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Controlling quantum degrees of freedom

Some applications
Nuclear Magnetic Resonance (NMR) applications;

Quantum chemical synthesis;

High resolution measurement devices (e.g. atomic/optic clocks);

Quantum communication;

Quantum computation .

Physics Nobel prize 2012

         Serge Haroche          David J. Wineland 
Nobel prize: ground-breaking experimental methods that enable measuring

and manipulation of individual quantum systems.



Nuclear Magnetic Resonance

Control of an ensemble of spins with a dispersion (uncertainty)
in parameters (frequency, coupling strengths);

Time-optimal control to beat the relaxation of the spins;

· · ·

Improving the contrast in Magnetic Resonance Imaging (MRI).



Atomic clocks

SI second is defined to be “the duration of 9 192 631 770 periods of the
radiation corresponding to the transition between the two hyperfine levels of

the ground state of the caesium 133 atom”.

Figure: http://tf.nist.gov/ofm/smallclock/OverallDesign.htm

The goal is to modulate the laser frequencies to reach the maximum
transmission (minimum absorbtion).



Quantum communication

Secure communication enforced by laws of quantum physics;
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Four qubit quantum processor. 
Courtesy of L. Di Carlo et. al. Nature (2010).

Quantum teleportation between two canary islands.
Courtesy of  X. Ma et. al. Nature (2012)

Quantum computing

Quantum metrology

Squeezed light source for gravitational wave detection
Courtesy of R. Schnabel et. al. Nature (2010)

Quantum repeaters for long-distance (>100km) communication:
requires a quantum memory where quantum information is stabilized
(protected) against various noise sources.



Technologies for quantum simulation and computation5

© OBrien

Superconduc�ng
circuits

Photons

© S. Kuhr

Ultra-cold 
neutral/Rydberg 

atoms 

© Bla� & Wineland

Trapped ions

© Pe�a

Quantum dots

© IBM

Requirement:
Scalable modular architecture
Control software from the very beginning.

5Courtesy of Walter Riess, IBM Research - Zurich.



Quantum computation: towards quantum electronics

D-Wave machine: machines to solve certain huge-dimensional optimization
problems (state space of dimension 2100).

Major challenge: Fragility of quantum information versus external noise.

Quantum error correction

We protect quantum information by stabilizing a manifold of quantum states.
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The first experimental realization of a quantum state feedback

The photon box of the Laboratoire Kastler-Brossel (LKB):
group of S.Haroche (Nobel Prize 2012), J.M.Raimond and M. Brune.

u y

6

Stabilization of a quantum state with exactly n = 0, 1, 2, 3, . . . photon(s).
Experiment: C. Sayrin et. al., Nature 477, 73-77, September 2011.

Theory: I. Dotsenko et al., Physical Review A, 80: 013805-013813, 2009.
R. Somaraju et al., Rev. Math. Phys., 25, 1350001, 2013.

H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.

6Courtesy of Igor Dotsenko. Sampling period ∆t ≈ 80 µs.



Experimental closed-loop data

C. Sayrin et. al., Nature
477, 73-77, Sept. 2011.

Decoherence due to finite
photon life time around
70 ms)

Detection efficiency 40%
Detection error rate 10%
Delay 4 sampling periods

Model includes
cavity decoherence,
measurement
imperfections,
delays (Bayes law).

Truncation to 9 photons

Stabilization around 3-photon state



Models of open quantum systems are based on three features7

1 Schrödinger: wave funct. |ψ〉 ∈ H or density op. ρ ∼ |ψ〉〈ψ|
d
dt
|ψ〉 = − i

~H|ψ〉, d
dt
ρ = − i

~ [H, ρ], H = H0 + uH1

2 Entanglement and tensor product for composite systems (S,M):

Hilbert space H = HS ⊗HM
Hamiltonian H = HS ⊗ IM + H int + IS ⊗ HM
observable on sub-system M only: O = IS ⊗OM .

3 Randomness and irreversibility induced by the measurement of
observable O with spectral decomp.

∑
µ λµPµ:

measurement outcome µ with proba.
Pµ = 〈ψ|Pµ|ψ〉 = Tr (ρPµ) depending on |ψ〉, ρ just before
the measurement
measurement back-action if outcome µ = y :

|ψ〉 7→ |ψ〉+ =
Py |ψ〉√
〈ψ|Py |ψ〉

, ρ 7→ ρ+ =
PyρPy

Tr (ρPy )

7S. Haroche, J.M. Raimond: Exploring the Quantum: Atoms, Cavities and
Photons. Oxford University Press, 2006.



