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The reservoir engineering idea (1)

An open quantum system, without measurement nor real-time feedback control,
follows a Lindblad differential equation (cont.time) or a Kraus map (discr.time),
which usually stabilizes the system in some state: see decoherence. Reservoir
engineering smartly adjusts some parameters such that this decoherence goes
in a “beneficial direction”.

Given a Hilbert space HC and any target state ρ̄ on HC , it is not hard to build
mathematically a Kraus map or Lindblad diff.eq. that asymptotically stabilizes ρ̄.

Exercise: make this construction for ρ̄ pure state. You can use the following hint:
if the set of Kraus operators {Mµ} or of Lindblad operators {Lν} stabilizes ρ̃

(e.g. ρ̃ diagonal in some canonical basis), then the set {UMµU†} or {ULνU†}
stabilizes UρU†.

However, it would not be realistic to postulate: we can physically construct
arbitrarily chosen Lindblad operators or Kraus maps on HC .

Feedback control can be viewed as adjusting a Kraus or Lindblad superoperator
thanks to feedback actions, e.g. memoryless feedback controller in discrete-time:

(physical design): measurement backaction with {Mµ,y}µ if detection result y
(feedback control): apply unitary Uy if detection result y
⇒ Kraus map K(ρ) =

∑
µ,y (Uy Mµ,y )ρ(Uy Mµ,y )†

Limitation 1: this does not span all ρ̄ for fixed {Mµ,y}µ
Limitation 2: interaction of fragile quantum system with a feedback computer
(external intervention) in real time



The reservoir engineering idea (2)

Reservoir engineering takes a step back and re-considers the coupling between
the target system and the meter. The goal is that the meter should not be
measured anymore: it is just reset, and thereby becomes a dissipative auxiliary
system HA. The reset operation is something simple, that we cannot tune much.
The coupled system on HC ⊗HA will follow a Kraus map or Lindblad
diff.equation. The behavior of target system HC in this coupled system is
controlled by smartly engineering the coupling Hamiltonian betweenHA andHC .

Key features:

Stabilization based purely on physical coupling of a system of interest to an
auxiliary system (the “reservoir”). No informatics intervention: no measurement,
no feedback computation during system operation

Reservoir must be dissipative (6= Hamiltonian) in order to allow stabilization
(=allow different initial conditions of the system of interest to converge towards
each other when HC is coupled to the reservoir) and to be, on the long run,
independent of reservoir initial condition.

Control knob: ideally, tuning the Hamiltonians (turning on/off some drives,
modifying their amplitude) allows to select different objectives on HC

Possible objectives:

Drive the system to some particularly interesting state ρ̄

Make a system more robust to parameter uncertainties

Make a system more robust to perturbing dynamics (Information Protection)



The reservoir engineering principle: Continuous-time

Given:

A system of interest, Hilbert space HC , that we want to control. Isolated
dynamics

d
dt

ρC = 0 up to perturbations

A target behavior for the system on HC , e.g. robust exponential convergence
towards ρ̄target

A “simple” dissipative auxiliary system, Hilbert space HA, isolated dynamics

d
dt

ρA = − i
~ [HA,ρA] +

∑
ν

Lν,AρAL†ν,A −
1
2 (L†νA

Lν,AρA + ρAL†ν,ALν,A)

(e.g. a damped harmonic oscillator)

Capability to implement a variety of Hamiltonians HC , HA on the individual
subsystems and H int coupling them

Task:

Design a particular tuning of HC , HA, H int such that the target behavior on HC
is achieved by the coupled system on HC ⊗HA



The reservoir engineering principle: Discrete-time

Given:
A system of interest, Hilbert space HC , that we want to control. Isolated
dynamics

ρC(t + 1) = ρC(t) up to perturbations

A target behavior for the system on HC , e.g. robust exponential convergence
towards ρ̄target

