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Controlled Schrödinger equation

i
d
dt
|ψ〉 = (H0 + u(t)H1)|ψ〉,

|ψ〉 ∈ H the system’s wavefunction with
∥∥∥|ψ〉∥∥∥

H
= 1;

the free Hamiltonian, H0, and the control Hamiltonian, H1, are
Hermitian operators on H;

the control u(t) : R+ 7→ R is a scalar control.

Two key examples:

Qubit: H0 + u(t)H1 =
ωeg
2 σz + u(t)

2 σx .

Quantum harmonic oscillator:
H0 + u(t)H1 = ωc(a†a + I

2 ) + u(t)(a + a†).



Almost periodic control of small amplitudes

We consider the controls of the form

u(t) = ε

 r∑
j=1

ujeiωj t + u∗j e−iωj t


ε > 0 is a small parameter;

εuj is the constant complex amplitude associated to the
frequency ωj ≥ 0;

r stands for the number of independent frequencies (ωj 6= ωk for
j 6= k ).

We are interested in approximations, for ε tending to 0+, of
trajectories t 7→ |ψε〉t of

d
dt
|ψε〉 =

A0 + ε

 r∑
j=1

ujeiωj t + u∗j e−iωj t

A1

 |ψε〉
where A0 = −iH0 and A1 = −iH1 are skew-Hermitian.
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Time-periodic non-linear systems

We consider a non-linear ODE of the form:

d
dt

x = εf (x , t), x ∈ Rn, ε� 1,

where f is T -periodic in t and depends smoothly on x .

We will see how its solution is well-approximated by the
solution of the time-independent system, the averaged system:

d
dt

z = εf (z)

where f (z) = 1
T

∫ T
0 f (z, t)dt .



The Averaging Theorem

Consider d
dt x = εf (x , t) with x ∈ U ⊂ Rn, 0 ≤ ε� 1, and

f : Rn × R→ Rn smooth and period T > 0 in t . Also assume U to be
bounded.

If z is the solution of d
dt z = εf (z) with the initial condition z0, and

assuming |x0 − z0| = O(ε), we have |x(t)− z(t)| = O(ε) on a
time-scale t ∼ 1/ε.

If z̄ is a hyperbolic fixed point of the averaged system then there
exists ε0 > 0 such that, for all 0 < ε ≤ ε0, the main system
possesses a unique hyperbolic periodic orbit γε(t) = z̄ +O(ε) of
the same stability type as z̄.

J. Guckenheimer and P. Holmes, Nonlinear oscillations, Dynamical systems
and Bifurcation of Vector Fields, Springer, 1983.



Theory of Kapitza’s pendulum

Fixed suspension point:

d2

dt2 θ =
g
l

sin θ

g: free fall acceleration, l : pendulum’s length, θ: angle to the vertical;
θ = π stable and θ = 0 unstable equilibrium.

Suspension point in vertical oscillation:

Dynamics of the suspension point: z = v
Ω cos(Ωt) (a = v/Ω > 0

amplitude and Ω frequency).



Pendulum’s dynamics: replace acceleration g by
g + z̈ = g − vΩ cos(Ωt),

d
dt
θ = ω,

d
dt
ω =

g − vΩ cos(Ωt)
l

sin θ.

Replacing the velocity ω by the momentum pθ = ω + v sin(Ωt)
l sin θ:

d
dt
θ = pθ − v sin(Ωt)

l sin θ,

d
dt

pθ =
(

g
l −

v2 sin2(Ωt)
l2 cos θ

)
sin θ + v sin(Ωt)

l pθ cos θ.

For large enough Ω, we can average these time-periodic dynamics
over [t − π/Ω, t + π/Ω]:

d
dt
θ = pθ,

d
dt

pθ =
(

g
l −

v2

2l2 cos θ
)

sin θ.

Around θ = 0 the approximation of small angles gives d2

dt2 θ = g−v2/2l
l θ.

If v2/2l > g then the system becomes stable around θ = 0.
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Bilinear Schrödinger equation

Un-measured quantum system→ Bilinear Schrödinger equation

i
d
dt
|ψ〉 = (H0 + u(t)H1)|ψ〉,

|ψ〉 ∈ H the system’s wavefunction with
∥∥∥|ψ〉∥∥∥

H
= 1;

the free Hamiltonian, H0, is a Hermitian operator defined
on H;
the control Hamiltonian, H1, is a Hermitian operator
defined on H;
the control u(t) : R+ 7→ R is a scalar control.

Here we consider the case of finite dimensional H



Almost periodic control
We consider the controls of the form

u(t) = ε

 r∑
j=1

ujeiωj t + u∗j e−iωj t


ε > 0 is a small parameter;
εuj is the constant complex amplitude associated to the
pulsation ωj ≥ 0;
r stands for the number of independent frequencies
(ωj 6= ωk for j 6= k ).

