Q% > 0,
219/ 1+10(8) | Qulle)fi+INel) gymits 3 dlstmct eigenvalues,

2 2 2 2
Q _ \V ng+Qef Q _ O Q vV ng+Qef
- = — 0 — 5 + = .

2 ’ 2

They correspond to the following 3 eigenvectors,

Ny = Qg’ _ 1
) = 9+ JQMQ le) - 51
_Qef
f+92
_ 1
+) = \/2 ,+Q \/2(52 ,+Q | >+\/§|f>,

For et = s € [0, 3F] and Qg, Qe > 0, the adiabatic control

[0 fors € [0, Z]; [ Qesin?s, forse[0,7];
Qg1(8) = { Qgcos?s, forse(Z ,232 > er(s) = { 0, for s € [x, 37].

provides the passage from |g) at t = 0to |e) at et = 3F.



Stimulated Raman Adiabatic Passage (STIRAP) (3)

Exercice
Design an adiabatic passage s — (4¢(S), Qer(S)) from |g)
‘gj/ir'@ up to a global phase.

.|

1
_ng
08 ]
Take, e.g., s = et € [0, 7]

06 ] and © > 0, and set
04 | Qgr(s) = $sins— ¢sin2s
0.2 ] Qer(s) = Qsins

O0 0:2 0:4 0:6 018 1

sin

_Qef

Results from |0) = ﬁ@ \/m\@
f ogf ef




Principle of quantum annealing

e Consider the following classical combinatorial problem. For a large integer n > 0 and
a collection (; j)1<j,j<n Of real numbers, find the argument x of the minimum for

{1, 4+11"3x > AX) = > XX
1<i,j<n

o Assume that we have a n-qubit (wave function |¢) in (C2)®" = C2") with a scalar
control u and with Hamiltonian

S aefe? 1 u Y o

1<ij<n 1<i<n

o Consider a smooth decreasing function f on [0, 1] with f(0) > max{<; j<n|A; ;| and
f(1) = 0. Assume that, for any u € [0, f(0)], the smallest eigenvalue of H, is not
degenerate.

e By the adiabatic theorem, for ¢ > 0 small enough, the solution of

®n
1G1¥) = H(f(et)) ) starting from [)o = (12712} ™ is close at time t = 1/e to the
separable state |g1) ® |q2) ® ... ® |gn) Where |g;) = |g) (resp |e)) when X; = —1
(resp. X; = +1).
e The measure of oz for each qubit gives then the solution x of such a combinatorial
problem.



Pulse shaping with optimal control



Gradient ascent pulse engineering (GRAPE)

Goal: transfer the population from |¢;) to |v) for

dt (Ho + Z uk(t )

Derived from the unitary operator U,(t), generated by the
above Schrédinger equation, we set the functional

(0. T1) = F(u) = |(theel Uu Dt

We wish to reach the maximum of this functional.



Gradient ascent pulse engineering (GRAPE)

We discretize the problem

Uy

1 i
—-> -

0 At T

2 m
F(u) = |(Yena|lUNUNn—1--- Uq|thmi)| . Uj=exp (iAt(Ho + Z Uk(j)Hk)> .
k=1
Defining
|'¢j,end> = U/T_H t U}-\[|wend>7 |¢j,ini> = Uj to U1 |¢ini>
We have (up to second terms in At):

oF .
50y~ IOVl ) W | 01en0) = 0 il ) W ns | ) )




GRAPE algorithm

Start with an initial control guess uk(j) (important because of local
maxima).

Calculate for all j, |tjin) = Uj- - - U1 |thini).
Calculate for all j, [1)j end) = U,TH U} ena).-

Evaluate m (] and update the m x N control amplitudes u(j)
according to

uc(f) — uk(j) + EaiF(j)'

with e > 0 and small enough.
Go to step 2.
Algorithm terminates if the change in functional is smaller than a threshold.

Limited control amplitudes: we add a penalty functional parameterized by
ax > 0with k =1,..., m. Functional F is replaced by F + Fpen With

Nom OFpe
Foen = =3 Y > akUg())At,  with 50 p(j) —akUk(j)At.

j=1 k=1




Another approach: two optimal control problems

For given T, |¢) and |¥eq4), find the open-loop control
[0, T] > t — u(t) such that

. 1 T il 2
el L (S
iGNy = (Ho + S pq ukHi)[¥)
|¢>t=0 = ‘wini>a | <1/}end|1/)> ‘?:T =1

Since the initial and final constraints are difficult to satisfy
simultaneously from a numerical point of view, consider the
second problem where the final constraint is penalized with

a > 0:
Uk € LG(][i(r)], T],R) / (Z:: ) ( wendwnT)

i1y = (Ho + Spq kcHi)|¥)
W>t:o = W}ini)



