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The Rotating Wave Approximation (RWA) recipes
Schrodinger dynamics i) = H(t)[), with

m r
H(t) = Hy + Z uk(t)Hx, uk(t) = Z uk’jeiwjt + u;:,je_iwjt'
k=1 j=1

The Hamiltonian in interaction frame

Hi(t) =Y (ux;€™" + ui o) o' Hye™ Mot
k’j

We define the first order Hamiltonian

st
H; a—Hmt— I|m -,-/ Hin(1)

and the second order Hamiltonian
nd st . N R
Hi?wa = H:wa - ’(Hint - Hint) (/[(Hint - Hint))

Choose the amplitudes uy ; and the frequencies w; such that the

st nd
propagators of H}\,, or H2,, admit simple explicit forms that are used
to find t — u(t) steering |¢) from one location to another one.
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Averaging and control of a qubit



RWA and resonant control

IniZ|y) = (Loy + 50x) [¢), set Hy = 520z and eHy = §ox and

consider |¢) = e—wTegt"Z\qS) to eliminate the drift Hy and to get the
Hamiltonian in the interaction frame:

iwegt iw

.d u o _ lwegt
igHl9) = 3 F Foxe” £ %Io) = Hinlo)

a=|e) (g o=|g)(e|
: i ox + 1oy ) oy — IO
with Hint = %e’wegt % +%e—’wegf .Sl 4

Applying the resonant control u = ue“s! + u*e—w=s! gives
pplying

ueZiwegt +ut u+ut e—2iweg[
Hjnt = f [o % + # o..

When |u| < weg and |Zu| < |u| |4 e?«=!|, the variable |¢) moves
with a timescale of order 1/|u| while H;,; involves terms at a fast
timescale 1/weg.

Averaging tells us how we can average out this fast timescale and
concentrate on the effect of slowly varying u.




Second order approximation and Bloch-Siegert shift

The decomposition of Hi,

—2/wegt

iwegt
Hot = Lo, + Yo+ 4% g, 4 we 5
Hint Hint—Hint

provides the first order approximation (RWA)

1St - . 1 0T * o )
Hrya = Hint = lim7. 7 fo Hint(t)at, = % .

. _— 2iwegt % o—2iwegt
Since [, Hint — Hint = Y5~ 0v — “-47, o, we have

2

(Hing — Fi) ( / (Hipy — Him)) .,

(use 0,2 = ¢ = 0 and oz = o,0. — 0.0,).
The second order approximation reads:

nd st , I I
H?wa = H:wa - ’(Hint - Hint) (/t(Hint - Hint))
st 2
= H:Wa+(8|5|eg>o.zzu7 Jr2‘7'JF(|U| )U'z-

The 2nd order correction '"' (az/2) is called the Bloch-Siegert shift.




Exercise: controllability of the 2-level systems and Rabi oscillation

Take the first order approximation

(u 0'++U0') (u*|e><g|+u|g>(e|)‘¢>

6) = .

() /*|¢>

with control u € C.
Take constant control u(t) = Q,e" for t € [0, T], T > 0. Show
that Idt|¢> cosea;—t-sm foy) ‘¢>

Set©, = & T. Show that the solution at T of the propagator
U; € SU(2 ) ig Uy = leosborisinfoy) iy Yy, — I is given by

Ut = cos©,l — isin ©, (cos oy + sinfoy),

Take any constant |$). Show that there exist 2, and 6 such that
Ur|g) = €'*|¢), where « is some global phase.

Prove that for any given two wave functions |¢,) and |¢p) there
exists a piecewise constant control [0,27] > t — u(t) € C such
that the solution of (X) with |¢)o = |¢,) satisfies |¢) 7 = €|¢p)
for some global phase S.
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The spin/spring model

The Schrédinger system
P91y = (“50y 4+, (atat 1) + i2oy(al
at - Oz T We 2 2 Ox ) |¢>

corresponds to two coupled scalar PDE’s:

2
iawe+“egwe+<x —a)we L2,

ot 2 X2 N
.awg o (.Ueg We 2 82 Q a
ot T2 et \ X gk ) Ve GaxY

since a = \if (x + 2) and [1) corresponds to (Ye(X, 1), Yg(X, 1))
where (., 1), vg(., 1) € L*(R,C) and [|yse||* + [[g]1 = 1.