A “simple” dissipative auxiliary system, Hilbert space HA, isolated dynamics

ρA(t + 1) = KA(ρA(t))

e.g. a reset operation KA(ρA(t)) = ρ̄A some simple fixed state (ground state).
Capability to implement a variety of unitaries UC , UA and U int

Task:
Design UC , UA, U int such that the dynamics

ρ(t + 1) = (I⊗ KA)
(

U int (UC ⊗ UA)ρ(t)(UC ⊗ UA)† U†int

)
of the joint state ρ on HC ⊗HA achieves target behavior on HC .
Particular case K(ρA(t)) = ρ̄A:

ρC(t + 1) = TrA

(
U int (UCρC(t)U†C ⊗ UAρ̄AU†A) U†int

)



A classical analogue: the Watt regulator (1)

Flyball governor to stabilize the rotation speed of steam engines5

The flyballs are mounted on the (vertical) rotation axis of the machine, like two
pendulums. The equilibrium angle of the pendulum depends on rotation speed: the
faster the axis turns, the closer to horizontal the flyballs want to be. A mechanism
closes the steam engine valve when flyballs get horizontal, slowing down the rotation.
One expects that this should stabilize the rotation speed.

The linearization around equilibrium of
rotation speed δω and flyball angle δθ
follow:

d
dt
δω = −aδθ − Γr δω

d2

dt2
δθ = −Γp

d
dt
δθ − Ω2(δθ − bδω)

positive parameters Γr � 1, Γp , a, b, Ω

5Implemented by James Watt, 1788. Analysis see J.C. Maxwell: On
governors. Proc. of the Royal Society, No.100, 1868



A classical analogue: the Watt regulator (2)

Reservoir features:

Isolated steam engine (target system), with perturbations:

d
dt δω = δFsteam − δFload − Γr δω

Steady state rotation speed depends on Γr (not robust).

Flyball governor (auxiliary system): damped harmonic oscillator, damping
necessary to ensure convergence

Coupling the two (coupled equations of previous slide):
Third-order linear system stable iff Γp(Ω2 + ΓpΓr + Γ2

r ) > abΩ2, essentially
Γp > ab.
Shifted steady state δω =

δFsteam−δFload
ab+Γr

, essentially depends only on coupling
parameters ab, dominating the poorly robust friction Γr .

Small dependence on δFsteam − δFload is obtained for ab � 1 (coupling), which
requires for stability Γp � 1 (dissipation), but nothing on Γr .
In particular, we can in principle take Γr = 0 and consume no energy by friction
except for stabilization, since in steady state Γp

d
dt θ = 0 (while ω 6= 0).



Simple quantum example: two coupled harmonic oscillators

Reservoir subsystem: damped driven harmonic oscillator, annihilation operator
a, in rotating frame, real drive amplitude u:

d
dt

ρ = −iu[a + a†,ρ] + κa(aρa† − 1
2 a†aρ− 1

2ρa†a)

Target subsystem: harmonic oscillator, annihilation operator c, resonantly
coupled to reservoir:

d
dt

ρ = −ig[c†a + ca†,ρ]− iu[a + a†,ρ] + κa(aρa† − 1
2 a†aρ− 1

2ρa†a)

= −ig[(c† + u
g )a + (c + u

g )a†,ρ] + κa(aρa† − 1
2 a†aρ− 1

2ρa†a)

The joint system features a steady state ρ = |α〉〈α|C ⊗ |0〉〈0|A where the target
subsystem is in the coherent state |α〉 with α = − u

g and the reservoir subsystem
is in vacuum.

The steady state amplitude α = − u
g can be adjusted by Hamiltonian u and does

not depend on the loss parameter κa. In steady state, the Hamiltonian coupling
amounts to 0 and no energy is dissipated through κa. In contrast, the steady
state of a single damped driven harmonic oscillator (take the reservoir alone)
depends on κa and relies on a dynamical equilibrium between drive and
dissipation.



Simple quantum example: convergence

Consider Lyapunov function

V (ρ) = Tr
(
ρ
(

(c† − α)(c − α) + a†a
))

.

