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Spin-1/2 systems

Spin/spring systems



Recall: the three basic features of quantum models®

Schrédinger: wave funct. |¢) € H or density op. p ~ [¢) ()]

d ; d .

Entanglement and tensor product for composite systems (S, M):

m Hilbert space H = Hs @ Hu
m Hamiltonian H = Hs ® Iy + Hipt + 1s @ Hy
m observable on sub-system M only: O = Is ® Op.

Randomness and irreversibility induced by the measurement of
observable O with spectral decomp. > AP,

® measurement outcome p with proba.
P, = (¥|P,|v) = Tr(pP,) depending on |+)), p just before
the measurement
B measurement back-action if outcome p = y:
Pylv) PypPy
W) = 1)y = —=% . P py =
V(WP ) Tr(pPy)
®S. Haroche, J.M. Raimond: Exploring the Quantum: Atoms, Cavities and
Photons. Oxford University Press, 2006.




2-level system (spin-1/2)

6) The simplest quantum system: a ground state |g)
U of energy wy; an excited state |e) of energy we.
AN The quantum state |¢)) € C2? is a linear super-
position [v) = 1g|g) + 1ve|e) and obeys to the
|g> Schradinger equation (y4 and 1be depend on t).
Schroédinger equation for the uncontrolled 2-level system (h = 1) :

r 910} = Hol) = (wele) (el + wolg) ) 4)

where Hy is the Hamiltonian, a Hermitian operator H(T, = H,.

Energy is defined up to a constant: Hy and Hy + w(t)I, w(t) € R
arbitrary, correspond to the same physical system. If |¢) satisfies
i) = Holi) then [x) = e~ D]y) with 49 = = obeys to

i4|x) = (Ho + wl)|x). Thus for any ¥, [¢) and e~"?|¢) represent the
same physical system: The global phase of a quantum system |4)
can be chosen arbitrarily at any time. Indeed, it is unobservable, it
has no impact on measurement results nor dynamics.



The controlled 2-level system

Take origin of energy such that wg (resp. we) becomes —=°5¢
(resp. “*5*) and set weg = we — wg
The solution of ig|¢) = Hohb) = 52 (le)(el — lg){gN)lv) is

—iwegt

()t = tgo8 2 1) + e 2 |E).

With a classical electromagnetic field described by u(t) € R,
the systems follows the controlled Hamiltonian

H(t) = “0, 1+ XD 0 = 259 16) el 1g) )+ 5 le) (g1 +0) )

The controlled Schrédinger equation i%w) = (Ho + u(t)Hy)|y)
readS'

1— Ve _ Weg (1 0> <¢e)+u(l‘)<0 1> (%)
ve) T 2 N0 —1)\wy) "2 \1 0)\wy)
with the 3 Pauli Matrices®

ox = |e)(gl+1g)(el, oy = —ile)(g| +i|g)(e|, oz = |e)(e| —[9)(g|

5They correspond, up to multiplication by i, to the 3 imaginary quaternions.




Pauli matrices and some formulas

ox = |e){(g| + |g)(el|, oy = —ile)(g| + i|9)(el, oz = |e){e| — |g)(g]
ox’ =1, oxoy =iy, [ox,0y] =2igy, circular permutation ...

m Since for any # € R, €Y% = cos# + isin Hoy (idem for oy and oz),
the solution of i Z|y) = “Loy|y) is

0= o w0 = (cos (28 ) 1 isin (%" ) ) 10

m Fora,B8=X,y,2, a# 8 we have

0, €078 — g 0984, (eieaa)_1 _ (eieaa)T — g i00a

i0 i0 0 i
and also e~ 272027 = e ¥9g5 = g5€7=

m Similarly to the harmonic oscillator, energy annihilation and
creation operators: o. = |g)(e|, o, = a." = |€)(g]



Density matrix and Bloch Sphere

Consider the density operator p = |¢)(¢|. Thus p is an Hermitian
operator, > 0, that satisfies Tr (p) = 1, p® = p and obeys to the
Liouville equation:

d

—p = —i[H, p].

giP = ~H. 7l
For a two level system |¢) = 14|9) + ¥e|€) and

I + xox + yoy + zo;
p: 2

where (x,y,z) = (2R(¢g13), 23(1gs), [1hel® — [tg?) € R
= (Tr(oxp) , Tr (oyp) , Tr (02p))
The Bloch vector M = (x,y, z) evolves on the unit sphere S? of
R3 = span(éy, €, €,), called the the Bloch Sphere, since
Tr (p?) = x® + y? + z2 = 1. The Liouville equation with
H = %20, + Jox corresponds to

%IVI = (UEx + weg€7) X M.



Exercise

Consider H = (uox + Voy + woy)/2 with (u, v, w) € R3.
For (u, v, w) constant and non zero, compute the solutions of

d . d . .
o0 = —iHl), LU= —iHU with Uo = I

in term of [¢)o, o0 = (Uox + Voy + woz)/V u? + v2 + w? and

w = VU2 + v2 + w2, Indication: use the fact that o = I.
Assume that, (u, v, w) depends on t according to

(u, v, w)(t) = w(t)(T, v, w) with (&, v, w) € R3/{0} constant of

length 1. Compute the solutions of

d . d . ,
G0 =—iH®W), U =—iH(tU with Uy =1

in term of [¢)o, & = Uox + Voy + Woz and 0(t) = fot

Explain why (u, v, w) colinear to the constant vector (u, v, w) is
crucial, for the computations in previous question.

w.