Resonant case: passage to the interaction frame

In ¥ =30, +we (ala+ 3) + iGox(a’ — a), take
Weg = we + A = w + A with [Q|, |A] < w. Then H = Hy + eHy where ¢
is a small parameter and

H, |
H :
h1 = %0’2 + /%ax(aT — a)-

Hi is obtained by setting |¢) = e~!(a'a+2) =" ) in
ihZ|y) = H|Y) to get ihZ|¢) = Hint|¢) with

H, o , , 4
7”“ = S0y +i2(e ™o+ e“'a,) (e'a’ — e "a)

N

where we used

io _io i j io(atarl _io(atat ) i
e%% gy 7% — e 1 e, gif(a'ary) g g—if(a'aty) _ g-if g



Resonant case: first order (Jaynes-Cummings Hamiltonian)

The secular terms in H; are given by (RWA, first order
approximation) H;:,a = 20, + i%(c.a’ — o,a) . Since quantum state
) = ett(a'atz) g ¥ e |4y obeys approximatively to

ih|¢) = H;\f,ta|¢>, the original quantum state |+) is governed by

S0 = (ot (alat ) + B (oa - oa) ) 0)

The Jaynes-Cummings Hamiltonian (weg = we + A with |A]| < we)
reads:

w | .
HJC/h = %O’z + we (aTa + 2) + /%(O’.aT - O'+a)

8)1/)9

T ox
g w W, oo 02 .9 0
ot ~ Vet 3 — gl T iz (X ax ) Ve

The corresponding PDE is (case A =0) :

e w w, , 02 .
ot = TVt 3~ galve — iz (X



Dispersive case: passage to the interaction frame

For w > |A| > |Q], the dominant term in Hrwa is an isolated qubit. To

make the interaction dominant, we go to the interaction frame with

T — %Uz‘f'wc (aTa—l_- %) ) 675 = Ifo'x(alf - a.

h
By setting ) = e~ e(2'a+2) =272 | ¢) we get ih % |¢) = Hint|¢) with

Hlnt

N %(e—iWegto._ + eibL)egto,+) (eiwcta'f _ e—iwc[a)

_ i% (efiAto,_aT 62, a+ gty gt efi(2wc+A)ta,_a)

-~

st
Thus H}\ya = Hint = 0: no secular term. We have to compute

nd —— . — — E—
H?wa = Hjpt — ’(Hint - Hint) (f;(Hint - Hint)) Wheref;(Hint — Hint/h
corresponds to

_0 —int . giRwet+n)t T e—iRwo+a)t
2 ca + gy oa- G a0 — S oa




Dispersive spin/spring Hamiltonian and associated PDE

. ond
The secular terms in HZ,, are
42 (0.0,a'a — o,0aa’) + wa)(a.maaf — o,0.a'a)
Since |Q] < |A] € weg, we, We have wa) < %

nd
Haa/li~ & (o (N+ 1)+ 4) .

Since quantum state |¢) = e*!(N+2) o™ | ) obeys

d
approximatively to ihdt|¢> Hf\za|¢> the original quantum state |¢) is
governed by i4|y) = (H"’S" + § ) |4) with

Hasp/h = “20y +we (N+ 1) =X oy (N+ 1) and x = 3£

2
The corresponding PDE is :
51/}9 @ _ Xy(y2 0
8t =+—F e+ ( E)(X W)lﬁe
g weg 1 Xy, o 02
Tot = 2 Vet plee ) G



Exercise: resonant spin-spring system with controls

Consider the resonant spin-spring model with Q < |w|:

Ho Yo tw (aTa+ %) +i$ox(a’ — a) + u(a+ a')

with a real control input u(t) € R:

Show that with the resonant control u(t) = ue="“! 4 u*e'“! with complex
amplitude u such that |u| < w, the first order RWA approximation yields the
following dynamics in the interaction frame:

igl) = (i%(ca — ova) + ua' + ua) [v)

Set v € C solution of %v = —ju and consider the following change of frame
|¢) = D_y|v) with the displacement operator D_y = e~va'+v*a_ gShow that, up
to a global phase change, we have, with &1 = i%v,

i419) = (£ (cal - na) + (iion + i )) |9)

Take the orthonormal basis {|g, n), |e, n)} with n € N being the photon number
and where for instance |g, n) stands for the tensor product |g) ® |n). Set
|p) = >, bg.,nl9, N) + de,nle, n) With ¢g n, pe.n € C depending on t and
> 169,02 + |pe,nl? = 1. Show that, for n > 0

1G9 ni1 = IGVNF Tpen+ U doni1, IGden=—iFVN+ 1dgni1 + Udgn
and "%%,o = a*¢e70.