We have
d
dt

V = −κa Tr
(
ρ a†a

)
≤ 0

The set where d
dt V (ρ) = 0 isM = {ρC ⊗ |0〉〈0|A}. On this set we have

d
dt

ρ = −ig(c − α)ρC ⊗ |1〉〈0|A + igρC(c† − α)⊗ |0〉〈1|A

which leaves the setM unless (c − α)ρC = ρC(c† − α) = 0.

By the LaSalle Invariance Principle6, ρ converges towards the identified steady state
|α〉〈α|C ⊗ |0〉〈0|A.

6We here skip the possible difficulties related to infinite-dimensional spaces; in
Fock state coordinates |n〉, all states involved decay exponentially for large n.



Turning on/off the quantum reservoir built from RWA

The model presented above results from a RWA with resonant drives and two resonant
harmonic oscillators. Taking different frequencies on HA and HC , allows to turn on or
off the reservoir coupling with more drives.

Model before rotating frame7:

H = ωaa†a + ωcc†c + χup(t)(a† + a)(c† + c) + ua(t)(a† + a)

with up(t) = v(ei(ωa−ωc )t + e−i(ωa−ωc )t ) and ua(t) = u(eiωa t + e−iωa t )

with dissipation κa(aρa† − 1
2 a†aρ− 1

2ρa†a) .

Going to rotating frame ρ = U(t)ξU(t)† with U(t) = e−i(ωaa†a+ωcc†c)t and
keeping only constant terms (first-order RWA), the dissipation does not change
while the Hamiltonian becomes:

H̄ = u(a + a†) + χv(c†a + ca†) .

Thus the coupling strength g = χ v is mediated by the amplitude of drive up(t).

In particular, for u = 0, we can turn on (v 6= 0) or off (v = 0) a process that resets the
harmonic oscillator C towards its vacuum ground state ρC = |0〉〈0|.
(In practice, there are more efficient reservoir constructions for fast reset to |0〉〈0|.)

7The way to physically implement a drive on the coupling amplitude is out of scope
here, but it is possible; this is called “parametric driving”.



Effect of perturbations on the quantum reservoir setting

Stabilization is meant to protect against perturbations. We can illustrate how the
reservoir protects the target state ρC = |α〉〈α| from spurious photon annihilation.
Denote DL(ρ) = LρL† − 1

2 L†Lρ− 1
2ρL†L.

We can solve for parameters α1, α2 ∈ C such that

d
dt

ρ = −ig[(c† − α)a + (c − α)a†,ρ] + κaDa(ρ) + κcDc(ρ)

= −ig[(c − α1)(a − α2)† + (c − α1)†(a − α2), ρ] + κaDa−α2 (ρ) + κcDc−α1 (ρ) .

This yields α1 =
α

1 + κaκc
g2

and α2 =

iκc
g α

1 + κaκc
g2

.

We thus have steady state ρ = |ψ〉〈ψ| with |ψ〉 = |α1〉C ⊗ |α2〉A product of
coherent states.

|α1〉C is nearly insensitive to any κc � g2

κa
. We can say that thanks to the

reservoir, the stabilized state is protected against photon loss with a strength g2

κa
.

This may appear counterintuitive e.g. for κa → 0. Do not forget that it is only a
very partial viewpoint: value of the steady state; and for a particular perturbation.

For other perturbations, such simple exact analysis will in general not be possible.
Also for stabilizing other target states, exact solutions may be too hard to implement.
We will have to rely on approximate analysis, based on timescale separations like
κa � g � κc .



General guiding principles

Given:

target system HC , target state |ψ̄〉 ∈ HC to stabilize
(this can be generalized to stabilizing subspaces, with more properties on
reservoir behavior)

a dissipative harmonic oscillator HA, annihilation operator a
(this is just by far the most common example in current hardware)

Design:

1 Construct an operator R on HC , acting nontrivially (e.g. not just R ≡ 0) and such
that R|ψ̄〉 = 0 . This is just a mathematical construction. See Exercise on slide
4, use degrees of freedom to facilitate the next design steps.