Composite system built with an harmonic oscillator and a qubit.

System S corresponds to a quantized harmonic oscillator:

HS = Hc =

{ ∞∑
n=0

cn|n〉
∣∣∣∣ (cn)∞n=0 ∈ l2(C)

}
,

where |n〉 represents the Fock state associated to exactly n
photons inside the cavity
Meter M is a qu-bit, a 2-level system (idem 1/2 spin
system) : HM = Ha = C2, each atom admits two energy
levels and is described by a wave function cg |g〉+ ce|e〉
with |cg |2 + |ce|2 = 1; atoms leaving B are all in state |g〉
State of the full system |Ψ〉 ∈ HS ⊗HM = Hc ⊗Ha:

|Ψ〉 =
+∞∑
n=0

cng |n〉 ⊗ |g〉+ cne|n〉 ⊗ |e〉, cne, cng ∈ C.

Ortho-normal basis: (|n〉 ⊗ |g〉, |n〉 ⊗ |e〉)n∈N.



The Markov model (1)

C

B

D

R 1
R 2

B R 2

When atom comes out B, |Ψ〉B of the full system is separable
|Ψ〉B = |ψ〉 ⊗ |g〉.
Just before the measurement in D, the state is in general
entangled (not separable):

|Ψ〉R2 = USM
(
|ψ〉 ⊗ |g〉

)
=
(
Mg |ψ〉

)
⊗ |g〉+

(
Me|ψ〉

)
⊗ |e〉

where USM is a unitary transformation (Schrödinger propagator)
defining the linear measurement operators Mg and Me on HS.
Since USM is unitary, M†gMg + M†eMe = I .



The Markov model (2)

Just before D, the field/atom state is entangled:

Mg |ψ〉 ⊗ |g〉+ Me|ψ〉 ⊗ |e〉

Denote by µ ∈ {g,e} the measurement outcome in detector D: with
probability Pµ =

〈
ψ|M†µMµ|ψ

〉
we get µ. Just after the measurement

outcome µ = y , the state becomes separable:

|Ψ〉D = 1√
Py

(My |ψ〉)⊗ |y〉 =

(
My√

〈ψ|M†y My |ψ〉
|ψ〉
)
⊗ |y〉.

Markov process: |ψk 〉 ≡ |ψ〉t=k∆t , k ∈ N, ∆t sampling period,

|ψk+1〉 =


Mg |ψk 〉√
〈ψk |M†g Mg |ψk〉

with yk = g, probability Pg =
〈
ψk |M†gMg |ψk

〉
;

Me|ψk 〉√
〈ψk |M†e Me|ψk〉

with yk = e, probability Pe =
〈
ψk |M†eMe|ψk

〉
.
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Reference books

1 Cohen-Tannoudji, C.; Diu, B. & Laloë, F.: Mécanique Quantique Hermann, Paris,
1977, I& II (quantum physics: a well known and tutorial textbook)

2 S. Haroche, J.M. Raimond: Exploring the Quantum: Atoms, Cavities and
Photons. Oxford University Press, 2006. (quantum physics: spin/spring systems,
decoherence, Schrödinger cats, entanglement. )

3 C. Gardiner, P. Zoller: The Quantum World of Ultra-Cold Atoms and Light I& II.
Imperial College Press, 2009. (quantum physics, measurement and control)

4 Barnett, S. M. & Radmore, P. M.: Methods in Theoretical Quantum Optics Oxford
University Press, 2003. (mathematical physics: many useful operator formulae
for spin/spring systems )

5 E. Davies: Quantum Theory of Open Systems. Academic Press, 1976.
(mathematical physics: functional analysis aspects when the Hilbert space is of
infinite dimension )

6 Gardiner, C. W.: Handbook of Stochastic Methods for Physics, Chemistry, and
the Natural Sciences [3rd ed], Springer, 2004. (tutorial introduction to probability,
Markov processes, stochastic differential equations and Ito calculus. )

7 M. Nielsen, I. Chuang: Quantum Computation and Quantum Information.
Cambridge University Press, 2000. (tutorial introduction with a computer science
and communication view point )



Outline of the lectures

Jan21 (PR) Introduction: motivating applications; LKB photon-box as prototype of open quantum system; spring system
(harmonic oscillator, spectral decomposition, annihilation/creation operators, coherent state and
displacement).