We are interested in approximations, for ε tending to 0+, of
trajectories t 7→ |ψε〉t of

d
dt
|ψε〉 =

A0 + ε

 r∑
j=1

ujeiωj t + u∗j e−iωj t

A1

 |ψε〉
where A0 = −iH0 and A1 = −iH1 are skew-Hermitian.



Rotating frame
Consider the following change of variables

|ψε〉t = eA0t |φε〉t .

The resulting system is said to be in the “interaction frame”
d
dt
|φε〉 = εB(t)|φε〉

where B(t) is a skew-Hermitian operator whose
time-dependence is almost periodic:

B(t) =
r∑

j=1

ujeiωj te−A0tA1eA0t + u∗j e−iωj te−A0tA1eA0t .

Main idea

We can write
B(t) = B̄ +

d
dt

B̃(t),

where B̄ is a constant skew-Hermitian matrix and B̃(t) is a
bounded almost periodic skew-Hermitian matrix.



Multi-frequency averaging: first order
Consider the two systems

d
dt
|φε〉 = ε

(
B̄ +

d
dt

B̃(t)
)
|φε〉,

and
d
dt
|φ1st
ε 〉 = εB̄|φ1st

ε 〉,

initialized at the same state |φ1st
ε 〉0 = |φε〉0.

Theorem: first order approximation (Rotating Wave
Approximation)

Consider the functions |φε〉 and |φ1st
ε 〉 initialized at the same

state and following the above dynamics. Then, there exist
M > 0 and η > 0 such that for all ε ∈]0, η[ we have

max
t∈

[
0,1ε

]∥∥∥|φε〉t − |φ1st
ε 〉t

∥∥∥ ≤ Mε



Multi-frequency averaging: first order

Proof’s idea

Almost periodic change of variables:

|χε〉 = (1− εB̃(t))|φε〉

well-defined for ε > 0 sufficiently small.
The dynamics can be written as

d
dt
|χε〉 = (εB̄ + ε2F (ε, t))|χε〉

where F (ε, t) is uniformly bounded in time.



Multi-frequency averaging: second order
More precisely, the dynamics of |χε〉 is given by

d
dt
|χε〉 =

(
εB̄ + ε2[B̄, B̃(t)]− ε2B̃(t)

d
dt

B̃(t) + ε3E(ε, t)
)
|χε〉

E(ε, t) is still almost periodic but its entries are no more linear
combinations of time-exponentials;

B̃(t) d
dt B̃(t) is an almost periodic operator whose entries are

linear combinations of oscillating time-exponentials.

We can write

B̃(t) =
d
dt

C̃(t) and B̃(t)
d
dt

B̃(t) = D̄ +
d
dt

D̃(t)

where C̃(t) and D̃(t) are almost periodic. We have

d
dt
|χε〉 =

(
εB̄ − ε2D̄ + ε2

d
dt

(
[B̄, C̃(t)]− D̃(t)

)
+ ε3E(ε, t)

)
|χε〉

where the skew-Hermitian operators B̄ and D̄ are constants and the
other ones C̃, D̃, and E are almost periodic.



Multi-frequency averaging: second order
Consider the two systems

d
dt
|φε〉 = ε

(
B̄ +

d
dt

B̃(t)
)
|φε〉,

and
d
dt
|φ2nd
ε 〉 = (εB̄ − ε2D̄)|φ2nd

ε 〉,

initialized at |φε〉0 and |φ2nd
ε 〉0 = (I − εB̃(0))|φε〉0.

Theorem: second order approximation

Consider |φε〉t and |φ2nd
ε 〉t solutions of the above dynamics. Then,

there exist M > 0 and η > 0 such that for all ε ∈]0, η] we have

max
t∈

[
0, 1

ε

]
∥∥∥∥|φε〉t − (I + εB̃(t))|φ2nd

ε 〉t
∥∥∥∥ ≤ Mε2

max
t∈

[
0, 1

ε2

]
∥∥∥∥|φε〉t − |φ2nd

ε 〉t
∥∥∥∥ ≤ Mε



Multi-frequency averaging: second order

Proof’s idea

Another almost periodic change of variables

|ξε〉 =
(

I − ε2
(

[B̄, C̃(t)]− D̃(t)
))
|χε〉.

The dynamics can be written as

d
dt
|ξε〉 =

(
εB̄ − ε2D̄ + ε3F (ε, t)

)
|ξε〉

where εB̄ − ε2D̄ is skew Hermitian and F is almost periodic and
therefore uniformly bounded in time.