2 Construct a coupling Hamiltonian between target and auxiliary systems:
H int = R†a + Ra† on HC ⊗HA .

Building this with available components may require tricks, for instance RWA.

3 8 Steps 1 and 2 ensure that |ψ̄〉C ⊗ |0〉A is an invariant state of the joint system;
and, dynamics elsewhere should be nontrivial.
Now, if necessary, “add elements” to make sure that |ψ̄〉C ⊗ |0〉A is globally
attractive. This can involve Hamiltonians on HA \ {λ|0〉 : λ ∈ R} and on
HC \ {λ|ψ̄〉 : λ ∈ R} , or also some dissipation operators.

The level of protection against perturbations (see g2

κa
on previous slide) will have to be

approached with approximate methods, see further.

8This step follows a series of papers by F.Ticozzi and L.Viola.



Timescale separation analysis: adiabatic elimination

This analysis is useful for (i) examining convergence rates, protection against
perturbations; or (ii) designing reservoirs which implement the guiding principles of
previous slide approximately.

Timescale separation: usually the single-system processes have much faster
timescales than the ones involving interactions among components. Consider on
HC ⊗HA the reservoir design
d
dt ρ = −ig[H int , ρ] + κI⊗ LA(ρ)

where LA represents the fast dissipation process and typically g � κ
(assuming the super-operator norms of [H int , .] and LA are of order 1).

This takes the form of a linear system with linear perturbation:
ẋ = (A0 + εA1) x where ε = g

κ
� 1 and A0 has a degenerate 0-eigenspace

(namely ⊗HC ). We are interested in how this 0-eigenspace is modified for ε 6= 0.

Linear perturbation theory states that:
- the 0-dynamics of A0 on HC is perturbed towards dynamics analytic in ε

(thus this dynamics is the reservoir convergence effect on HC )
- the 0-eigenspace (essentially HC ) is displaced analytically in ε

(thus the true steady state can become slightly entangled on HC ⊗HA)

Both effects can be computed efficiently with a series expansion.
Quantum specific: the dynamics on HC can be expressed with a Lindblad
diff.eq., and its entanglement by a Kraus map, at least up to O(ε2) included.9

9see Rémi Azouit PhD thesis.



The Cirac-Zoller reservoir for trapped ion10 (1)

u
ru

ub

|e,0〉 |e,1〉
|e,2〉 |e,3〉

|g,0〉 |g,1〉
|g,2〉 |g,3〉

ω
eg

− ω
m

ω
eg

ω
eg

+ ω
m

Cfr. Lectures 5 & 9. After RWA:
H int = u|g〉〈e|+ u∗|e〉〈g|

+ ūb|g〉〈e|a + ū∗b |e〉〈g|a
†

+ ūr |g〉〈e|a† + ū∗r |e〉〈g|a

Target system Hc : harmonic oscillator, annihilation operator a
Auxiliary reservoir Hq : qubit degree of freedom |g〉, |e〉 with dissipation:

d
dt ρq = κDσ− (ρq) := κ

(
σ−ρqσ+ − 1

2ρqσ+σ− − 1
2σ+σ−ρq

)
.

Various target states can be stabilized by tuning the lasers u, ūb, ūr in H int :
Take ūb = 0, constant ūr 6= 0 and ū to get, for α = −ū∗/ū∗r :
d
dt ρ = −i[ ūr |g〉〈e|(a − α)† + ū∗r |e〉〈g|(a − α) , ρ] + κDσ− (ρq) .

Clearly |ψ̄〉 = |g〉q ⊗ |α〉C is invariant. It is also attractive (adapt Lect.9).
This stabilizes a coherent target state.

10cited as first reservoir. Poyatos, Cirac & Zoller (1996), Phys.Rev.Lett. 77.23.