Jan28 (AS) spin system (qubit, Pauli matrices); composite spin/spring system (tensor product, resonant/dispersive
interaction, underlying PDE’s).

Feb04 (PR) Averaging and rotating waves approximation (first/second order perturbation expansion, asymptotic stability)

Feb11 (AS) Open-loop control via averaging techniques (Rabi oscillations for a qubit, Law-Eberly method for a
spin/spring system)

Feb18 (PR) Adiabatic control (qubit with Bloch vector coordinates, STIRAP) and optimal control (monotone numerical
algorithm).

Feb25 (AS) Measurement back-action, POVM and discrete-time model of open quantum system: LKB photon box,
measurement imperfection, why density operator instead of wave-function, Kraus map (quantum channel).

Mar03 (AS) Discrete-time open-quantum systems: LKB photon box, (QND) measurement, open-loop asymptotic
behavior, measurement-based feedback, Lyapunov stabilization, quantum filtering.

Mar10 (PR) Continuous-time open-quantum system: Ito calculus, homodyne (QND) measurement, open-loop
asymptotic behaviour, Lyapunov stabilization, quantum filtering.

Mar17 (PR) Decoherence as unread measurements performed by the environment: continuous-time formulation,
Lindblad differential equation (damped harmonic oscillator, convergence and asymptotic stability, Wigner
function and PDE formulations).

Mar24 (AS) Stabilization by reservoir engineering as tailored decoherence. Application: quantum error correction by
measurement-based feedback and by reservoir engineering. Outlook on related math.techniques (adiabatic
elimination).
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Harmonic oscillator

Classical Hamiltonian formulation of d2

dt2 x = −ω2x

d
dt

x = ωp =
∂H
∂p

,
d
dt

p = −ωx = −∂H
∂x

, H =
ω

2
(p2 + x2).

Mechanical oscillator

Frictionless spring: d2

dt2 x = − k
m x .

Electrical oscillator:

L C

I
+

−

V

LC oscillator:

d
dt

I =
V
L
,

d
dt

V = − I
C
, (

d2

dt2 I = − 1
LC

I).

Quantum regime

kBT � ~ω where ~ ' 1.054 · 10−34 Js and kB ' 1.38 · 10−23 J/K . Typically
for the photon box experiment in these lectures, ω = 51GHz and T = 0.8K .



Harmonic oscillator8: quantization and correspondence principle
d
dt x = ωp = ∂H

∂p ,
d
dt p = −ωx = −∂H

∂x , H = ω
2 (p2 + x2).

Quantization: probability wave function |ψ〉t ∼ (ψ(x , t))x∈R with
|ψ〉t ∼ ψ( , t) ∈ L2(R,C) obeys to the Schrödinger equation
(from now on we always assume units such that ~ = 1)

i
d
dt
|ψ〉 = H|ψ〉, H = ω(P2 + X 2) = −ω

2
∂2

∂x2 +
ω

2
x2

where H results from H by replacing x by position operator√
2X and p by momentum operator

√
2P = −i ∂∂x . H is a

Hermitian operator on L2(R,C), with its domain to be given.

PDE model: i ∂ψ∂t (x , t) = −ω
2
∂2ψ
∂x2 (x , t) + ω

2 x2ψ(x , t), x ∈ R.

8Two references: C. Cohen-Tannoudji, B. Diu, and F. Laloë. Mécanique
Quantique, volume I& II. Hermann, Paris, 1977.
M. Barnett and P. M. Radmore. Methods in Theoretical Quantum Optics.
Oxford University Press, 2003.



Harmonic oscillator: annihilation and creation operators

Average position 〈X 〉t = 〈ψ|X |ψ〉 and momentum 〈P〉t = 〈ψ|P|ψ〉:

〈X 〉t = 1√
2

∫ +∞

−∞
x |ψ|2dx , , 〈P〉t = − i√

2

∫ +∞

−∞
ψ∗
∂ψ

∂x
dx .

Annihilation a and creation operators a† (domains to be given):

a = X + iP = 1√
2

(
x +

∂

∂x

)
, a† = X − iP = 1√

2

(
x − ∂

∂x

)
Commutation relationships:

[X ,P] = i
2 I , [a,a†] = I , H = ω(P2 + X 2) = ω

(
a†a +

I
2

)
.