Summary: 2-level system, i.e. a qubit (spin-half system)

m Hilbert space:
Hy = C2 = {¢g|g> + Yel€), g, e € C}-

m Operators and commutations:

@.~19)(el, o — ! =[¢)(g N

ox = o+, = [g)le] + 10)(g]; A% It

oy = i~ ier, = 110) (¢] - 1) ] Yo
0z = 0v0. — 0.0, = |e)(e] — |g)(g;

sz == I, o-xo'y = io'z, [Ux, o-y] = 2/0’2, e

m Hamiltonian: Hy = wq0z/2 4 Ugox.



Spin/spring systems



Composite system: 2-level and harmonic oscillator

Weg

2-level system lives on C2 with Hy = “2o;
oscillator lives on L2(R, C) ~ 2(C) with

We 82 We 2 !
a Ho= 5 ga t X ~we(N+3)

N=afaanda=X+iP~ %(XJF%)
The composite system lives on the tensor product
C? ® L3(R,C) ~ C2 ® 2(C) with spin-spring Hamiltonian

with the typical scales Q < we, weg aNd |we — weg| K we, Weg-
Shortcut notations:

H=""2o,+ws (N+1)+ilox(a —a)
——
Hq Hc Hmt




The spin-spring PDE

The Schrédinger system
w | ,
G = (Foute (N+ 3 ) +igontal — ) ) 10

corresponds to two coupled scalar PDE’s:

0 o " o Q a
Pe — pemy,+ <x2 - ) e —

"ot ox? f ax
;9% _ ey 4o (52 P vo—iL O,
"ot gr 2 ox2) "9 fax

since N = a'a, a= 5 (x + &) and [¢) = (Ye(x, 1), Yg(x, 1)),
Yg(- 1), ve(, 1) € L*(R,C) and [[¢g]|? + [[ve]® = 1.

Exercise: write the PDE for the controlled Hamiltonian

o, +we (N+ 1) +iZox(al — a) + uc(a + at) + ugox
where uc, ug € R are Iocal control inputs associated to the oscillator
and qubit, respectively.



The spin-spring ODE’s

The Schrédinger system

d

i&m = (“oy +we (N+ %) +ifox(a’ — a)) |¥)

corresponds also to an infinite set of ODE’s

.d ,

’aﬂ)e,n = ((n+1/2)wc + weg/2)1e,n + /% (ﬁ¢g,n—1 —-vn+1 1/)g,n+1)
.d .

g = ((n+1/2)we — weg/2)bgn + 1% (VAven—1 — VN +Tveni1)

where W}> = 28 q/’g,n|gv n> + ¢e,n|ev n>7 wg,nﬂ/’e,n eC.

Exercise: write the infinite set of ODE’s for

290, +we (N+3) + iox(al — a) + uc(a+a') + ugox
where u, Ug € R are local control inputs associated to the oscillator
and qubit, respectively.



Dispersive case: approximate Hamiltonian for Q < |we — weg.

Hszisp:%Uerwc(NJré)f O'Z(N+%) Withxzz(ﬂi2

we—teg)

X
2
The corresponding PDE is :

3¢e Weg Xy/,2

3t = +7¢e ( - E)(X - W)we
1o} e 1 b2
’%: wg%ﬂL (Wc+>2<)(x *W)wg

The propagator, the t-dependant unitary operator U solution of
i4U = HU with U(0) = I, reads:

U(t) = &2 exp (—i(we + x/2)t(N + 1)) @ |g)(g]
+ e el 2 exp (—i(we — x/2)H(N + £)) @ |e)(e]

Exercise: write the infinite set of ODE’s attached to the dispersive
Hamiltonian Hygp.



Resonant case: approximate Hamiltonian for we = weg = w.

The Hamiltonian becomes (Jaynes-Cummings Hamiltonian):
| ;
Hx~H)c =%0; +w (N—|— 2) +i$(oa" - o,a).
The corresponding PDE is :
awe _ w w 2 82 :Q 8
ot ~ Vet X~ gra)ve — iz (Xt gx ) Ve

61[)9 o w W, o 82 . Q 0
ot~ 2Vt X — galvet iz |\ X g ) ve

Exercise: Write the infinite set of ODE’s attached to the
Jaynes-Cummings Hamiltonian H.



Jaynes-Cummings propagator

Exercise: For Hyc = Y0y +w (N + §) + i$(o.a" — o,.a) show that the
propagator, the t-dependant unitary operator U solution of
i4U = HycU with U(0) = I, reads

Ciwt( 2 1
Ut =e ' t< 2tz ) F(@a'-2a) where for any angle 0,
gllea’ —ova) _ |9)(g| ® cos(0V/'N) + |e)(e| ® cos(6v/N + I)
o®a sin(6v/'N) . sm(GW)
VN VN
Hint: show that
[Z+N, aa' —o,a] =0
(~1)* (9} (gl & N* + |e) (] & (N + 1))
(~1)¢ (@ N'a' — o 0 aN*)

(o'_aJr - 0'+a) 2k

(c:a’ — cr,,a)z'(+1

and compute the series defining the exponential of an operator.
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