The Cirac-Zoller reservoir for trapped ion11 (2)

u
ru

ub

|e,0〉 |e,1〉
|e,2〉 |e,3〉

|g,0〉 |g,1〉
|g,2〉 |g,3〉

ω
eg

− ω
m

ω
eg

ω
eg

+ ω
m

Cfr. Lectures 5 & 9. After RWA:
H int = u|g〉〈e|+ u∗|e〉〈g|

+ ūb|g〉〈e|a + ū∗b |e〉〈g|a
†

+ ūr |g〉〈e|a† + ū∗r |e〉〈g|a

Various target states can be stabilized by tuning the lasers u, ūb, ūr in H int :
Take (ū = 0 to simplify and) constant ūb 6= 0, ūr 6= 0 to get
d
dt ρ = −i[ |g〉〈e|(ū∗r a + ū∗b a†)† + |e〉〈g|(ū∗r a + ū∗b a†) , ρ] + κDσ− (ρq)

= −i[ |g〉〈e|v∗s† + |e〉〈g|vs , ρ] + κDσ− (ρq) where

s = S†(r eiφr ) a S(r eiφr ) with ūr = cosh(r), ūb = −eiφr sinh(r) and
unitary op. S(ζ) = exp( 1

2 (ζ∗a2 − ζ(a†)2)) the squeezing coord.transf.

Clearly (coord.transf.) this stabilizes, the squeezed vacuum state

|ψ̄〉 = |g〉q ⊗ (S(r eiφr )|0〉)C

for which ∆X φr
2

= 1
2 e−r < 1

2 and ∆X φr
2 +π2

= 1
2 er > 1

2 , satisfying the

Heisenberg unc.pr. ∆Xλ ∆Xλ+π2
≥ 1

4 ∀λ but with very low uncertainty on
coordinate ∆X φr

2
.

11cited as first reservoir. Poyatos, Cirac & Zoller (1996), Phys.Rev.Lett. 77.23.



Fast reset of a qubit12

Target system: qubit, Hc = span{|g〉, |e〉}, to be stabilized in |g〉
Auxiliary reservoir Ha: harmonic oscillator with dissipation
d
dt ρ = κ(aρa† − a†aρ/2− ρa†a/2)

Dispersive interaction Hamiltonian, two drives uq(t) = ūq e−i(ωq−n̄χ)t and
uc(t) = ūc e−i(ωc−χ/2)t for n̄ ∈ N,

H int = ωca†a +
ωq

2
σz −

χ

2
σz a†a + (uq(t)σ+u∗q (t)σ-) + (uc(t)a† + u∗c (t)a)

After RWA in rotating frame (DL(ρ) = LρL† − 1
2 L†Lρ− 1

2ρL†L):

d
dt

ρ = −i ūq [σx ⊗ |n̄〉〈n̄|, ρ]− i ūc [|e〉〈e| ⊗ (a + a†), ρ] + κD|g〉〈g|a(ρ) + κD|e〉〈e|a(ρ)

For qubit in |e〉: uc drives harm.osc. to overlap with |n̄〉. For harm.osc. on |n̄〉: uq
makes qubit oscillate between |e〉 and |g〉. For qubit on |g〉: just dissipation,
harm.osc. moves away from |n̄〉 so qubit stays in |g〉
Clearly, |ψ̄〉 = |g〉c |0〉A is steady state. It is also attractive, so with uc(t), uq(t)
we can turn on or off a process that resets the qubit to |g〉.

For details on RWA and on the convergence towards |ψ̄〉, see Exam question 2015.

12K.Geerlings, Z.Leghtas et al (2013), Phys.Rev.Lett. 110.12.



Exercise: discrete-time reservoir engineering

Target system Hc : harmonic oscillator, annihilation operator a
Auxiliary reservoir Hq : qubit degree of freedom |g〉, |e〉 with dissipation:
ρq(t + 1) = K(ρq(t)) = ρ̄q , where ρ̄q is fixed according to needs.

Target behavior (see last item of slide 7):
ρC(t + 1) = KC(ρC(t)) such that ρC converges towards a Fock state |n̄〉〈n̄|.