Set Xλ = 1
2

(
e−iλa + eiλa†

)
for any angle λ:[

Xλ,Xλ+
π
2

]
= i

2 I .



Harmonic oscillator: spectral decomposition and Fock states

Spectrum of Hamiltonian H = −ω2 ∂2

∂x2 + ω
2 x2 :

En = ω(n+
1
2
), ψn(x) =

(
1
π

)1/4 1√
2nn!

e−x2/2Hn(x), Hn(x) = (−1)nex2 dn

dxn e−x2
.

Spectral decomposition of a†a using [a,a†] = 1:

If |ψ〉 is an eigenstate associated to eigenvalue λ, then a|ψ〉 and
a†|ψ〉 are also eigenstates associated to λ− 1 and λ+ 1.

a†a is semi-definite positive.

The ground state |ψ0〉 is necessarily associated to eigenvalue 0
and is given by the Gaussian function ψ0(x) = 1

π1/4 exp(−x2/2).



Harmonic oscillator: spectral decomposition and Fock states

[a, a†] = 1: spectrum of a†a is non-degenerate and is N.

Fock state with n photons (phonons): the eigenstate of a†a associated to the
eigenvalue n (|n〉 ∼ ψn(x)):

a†a|n〉 = n|n〉, a|n〉 =
√

n |n − 1〉, a†|n〉 =
√

n + 1 |n + 1〉.

The ground state |0〉 is called 0-photon state or vacuum state.

The operator a (resp. a†) is the annihilation (resp. creation) operator since it
transfers |n〉 to |n − 1〉 (resp. |n + 1〉) and thus decreases (resp. increases)
the quantum number n by one unit.

Hilbert space of quantum system: H = {
∑

n cn|n〉 | (cn) ∈ l2(C)} ∼ L2(R,C).
Domain of a and a†: {

∑
n cn|n〉 | (cn) ∈ h1(C)}.

Domain of H or a†a: {
∑

n cn|n〉 | (cn) ∈ h2(C)}.

hk (C) = {(cn) ∈ l2(C) |
∑

nk |cn|2 <∞}, k = 1, 2.



Harmonic oscillator: displacement operator

Quantization of d2

dt2 x = −ω2x − ω
√

2u, (H = ω
2 (p2 + x2) +

√
2ux)

H = ω

(
a†a +

I
2

)
+ u(a + a†).

The associated controlled PDE

i
∂ψ

∂t
(x , t) = −ω

2
∂2ψ

∂x2 (x , t) +
(
ω
2 x2 +

√
2ux

)
ψ(x , t).

Glauber displacement operator Dα (unitary) with α ∈ C:

Dα = eαa†−α∗a = e2i=αX−2i<αP

From Baker-Campbell Hausdorf formula, for all operators A and B,

eABe−A = B + [A,B] + 1
2! [A, [A,B]] + 1

3! [A, [A, [A,B]]] + . . .

we get the Glauber formula9 when [A, [A,B]] = [B, [A,B]] = 0:

eA+B = eA eB e−
1
2 [A,B].

9Take s derivative of es(A+B) and of esA esB e−
s2

2 [A,B].



Harmonic oscillator: identities resulting from Glauber formula

With A = αa† and B = −α∗a, Glauber formula gives:

Dα = e−
|α|2

2 eαa†e−α
∗a = e+

|α|2
2 e−α

∗aeαa†

D−αaDα = a + αI and D−αa†Dα = a† + α∗I .

With A = 2i=αX ∼ i
√

2=αx and B = −2ı<αP ∼ −
√

2<α ∂
∂x , Glauber formula

gives10:

Dα = e−i<α=α ei
√

2=αx e−
√

2<α ∂
∂x

(Dα|ψ〉)x,t = e−i<α=α ei
√

2=αxψ(x −
√

2<α, t)

Exercise: Prove that, for any α, β, ε ∈ C, we have11

Dα+β = e
α∗β−αβ∗

2 DαDβ

Dα+εD−α =
(

1 + αε∗−α∗ε
2

)
I + εa† − ε∗a + O(|ε|2)(

d
dt

Dα
)

D−α =

(
α d

dt α
∗−α∗ d

dt α

2

)
I +

(
d
dt
α

)
a† −

(
d
dt
α∗
)

a.