Assume that |¢)o = |g, 0). Construct an open-loop control [0, T] > t — @(t)
such that |¢) T = |g, 1) (hint: use an impulse for t € [0, €] followed by 0 on [e, T]
with e < T and well chosen T).

Generalize the above open-loop control when the goal state |¢) 1 is |g, n) with
any arbitrary photon number n.



Resonant control: Law-Eberly method



A single trapped ion

1D ion trap, picture borrowed from S. Haroche course at CDF.

TR -1

A classical cartoon of spin-spring system.



A single trapped ion

A composite system:
internal degree of freedom+vibration inside the 1D trap

Hilbert space:
C?2® L3(R,C)

Hamiltonian:

% = wp <aTa + ;) +%Uz+(ulei(wltfn/(a+a*)) +up efi(w/tfm(a+a*))> oy

Parameters:

wm: harmonic oscillator of the trap,

weg: Optical transition of the internal state,
wy: lasers frequency,

n; = wy/c: Lamb-Dicke parameter.
Scales:

d
|wi — Weg| K weg,  wm K Weg, |UI| K weg, ‘dtUI<<Weg|UI|-



PDE formulation

The Schrédinger equation ih-% 1) = H|), with

% = wn (aTa + ;) +%Gz+ (ulei(w,t—m(a—s-af)) + u/*e—i(w,t—n/(a-&-af))) Ox

can be written in the form

6'¢g Wm 2 82 Weg i(wit—v/2 —i(wit—V2
IW:? XﬁW @pgf?q/,ng( el(wr "]/X)+ue’(l 71/)())1)/}67

e _wm [ o P Weg Gilwrt—v2nx) i(wrt—v/2nx)
"ot <X8x2 e Ture ) vo.

ot 2

m This system is approximately controllable in (L2(R, C))?:
S. Ervedoza and J.-P. Puel, Annales de I'IHP (c), 26(6): 2111-2136, 2009.



Law-Eberly method

Control is superposition of 3 mono-chromatic plane waves with:
frequency weg (ion transition frequency) and amplitude u;

frequency weg — wm (red shift by a vibration quantum) and
amplitude u;;

frequency weg + wm (blue shift by a vibration quantum) and
amplitude up;

Control Hamiltonian:

% =Wwm (a*a + ;) + %O’z + (ue"(“eg"”(a*af)) + u*e"'(weg""("”"'f))) ox
L (ube/((weg+wm)t—nb(a+af)) n uz;e—i((weg+wm)f—nb(a+aT))) Oy
4 (Ure«(weg—wmrfm(a+a“')) + u;e—[((w-egfwm)rfm<a+a*‘))> oy
Lamb-Dicke parameters:

n="eg =1 =np <1



Law-Eberly method: rotating frame

—iw

Rotating frame: |y) = e~ nt(a'a+3) g~ oz | )

Hint _
h

eiu;mt(aTa) (Ueiwegte*in(ﬁa*) + u* e*"“’egtem(ﬁaf))

o iumi(a12) (gi+u!|e) (g] + e~ !|g) e])
+ glont(a'a) (ubei(weg+Wm)te—i77b(a+aT) + up e_i(wegjwm)temb(ﬁaf))
g iwnt(a'a) (e='e)(g| + e "=!|g)(e])

+ eiwmt(aTa) (urei(wegfwm)tefin,(aJraT) + ujefi(weg7wm)i‘ein,(a+ai))

e int(2'2) (glewt|g) (g] + e~ !|g) (e])



Law-Eberly method: RWA

Commutation of exponentials in (a + a') and (a'a) is non-trivial.
m Approximation e<(@+a") ~ 1 4+ je(a + at) for e = +n, np, n,

Then averaging: neglecting highly oscillating terms of frequencies
2Weg, 2weg £ wm, 2(wWeg £ wm) and twpy, as

d
|ul, |up|, |ur| < wm, < wmul, < wmlUp|, Pl < W Url.