Resonant Jaynes-Cummings Interaction (see Lectures 2 and 4).

Exercise in detail: see the second exercise of Exam 2018
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Digital quantum information processing13

Classical systems typically move continuously in some vector space or manifold.
Nevertheless, an efficient way to make computations, communicate,...
i.e. process information is by discretizing it into a sequence of elementary
chunks: bits can only take values in {0, 1}. A digital classical machine is an
abstract object acting on the state space {0, 1}d , involving 2d possible so-called
logical states.

Similarly, quantum states can be efficiently represented by combining qubits.
A qubit is a two-level quantum system, Hq ≡ C2.
The logical state space of a digital quantum machine on d qubits is

Hq ⊗Hq ⊗ ...(d times) =: H⊗d
q ≡ C2d

Classical processing takes its efficiency from the existence of a finite set of
universal gates, i.e. operations on 1, 2 or 3 logical bits from which all maps on
the logical state space can be built.

Quantum processing too can be built from such a finite set of universal gates:
a few unitary operations on 1,2,3 qubits;
preparation of 1 qubit in a fixed initial state;
measurement of 1 qubit in a fixed basis.

(This is not as trivial as for classical processing, since the set of possible
quantum operations (unitary operations on H⊗d

q ) forms a continuum, but we will
not further discuss logical operations here.)

13Michael A. Nielsen and Isaac L. Chuang (2000). Quantum Computation and
Quantum Information. Cambridge University Press. Chapter 10 covers Error Correction



Protecting logical information: general

As a side-effect of this digital viewpoint, we get a simple roadmap for making
logical states robust to perturbations. Indeed, the logical state space will in
general be physically implemented by particular states (“the code space”) inside
a larger physical state space.
This allows to engineer systems in which physical perturbations are
counteracted, inside the larger physical state space, before they have any effect
on the logical state space.

Classical example14: in physical space x ∈ R, select as the code space of one
logical bit the positions x = −1 (logical 0) and x = +1 (logical 0).

Setting up a potential V (x) = cos(πx), the code space lies at the minima of
V (x). Stabilizing these minima against perturbations allows to avoid that
x(0) ' −1 ever drifts to x(t) ' +1 or vice versa.

The strength of this protection can be increased by
implementing a stronger potential e.g. 10 V (x);
selecting another code space, e.g. x = −7 (logical 0), x = +7 (logical 1);
taking several copies of this system, coupled to favor x1 = x2 = ...

Note the difference between ‘information protection’ and ‘stabilization of a state’:
the protection here must be built without knowing which state will be used inside
the code space
⇒We must stabilize a subspace instead of a state, and in fact robustify the
identity action on this subspace.

14Stabilization of classical bits resembles this picture, with electromagnetic degrees
of freedom



Protecting logical information: quantum model

For the quantum case:
The logical qubit is implemented by selecting two orthonormal vectors |0L〉, |1L〉
inside the physical Hilbert space H.
Invariance: in absence of perturbations, the code subspace
Hc = span(|0L〉, |1L〉) should undergo no dynamics (in an appropriate rotating
frame).
Error correction: this is most often formulated in discrete-time. Consider

ρ+ = KE (ρ) (Kraus map)

modeling, for each E , a possible relevant physical perturbation onH over time dt .
Ideally, there should exist an error recovery map

ρ+ = KR(ρ) (Kraus map) such that

KR(KE (ρ)) = ρ for all E and for all ρ with support in Hc (code space).

The existence of such perfect KR is not realistic. Most often the recovery will be
approximate: KR(KE (ρ)) ' ρ for ρ in the code space; the goal is to reduce the
probability of logical errors as much as possible, for a realistic set of KE .
KR can be implemented through some physical process (reservoir engineering),
or via measurement and feedback action. We will see one example of each.

(A last point to consider is how to perform controlled logical operations (gates) when
the error protection is precisely designed to counteract any (spurious) logical
operations. This has been actively treated, yet it goes beyond the scope of this course.)