10Note that the operator e−r∂/∂x corresponds to a translation of x by r .
11

Use the formula d
dt E(t) =

(∫ 1
0 esA(t)

(
d
dt A(t)

)
e−sA(t)ds

)
E(t) where E(t) = eA(t) for any operator A(t)

depending smoothly on t .



Harmonic oscillator: lack of controllability

Take |ψ〉 solution of the controlled Schrödinger equation
i d

dt |ψ〉 =
(
ω
(

a†a + I
2

)
+ u(a + a†)

)
|ψ〉. Set 〈a〉 = 〈ψ|a|ψ〉. Then

d
dt
〈a〉 = −iω 〈a〉 − iu.

From a = X + iP, we have 〈a〉 = 〈X 〉+ i 〈P〉 where 〈X〉 = 〈ψ|X |ψ〉 ∈ R and
〈P〉 = 〈ψ|P|ψ〉 ∈ R. Consequently

d
dt
〈X 〉 = ω 〈P〉 ,

d
dt
〈P〉 = −ω 〈X〉 − u.

Consider the change of frame |ψ〉 = e−iθt D〈a〉t |χ〉 with

θt =

∫ t

0

(
ω| 〈a〉 |2 + u<(〈a〉)

)
, D〈a〉t = e〈a〉t a

†−〈a〉∗t a,

Then |χ〉 obeys to autonomous Schrödinger equation12

i
d
dt
|χ〉 = ω

(
a†a + I

2

)
|χ〉.

The dynamics of |ψ〉 can be decomposed into two parts:
a controllable part of dimension two for 〈a〉
an uncontrollable part of infinite dimension for |χ〉.

12
The time-varying change of frame |ψ〉 = U|χ〉 where d

dt U = −iAU with A† ≡ A, transforms
d
dt |ψ〉 = −iH|ψ〉 into |χ〉 = −i(U†(H − A)U)|χ〉.



Harmonic oscillator: coherent states as reachable ones from |0〉

Coherent states

|α〉 = Dα|0〉 = e−
|α|2

2

+∞∑
n=0

αn
√

n!
|n〉, α ∈ C

are the states reachable from vacuum set. They are also the
eigenstate of a: a|α〉 = α|α〉.
A widely known result in quantum optics13: classical currents
and sources (generalizing the role played by u) only generate
classical light (quasi-classical states of the quantized field
generalizing the coherent state introduced here)
We just propose here a control theoretic interpretation in terms
of reachable set from vacuum.

13See complement BIII , page 217 of C. Cohen-Tannoudji, J. Dupont-Roc,
and G. Grynberg. Photons and Atoms: Introduction to Quantum
Electrodynamics. Wiley, 1989.



Summary for the quantum harmonic oscillator

Hilbert space:
H =

{∑
n≥0 ψn|n〉, (ψn)n≥0 ∈ l2(C)

}
≡ L2(R,C)

Quantum state space:
D = {ρ ∈ L(H), ρ† = ρ,Tr (ρ) = 1, ρ ≥ 0} .
Operators and commutations:
a|n〉 =

√
n |n-1〉, a†|n〉 =

√
n + 1|n + 1〉;

N = a†a, N |n〉 = n|n〉;
[a,a†] = I , af (N) = f (N + I)a;
Dα = eαa†−α†a.
a = X + iP = 1√

2

(
x + ∂

∂x

)
, [X ,P] = ıI/2.

Hamiltonian: H/~ = ωca†a + uc(a + a†).
(associated classical dynamics:
dx
dt = ωcp, dp

dt = −ωcx −
√

2uc).

Classical pure state ≡ coherent state |α〉
α ∈ C : |α〉 =

∑
n≥0

(
e−|α|

2/2 αn
√

n!

)
|n〉; |α〉 ≡ 1

π1/4 eı
√

2x=αe−
(x−
√

2<α)2

2

a|α〉 = α|α〉, Dα|0〉 = |α〉.

|0

|1

|2

ωc

|n

ωc
uc

...
 ..

.



Control of quantum harmonic oscillator: LKB photon-box

“x”=|ψ〉

|g〉
|e〉

Detection in |g〉 or |e〉
Control “u” = α

Output “y”

1

Simple schematic of LKB experiment for control of cavity field
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