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Quantum systems and almost periodic control



Controlled Schrédinger equation

,'%W)) = (Ho + u(t)H1)[%),

m ) € H the system’s wavefunction with HM/})HH =1;

m the free Hamiltonian, Hy, and the control Hamiltonian, H4, are
Hermitian operators on #;

m the control u(t) : R™ — R is a scalar control.

Two key examples:

m Quantum harmonic oscillator:
Ho + u(t)Hi = we(afa+ 1) + u(t)(a + at).




Almost periodic control of small amplitudes

We consider the controls of the form
r . .
u(ty=e >y + ure !
j=1

m ¢ > 0is a small parameter;

m cu; is the constant complex amplitude associated to the
frequency w; > 0;

m r stands for the number of independent frequencies (w; # wy for

] # K)-

We are interested in approximations, for ¢ tending to 0™, of
trajectories t — |1¢); of

d S »
gilve) = | Aote >yt +ure it Aq | Jibe)
=

where Ay = —iHy and Ay = —iH; are skew-Hermitian.



Single-frequency averaging and Kapitza’s pendulum



Time-periodic non-linear systems

We consider a non-linear ODE of the form:

gtx = ef(x, 1), x €R", e 1,

where 7 is T-periodic in t and depends smoothly on x.

We will see how its solution is well-approximated by the
solution of the time-independent system, the averaged system:

d _
FZ= ef(2)

where 7(z) = 1 [T f(z, t)at.



The Averaging Theorem

Consider 2x = ef(x,t)withx e UCR",0< e < 1, and
f:R" x R — R" smooth and period T > 0 in . Also assume U to be
bounded.

m If z is the solution of 4z = ¢f(z) with the initial condition z,, and
assuming |xo — Zo| = O(¢), we have |x(t) — z(t)| = O(¢) on a

time-scale f ~ 1/e.

m If Z is a hyperbolic fixed point of the averaged system then there
exists eg > 0 such that, for all 0 < € < ¢y, the main system
possesses a unique hyperbolic periodic orbit v.(f) = Z + O(e) of
the same stability type as z.

J. Guckenheimer and P. Holmes, Nonlinear oscillations, Dynamical systems
and Bifurcation of Vector Fields, Springer, 1983.



Theory of Kapitza’s pendulum

Fixed suspension point:

a? g .
@9—75”19

g: free fall acceleration, /: pendulum’s length, 8: angle to the vertical;
0 = 7 stable and 6 = 0 unstable equilibrium.

Suspension point in vertical oscillation:

Dynamics of the suspension point: z = & cos(Q2t) (a=v/Q >0
amplitude and Q frequency).



Pendulum’s dynamics: replace acceleration g by
g+2z=g— vQcos(Qt),

20 =w, guJ — g vaicostil) Va2 cos(§21) sin 6.

dt at /

Replacing the velocity w by the momentum py = w + Y5200 i ¢:

%9 = pp — Vsinl(Qt) sin 0,
gtpg (g — % cos 9) sinf + %(m)pg cos f.

For large enough Q, we can average these time-periodic dynamics
over [t —w/Q, t+ 7/Q]:

d d 2 .
EO =Po. Po= (% - % cosﬁ) sin 6.

Around 6 = 0 the approximation of small angles gives g,ze = ",2/2'0.

If v2/2] > g then the system becomes stable around 6, =




Multi-frequency averaging for quantum systems: 1st and
2nd order Rotating Wave Approximations (RWA)



Bilinear Schrédinger equation

Un-measured quantum system — Bilinear Schrodinger equation

i 10) = (Ho + u(t) o)),

m [)) € H the system’s wavefunction with H|¢>HH =1;

m the free Hamiltonian, Hy, is a Hermitian operator defined
onH,;

m the control Hamiltonian, H¢, is a Hermitian operator
defined on #;

m the control u(t) : R — R is a scalar control.

Here we consider the case of finite dimensional H



Almost periodic control

We consider the controls of the form

.
u(t) = e (Z uje™it + u/’-‘e’”f")

j=1

m ¢ > 0 is a small parameter;
m cu; is the constant complex amplitude associated to the
pulsation w; > 0;
m r stands for the number of independent frequencies
(UJ/' # wy for j # K).
We are interested in approximations, for e tending to 0™, of
trajectories t — |1)c); of

r
j’twa - (Ao +e (Z et + u;‘e"”f’) A1) )

j=1

where Ay = —iHy and Ay = —iH are skew-Hermitian.



Rotating frame

Consider the following change of variables
|1;Z)e>f = eA0t|¢e>2‘-

The resulting system is said to be in the “interaction frame”

d
a‘¢e> - EB(t)‘¢e>

where B(t) is a skew-Hermitian operator whose
time-dependence is almost periodic:

r
B(t) — Z ujelefeontA‘l ert + ujfefleteonl‘A1 erf.

Main idea

We can write d
B(t)= B+ Eé(t),

where B is a constant skew-Hermitian matrix and E(t) is a
bounded almost periodic skew-Hermitian matrix.



Multi-frequency averaging: first order

Consider the two systems
d ~
Glod =B+ B0) o,
and

a| Y'e > -
initialized at the same state |¢!*)o = |¢¢)o.