The 9-qubit Bacon-Shor code15

This encoding starts from physical qubits. The main idea is to copy the information of
one logical qubit among several physical qubits, and correct errors occurring on a
single qubit thanks to majority vote.

Classical equivalent: if |0L〉 = |0〉|0〉|0〉|0〉|0〉 , |1L〉 = |1〉|1〉|1〉|1〉|1〉
and we see |ψ〉 = |0〉|1〉|0〉|0〉|0〉 ∈ H, then we correct it back towards |0L〉.

Quantum information comprises |0L〉, |1L〉 but also all their linear combinations. To
protect them too with majority vote, a slightly larger code is needed.

Physical state space: 9 qubits, H = (C2)⊗9.
Errors to counter: any perturbation of a single qubit, i.e. (I identity superoperator)

{KE} ={K⊗ I28 for any Kraus map K on the first qubit} ∪
{I2 ⊗ K⊗ I27 for any Kraus map K on the 2nd qubit} ∪ ...

Code space:

|0L〉 = |+̃〉|+̃〉|+̃〉+|−̃〉|−̃〉|−̃〉√
2

and |1L〉 = |+̃〉|+̃〉|+̃〉−|−̃〉|−̃〉|−̃〉√
2

(second stage)

where |+̃〉 = |0〉|0〉|0〉+|1〉|1〉|1〉√
2

and |−̃〉 = |0〉|0〉|0〉−|1〉|1〉|1〉√
2

(first stage)

on each group of three qubits (1,2,3), (4,5,6) and (7,8,9).

15Peter W.Shor, (1995). "Scheme for reducing decoherence in quantum computer
memory". Physical Review A, 52(4).



The Kraus map providing protection against single-qubit errors (1)

We build KR progressively, and illustrating how it can work with unitary feedback
conditioned on measurement of some commuting observables (“error syndromes”).

First consider a bit-flip perturbation, e.g. KE (ρ) = (σx ⊗ I28 )ρ(σx ⊗ I28 ) on first qubit.
This can be corrected by majority vote on the first stage: on the qubit group (1,2,3)

Projectively measure the observables S1 = σz ⊗ σz ⊗ I2 and S2 = I2 ⊗ σz ⊗ σz .

This gives K(s1,s2)(ρ) =
Ps1,s2ρP†s1,s2

Tr
(

Ps1,s2ρP†s1,s2

) with proba Tr
(

Ps1,s2ρP†s1,s2

)
where

Ps1,s2 =|000〉〈000|+ |111〉〈111| if s1 = s2 = 1 ;

|100〉〈100|+ |011〉〈011| if s1 = −1, s2 = 1 ;

|001〉〈001|+ |110〉〈110| if s1 = 1, s2 = −1 ;

|010〉〈010|+ |101〉〈101| if s1 = s2 = −1 .

Conditional on the measurement result, apply the unitary feedback action:
Us1,s2 = I8 if s1 = s2 = 1 ; = σx ⊗ I4 if s1 = −1, s2 = 1 ;

= I4 ⊗ σx if s1 = 1, s2 = −1 ; = I2 ⊗ σx ⊗ I2 if s1 = s2 = −1 .

The resulting Kraus map K1(ρ) =
∑

s1,s2
Us1,s2 Ps1,s2ρP†s1,s2

U†s1,s2
satisfies

K1(KE (ρ)) = ρ for any ρ in the code space and KE either identity, or a bit flip on
one single of the qubits (1,2,3). (Note that σx on two qubits makes this fail.)

Proceeding similarly in parallel on qubit groups (4,5,6) and (7,8,9) yields
K1(ρ) =

∑
s1,s2,s3,s4,s5,s6

U... , offering recovery from a single σx on any qubit.



The Kraus map providing protection against single-bit errors (2)

Next consider phase-flip perturbation, e.g. KE (ρ) = (σz ⊗ I28 )ρ(σz ⊗ I28 ) on 1st qubit.
In fact this corresponds to a unitary perturbation |+̃〉〈−̃|+ |−̃〉〈+̃|. We can address it
by a similar majority vote, on the components |+̃〉, |−̃〉 of the second stage. We denote
σ̃x = |+̃〉〈+̃| − |−̃〉〈−̃|.