First order stationary conditions

For two-points problem, the first order stationary conditions

read:
ig1v) = (Ho+ > iy ukHi)v), t e (0,T)
iglp) = (Ho + k-1 ukHk)|p), t € (0, T)
U= (<erk|¢>) —1,.m, te(0,T)

| > W.m> ‘ <¢endw)> T = =1

For the relaxed problem, the first order stationary conditions
read:

ig10) = (Ho+ Y_py UxHi)lw), te (0, T)
% Ip) = (Ho + Y5y UkHk)|p), t€ (0, T)

(p|Hk|z,z)> =1,....m, t€(0,7)
‘ |n| ‘p>f T__O‘<l/)end‘l/)>t T w}end>



Monotone numerical scheme for the relaxed problem (1)8

Take an L2 control [0, T] > t +— u(t) (dim(u) = 1 here) and
denote by

m [¢,) the solution of forward system i& |v) = (Ho + uHj)|4)
starting from |¢i).

m |p,) the adjoint associated to u, i.e. the solution of the
backward system i&|py) = (Ho + uHs) |pu) with
|Pu) T = —aP[Yy) 7, P projector on [te),
Pl¢) = <¢end!¢> |Yena)-

mJ(W) =5 fy P+ 51— [(Cenalton)[5)-
Starting from an initial guess u° € L?([0, T],R), the monotone
scheme generates a sequence of controls u” € L2([0, T],R),
v=1,2,..., such that the cost J(u") is decreasing,
J(urt) < J(w).

8D. Tannor, V. Kazakov, and V. Orlov. Time Dependent Quantum
Molecular Dynamics, chapter Control of photochemical branching: Novel

procedures for finding optimal pulses and global upper bounds, pages
347-360. Plenum, 1992.




Monotone numerical scheme for the relaxed problem (2)

Assume that, at step v, we have computed the control v”, the
associated quantum state |¢") = |, ) and its adjoint

|p") = |puv). We get their new time values u”*1, |*+1) and
|p**1) in two steps:

Imposing v = =& ((p” |Hi| ¥ 1)) is just a feedback;
one get u*t1 just by a forward integration of the nonlinear
Schrédinger equation,

210} = (o~ S (0 IHR D) H) ), b0 = [,

that provides [0, T] > t — |¢**') and the new control u**'.
Backward integration from t = T to t = 0 of

i210) = (o +u (0Fh) 19), 197 =~ (") [t

yields to the new adjoint trajectory [0, T] > t — |p**1).



Monotone numerical scheme for the relaxed problem (3)

Why J(u*+1) < J(u¥) ?
m Because we have the identity for any open-loop controls u
and v (P = |¢end><¢end|>

J(u) = J(v) = =5 ((u — [Py — v)) 1

7
+ </ (u—v)(u+ V+2%(<pv‘H1‘wu>))> .
0

N —

mIfu=-S((py|Hi|vu)) forall t € [0, T), we have

;
J(U)=J(v) = =5 ((bu = ¥uIPlou — ¥v))7—3 </0 (u— V)2>

and thus J(u) < J(v).
m Take v = u”, u= u"*': then |p,) = |p¥), [¥v) = [Y),
lpu) = [P ") and |ipy) = [ FT).



Monotone numerical scheme for the relaxed problem (4)

Proof of
4 T
J) = J(v) = =G5 ((Yu—Yv|PlYu —¥v))r + 3 (/0 (u=v)(u+v+23({py |H1|¢u>))) .
Start with
a| (Yu—YvIPlYu—vv) TH(Pu—YvIPlYv) T+ (v PlYu— >T) T (u—
J(u)_J(V) _ < v u , v v v u v +/~O (U V)2(U+ V) )

Hermitian product of i & (|vu) — |4v)) = (Ho + vH1) (1) — lvbv)) + (u — V)H[vu) with |py):
<Pv ‘ d(wud?w‘/) > = <Pv ‘LOJ:-VFH |¢’u - 1/)v> + <Pv i H1 'TP >

) Ho-+VH-
Integration by parts (use |¢v)o = [%u)o, V) T = —aPlyy) 7 and & (p,| = —(py| ( O+iv ! )):

-
/0 <pv ‘ d(wud?dzv) > = (pv|vou — Yv) 1 — (PvIvbu — Pv)g — / dpv | Yy — 1/)V>

= -« <’/)V|P|’¢'u—¢'v>r+/0 <Pv‘w|wu—wv>

Thus —a (Pl — w7 = Ji <Pv U=ty ¢u> and

aR ((Yv|Plu — Pv)7) = — fOT S ({pv |(u — V)Hy | 3y)). Finally we have

T
J) = J(v) = =G ((bu— [Py — )7 + % </0 (u—=v)(u+v+23({py |H1|¢u>))) .
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