Theorem: first order approximation (Rotating Wave

Approximation)

Consider the functions |¢.) and |¢25t) initialized at the same
state and following the above dynamics. Then, there exist
M > 0 and n > 0 such that for all € €]0, n[ we have

t
max H’¢6>t 15 H < Me
te{oﬂ



Multi-frequency averaging: first order

Proof’s idea
Almost periodic change of variables:

Xe) = (1 = eB(1))|bc)

well-defined for ¢ > 0 sufficiently small.
The dynamics can be written as

;’t|xe> = (B + EF(c, 1)) xe)

where F(e, t) is uniformly bounded in time.



Multi-frequency averaging: second order

More precisely, the dynamics of |x.) is given by

Gl = (eB-+ BB - 2B B + CE(.0)) o)

m E(e, 1) is still almost periodic but its entries are no more linear
combinations of time-exponentials;

] §(t)%§(t) is an almost periodic operator whose entries are
linear combinations of oscillating time-exponentials.

We can write

B(t) = %6(0 and E(t)%g(t) =D+ %5(0

where C(t) and D(t) are almost periodic. We have
d v (B _2p.29 (1B &P 3
G = (B-@D g (1B.60] - D) + E(.D) v

where the skew-Hermitian operators B and D are constants and the
other ones C, D, and E are almost periodic.



Multi-frequency averaging: second order

Consider the two systems

d d <

Glo0=c(B+ 5B0) 10,
and d

) = (B - D))

initialized at |¢.)o and \¢§nd>o = (I - eB(0))|c)o-

Theorem: second order approximation

Consider |¢.); and |¢§nd>t solutions of the above dynamics. Then,
there exist M > 0 and n > 0 such that for all € €]0, 7] we have

max
tefo.]

< Mé?

\m e — (1 + B,

ond

|| < Me

H|¢e t— |¢
te 0



Multi-frequency averaging: second order

Proof’s idea
Another almost periodic change of variables

&) = (1— ¢ (1B, €(0] - D()) ) Ixe)-
The dynamics can be written as
;‘5€> - (EB — D+ EF(e, t)) )

where eB — €D is skew Hermitian and F is almost periodic and
therefore uniformly bounded in time.



The Rotating Wave Approximation (RWA) recipes
Schrodinger dynamics i) = H(t)[), with

m r
H(t) = Hy + Z uk(t)Hx, uk(t) = Z uk’jeiwjt + u;:,je_iwjt'
k=1 j=1

The Hamiltonian in interaction frame

Hi(t) =Y (ux;€™" + ui o) o' Hye™ Mot
k’j

We define the first order Hamiltonian

st
H; a—Hmt— I|m -,-/ Hin(1)

and the second order Hamiltonian
nd st . N R
Hi?wa = H:wa - ’(Hint - Hint) (/[(Hint - Hint))

Choose the amplitudes uy ; and the frequencies w; such that the

st nd
propagators of H}\,, or H2,, admit simple explicit forms that are used
to find t — u(t) steering |¢) from one location to another one.



Resonant control of a qubit



RWA and resonant control

Ini%|y) = (%az + @ax) |4), take a resonant control

u(t) = uee! + ureiwet with u slowly varying complex amplitude
|Su| < weg\u| Set Hy = “3*0 and eH; = §ox and consider

) = e "Z|¢> to ellmmate the drift Hy and to get the Hamiltonian
in the interaction frame:

d u(t iwegl
G0y = ) e e x5 = Hilo)

o.=|e)(g] a=|g)(e|
—_— ——

7e’“egt Ox + IO'y ox — loy

with Hjpt = +4 e lweat

2
The RWA consists in neglecting the oscillating terms at frequency
2weg When |U| < weg:

ueZiwegt + u* u-+ u*e—Ziwegt
= (L) (Y

Thus

u*o, + Uo.

Hint = 2



Second order approximation and Bloch-Siegert shift

The decomposition of Hi,

—2iwegt

iweqt
Hot = %o, + Yo+ 4% g, 1 we g

Hint Hint—Hint
provides the first order approximation (RWA)
t _
H:\,Sva = Hjpt = lim T_m %fOT Hi+(t)dt, and also the second order

st .
approximation Hrwa = Hyya — i(Hint — Hint) ([;(Hint — Hint)). Since
. v _ ue?iwegt u* e 2iwegt
ft Hlnt - HInT T e O, — 4iioeg o., we have

‘ 2

(i~ i) (i = ) ) = = 2

(use 0,2 = 0. = 0 and oz = o,0. — 0.0,).
The second order approximation reads:

2nd . 1St |u|2 ur u |u|2
Hrwa = Hrwa m Oz = ?0'4. + EO’. + Bueg Oz.

The 2nd order correction '"' (az/2) is called the Bloch-Siegert shift.



Exercise: controllability of the 2-level systems and Rabi oscillation

Take the first order approximation

(ur 0++U0) (ule)(g| + ulg){el)

4) = A 9)

() /*|¢>

with control u € C.

Take constant control u(t) = Q,e" for t € [0, T], T > 0. Show
that Idt|¢> cosea;—t-sm foy) ‘¢>

Set©, = & T. Show that the solution at T of the propagator
U; € SU(2 ) ig Uy = leosborisinfoy) iy Yy, — I is given by

Ut = cos©,l — isin ©, (cos oy + sinfoy),

Take a wave function |). Show that exist 2, and 6 such that
Urlg) = €'*|¢), where « is some global phase.

Prove that for any given two wave functions |¢,) and |¢p) exists a
piece-wise constant control [0,2T] > t — u(t) € C such that the
solution of (X) with |¢)o = |p) satisfies |¢)1 = €/|¢p) for some
global phase g.
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