Projectively measure observables S7 = σ̃x ⊗ σ̃x ⊗ I26 and S8 = I26 ⊗ σ̃x ⊗ σ̃x .

The rules for the measurement results and conditional feedback action are
analogue to the previous slide. For the feedback action, we can choose e.g.

U(s7=−1,s8=1) = σz ⊗ I28 or = I2 ⊗ σz ⊗ I27 or = I4 ⊗ σz ⊗ I26 .

Indeed, they all have the same effect on subspace resulting from P(s7=−1,s8=1).

Note that each measurement now involves 6 qubits at once, each feedback
action involves a single qubit. We call the resulting Kraus map K2.

The total Kraus map KR = K2 ◦ K1 satisfies KR(KE (ρ)) = ρ for any ρ in the code
space and KE either identity, or a σx , or a σz perturbation, on one single of the qubits.

In fact, this holds for any Kraus map acting on a single qubit [Error Discretization Thm.].

The efficiency of this protection depends on proba. of perturbation on a single qubit,
vs. proba. that several qubits are affected before each iteration of KR . Better efficiency
can be obtained with more qubits, and with different encodings ensuring that each
measurement and feedback operation only involves a small number of qubits.16

16for more on this qubit-network-based approach, see Chapter 10 of Nielsen and
Chuang (2000).



Exercises on the 9-qubit Bacon-Shor code

1 a. Analyze how the code and recovery Kraus map provide
quantum information protection against an error σy acting
on one of the qubits.

b. Idem for a possible error σ− acting on one of the qubits.
NB: Since σ− is not unitary, you should consider an error
Kraus map with M1 =

√
pσ− and M2 = ..., for an arbitrarily

fixed error probability parameter p > 0.
c. Show how the code and recovery Kraus map allow to

correct the effect of any error Kraus map acting on one of
the qubits. [Error Discretization Theorem]
Hint: Observe how your analysis of a. and b. is directly
related to protection against σx and σz errors.

2 The Bacon-Shor recovery Kraus map has been built with
measurement operators which only distinguish whether qubit
states are equal or different. Check what goes wrong if one
would start by measuring the state of each individual qubit.
NB: You may reduce this analysis to the 3-qubit repetition code
of the first stage of the code.



The “cat-qubit” encoding17

This encoding starts from a harmonic oscillator, it is a so-called bosonic code. The
main idea is that

Coherent states (see Lecture 1) are close to classical states, i.e. it should be
feasible to avoid confusing two coherent states |0L〉 ' |α〉 and |1L〉 ' | − α〉: like
a dead or alive cat.
The key implementation is with reservoir engineering:
Target system HC and auxiliary system HA are harmonic oscillators, with
annihilation operators c and a respectively. Let

d
dt ρ = −ig[(c2 − α2)a† + (c2 − α2)†a, ρ] + κa(aρa† − 1

2 a†aρ− 1
2ρa†a)

This reservoir features an invariant subspace span{|α〉, | − α〉}C ⊗ |0〉A.

Adiabatic elimination: dynamics on HC induced by this reservoir, for g � κa, is

d
dt ρ = g2

κa
( (c2−α2)ρ(c2−α2)†− 1

2 (c2−α2)†(c2−α2)ρ− 1
2ρ(c2−α2)†(c2−α2) ) .

This dissipative dynamics of strength g2

κa
protects the cat subspace against

perturbations weaker than g2

κa
and which tend to confuse | ± α〉.

There remains to protect information against perturbations transforming
|α〉+|−α〉√

2
into |α〉−|−α〉√

2
(phase-flips), which must be done with other means

e.g. majority vote.
17see M.Mirrahimi, Z.Leghtas et al (2014), New Journal of Physics, 16(4) + series of

articles building on this one.
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