The Rotating Wave Approximation (RWA) recipes

Schrödinger dynamics i d
dt |ψ〉 = H(t)|ψ〉, with

H(t) = H0 +
m∑

k=1

uk (t)Hk , uk (t) =
r∑

j=1

uk,jeiωj t + u∗k,je
−iωj t .

The Hamiltonian in interaction frame

H int(t) =
∑
k,j

(
uk,jeiωj t + u∗k,je

−iωj t
)

eiH0tHk e−iH0t

We define the first order Hamiltonian

H1st
rwa = H int = lim

T→∞

1
T

∫ T

0
H int(t)dt ,

and the second order Hamiltonian

H2nd
rwa = H1st

rwa − i
(
H int − H int

)(∫
t
(H int − H int)

)
Choose the amplitudes uk,j and the frequencies ωj such that the

propagators of H1st
rwa or H2nd

rwa admit simple explicit forms that are used
to find t 7→ u(t) steering |ψ〉 from one location to another one.
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RWA and resonant control

In i d
dt |ψ〉 =

(
ωeg
2 σz + u(t)

2 σx

)
|ψ〉, take a resonant control

u(t) = ueiωegt + u∗e−iωegt with u slowly varying complex amplitude∣∣ d
dt u
∣∣� ωeg|u|. Set H0 =

ωeg
2 σz and εH1 = u

2σx and consider

|ψ〉 = e−
iωeg t

2 σz |φ〉 to eliminate the drift H0 and to get the Hamiltonian
in the interaction frame:

i
d
dt
|φ〉 =

u(t)
2

e
iωeg t

2 σzσxe−
iωeg t

2 σz |φ〉 = H int|φ〉

with H int = u
2 eiωegt

σ+=|e〉〈g|︷ ︸︸ ︷
σx + iσy

2
+ u

2 e−iωegt

σ-=|g〉〈e|︷ ︸︸ ︷
σx − iσy

2
The RWA consists in neglecting the oscillating terms at frequency
2ωeg when |u| � ωeg:

Hint =

(
ue2iωegt + u∗

2

)
σ+ +

(
u + u∗e−2iωegt

2

)
σ-.

Thus
Hint =

u∗σ+ + uσ-

2
.



Second order approximation and Bloch-Siegert shift

The decomposition of H int,

H int = u∗

2 σ+ + u
2σ-︸ ︷︷ ︸

H int

+ ue2iωeg t

2 σ+ + u∗e−2iωeg t

2 σ-︸ ︷︷ ︸
H int−H int

,

provides the first order approximation (RWA)

H1st
rwa = H int = limT→∞

1
T

∫ T
0 H int(t)dt , and also the second order

approximation H2nd
rwa = H1st

rwa − i
(
H int − H int

) (∫
t (H int − H int)

)
. Since∫

t H int − H int = ue2iωeg t

4iωeg
σ+ − u∗e−2iωeg t

4iωeg
σ-, we have

(
H int − H int

)(∫
t
(H int − H int)

)
= − |u|

2

8iωeg
σz

(use σ+
2 = σ-

2 = 0 and σz = σ+σ- − σ-σ+).
The second order approximation reads:

H2nd
rwa = H1st

rwa +
(
|u|2
8ωeg

)
σz = u∗

2 σ+ + u
2σ- +

(
|u|2
8ωeg

)
σz .

The 2nd order correction |u|2
4ωeg

(σz/2) is called the Bloch-Siegert shift.



Exercise: controllability of the 2-level systems and Rabi oscillation

Take the first order approximation

(Σ) i
d
dt
|φ〉 =

(u∗σ+ + uσ-)

2
|φ〉 =

(u∗|e〉〈g|+ u|g〉〈e|)
2

|φ〉

with control u ∈ C.

1 Take constant control u(t) = Ωr eiθ for t ∈ [0,T ], T > 0. Show
that i d

dt |φ〉 =
Ωr (cos θσx +sin θσy )

2 |φ〉.

2 Set Θr = Ωr
2 T . Show that the solution at T of the propagator

U t ∈ SU(2), i d
dt U =

Ωr (cos θσx +sin θσy )
2 U, U0 = I is given by

UT = cos Θr I − i sin Θr (cos θσx + sin θσy ) ,

3 Take a wave function |φ̄〉. Show that exist Ωr and θ such that
UT |g〉 = eiα|φ̄〉, where α is some global phase.

4 Prove that for any given two wave functions |φa〉 and |φb〉 exists a
piece-wise constant control [0,2T ] 3 t 7→ u(t) ∈ C such that the
solution of (Σ) with |φ〉0 = |φa〉 satisfies |φ〉T = eiβ |φb〉 for some
global phase β.
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