9.
dt°

9y
at

First order approximation:

H . _ .
2’“ = u|g)(e| + u*|e)(g| + Tpalg)(e| + Tja'|e) (g
+ Uya'lg)(e| + Uyale)(g]
where

up = —inbub and U, = —iT]rUr



PDE form



Hilbert basis: {|g, n), |e,n)},_,

Dynamics:
d _ _
*ng n = Upen+ Ur\ﬁ7¢e,n—1 + UpV N+ 1dg niq
¢en U pg.n~+ U;VN ¢gn+1+Ub\f¢gn 1

Physical interpretation:
_le3)

e,2
e d2T— L2



Law-Eberly method: spectral controllability

Truncation to n-phonon space:
Hn =span{|g,0),|e,0),...,|g,n),|en}
We consider |¢)o, |¢) T € Hp and we look for u, U, and iy, s.t.

for |¢)(t = 0) = [¢)o we have |¢)(t = T) = [¢)T.

m If u', U} and &} bring [¢)o to |g, 0) at time T/2,
m and u?, U2 and U2 bring |¢) 7 to |g, 0) at time T/2,

then
u=u", u=ul, u=u fortel0,T/2],
u=-u?  up=-u3, U =-—u? forte[T/2,T],

bring |¢)o to |¢) 7 at time T.



Law-Eberly method: iterative reduction from 4, to H,_1

Take |¢g) € Hpand T > O:
m For t € [0, L], Ur(t) = Up(t) = 0, and

de,n(0) ‘ e/ are(¢g,n(0)0¢,(0))
ég,n(0)

implies ¢e.n(T/2) = 0;
m Fort € [, T], Up(t) = O(t) = 0, and

eiafg (¢g,n(%)¢z,nf1 (%))

implies that ¢e n(T) = 0 and that ¢g.,(T) = 0.

The two pulses & and U, lead to some |¢)(T) € H,_1.



Law-Eberly method

Repeating n times, we have
|¢>(I7T) € HO = Span{‘Q? 0)? <ev 0‘}
m for ¢ € [nT,(n+ })T], the control

Ur(t) = Up(t) =0,

= 2i be.o(nT) | Liarg(ego(nT)g}o(nT)
u(t) = < arctan o o(nT) (9.0 o)
. . o i9
implies ‘¢>(n+%)7 =¢e"g,0).



Exercise: resonant spin-spring system with controls

Consider the resonant spin-spring model with Q < |w|:

Ho Yo tw (aTa+ %) +i$ox(a’ — a) + u(a+ a')

with a real control input u(t) € R:

Show that with the resonant control u(t) = ue'*! + u*e~"«! with complex
amplitude u such that |u| < w, the first order RWA approximation yields the
following dynamics in the interaction frame:

igl) = (i%(ca — ova) + ua' + ua) [v)

Set v € C solution of %v = —ju and consider the following change of frame
|¢) = D_y|v) with the displacement operator D_y = e~va'+v*a_ gShow that, up
to a global phase change, we have, with &1 = i%v,

i419) = (£ (cal - na) + (iion + i )) |9)

Take the orthonormal basis {|g, n), |e, n)} with n € N being the photon number
and where for instance |g, n) stands for the tensor product |g) ® |n). Set
|p) = >, bg.,nl9, N) + de,nle, n) With ¢g n, pe.n € C depending on t and
> 169,02 + |pe,nl? = 1. Show that, for n > 0

1G9 ni1 = IGVNF Tpen+ U doni1, IGden=—iFVN+ 1dgni1 + Udgn
and "%%,o = a*¢e70.

Assume that |¢)o = |g, 0). Construct an open-loop control [0, T] > t — @(t)
such that |¢) T = |g, 1) (hint: use an impulse for t € [0, €] followed by 0 on [e, T]
with e < T and well chosen T).

Generalize the above open-loop control when the goal state |¢) 1 is |g, n) with
any arbitrary photon number n.



Control for resonant spin-spring: schematic

lg,0)

Qvn+1
lgn) eV en— )

://’/\
- !

l9.2) - L les 1)
P |
’,’ |

9.1) e V1 " e,0)
|
|
|
|

Schematic of Jaynes-Cummings model



Control for resonant spin-spring: real case

We consider |¢)o and |¢) 1 in H, such that:

<g7k|¢0>7<evk‘¢0>€R and <g7k|¢T>7<evk|¢T>€Ra

and we consider pure imaginary controls: U = iv, V € R.
Model in the real case:

d .
a(ﬁg,o = —Voep

d Q -
E¢g,n+1 e —EV n+1¢en — Ve nit,

d

a‘lﬁe,n = SV +10gni1 + Vogn.
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