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Outline of the lectures (Autumn 2018 at Mines ParisTech )

Lect. 1& 2 (Oct. 24: 11:10-13:00 and 14:00-15:50) Feedback for classical and for

quantum systems; the first experimental realization of a
quantum-state feedback (LKB photon box); three quantum features
(Schrddinger; collapse of the wave packet, tensor product); Quantum
Non Demolition (QND) measurement of photons (ideal Markov model
and Matlab simulations).

Lect. 3 (Nov. 7: 11:10-13:00) Models of the LKB photon box: entanglement between

Lect. 4 (Nov. 14:

Lect. 5 (Nov. 21:

Lect. 6 (Nov. 28:

the probe-qubit and the photons; qubit-measurement back-action on
the photons; measurement errors and imperfections; decoherence as
unread fictitious measurements; discrete-time Markov chain; Kraus
map; quantum trajectories and realistic Matlab simulations of the
photon box

11:10-13:00) Feedback stabilization of photon-number state:
resonant interaction, the Lyapunov feedback scheme, closed-loop
simulations / experimental data.

9:00-10:50) The LPA super-conduction qubit under continuous-time
measurements (counting versus homo/hetero-dyne measurements):
continuous-time stochastic master equation (Poisson versus Wiener);
Lindblad master equation; QND measurement of a qubit and Matlab
simulations.

11:10-13:00) Feedback stabilization of the excited state of a qubit;
quantum-state feedback based on QND measurement;closed-loop
simulations.

(NLS
Tec n*



Main references

v

S. Haroche and J.M. Raimond. Exploring the Quantum:
Atoms, Cavities and Photons. Oxford University Press,
2006.

H.M. Wiseman and G.J. Milburn. Quantum Measurement
and Control. Cambridge University Press, 2009.

M.A. Nielsen and I.L. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, 2000.

v

v

v

C.W. Gardiner and P. Zoller Quantum Noise. Springer,
2010.

\\\\\\

39



Outline Z

Notion of Feedback

Discrete-time systems: The LKB photon-box

Continuous-time systems: qubit in circuit QED

Continuous diffusive-jump SME
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Model of classical systems

,,,,,

perturbation lw

ol system

contro

U d y = h(z)

— —z = f(r,u,w) >
dt measure

For the harmonic oscillator of pulsation w with measured position y,
controlled by the force u and subject to an additional unknown force
w.

x = (X1, %) € R?, Yy =X
d d

2
X = X —Xo = —WX u+w
dt1 2, dt2 WX+ U+



Feedback for classical systems 2z

lw perturbation

observer/controller, system measure
d w=k(y,&v)| d y = h(x)
v _
——f=a —r = f(x,u,w
E dt£ Ay, &) control |dt f(w, u,w)
g
%
Y
feedback

Proportional Integral Derivative (PID) for g—;y = —w?y + U+ w with
the set point v = y¢

u=—Koly =) ~ Kag (v =) ~ K [ (v~ ")

with the positive gains (Kp, Ky, Kint) tuned as follows (0 < Qo ~ w,
0<é~1,0<ex 1:

Kp=Q3, Kg=26/02+Q2,  Kn=elw?+3)Y2



Quantum feedback: the back-action of the measurement.

vings
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A typical stabilizing feedback-loop for a classical system

Y
y_“,Lo_e,controIIer u system Y
Y

Two kinds of stabilizing feedbacks for quantum systems

1. Measurement-based feedback: controller is classical;
measurement back-action on the system S is stochastic
(collapse of the wave-packet); the measured output y is a
classical signal; the control input u is a classical variable
appearing in some controlled Schrédinger equation; u(t)
depends on the past measurements y(7), 7 < t.

2. Coherent/autonomous feedback and reservoir engineering: the
system S is coupled to the controller, another quantum
system; the composite system, Hs®H controlter; IS @n
open-quantum system relaxing to some target (separable) state.



The first experimental realization of a quantum state feedback  £F

MINES
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The photon box of the Laboratoire Kastler-Brossel (LKB):
group of S.Haroche (Nobel Prize 2012), J.M.Raimond and M. Brune.
1

Stabilization of a quantum state with exactly n=0,1,2,3,... photon(s).
Experiment: C. Sayrin et. al., Nature 477, 73-77, September 2011.
Theory: |. Dotsenko et al., Physical Review A, 80: 013805-013813, 2009.
R. Somaraju et al., Rev. Math. Phys., 25, 1350001, 2013.

H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.

"Courtesy of Igor Dotsenko. Sampling period 80 us. 8/39




Three quantum features emphasized by the LKB photon box? 2z

,,,,,

1. Schrédinger: wave funct. |¢) € H or density op. p ~ ) ()|

d ; d ;
&|¢>:—éH|¢>, Ep:_é[vaL H:HO+UH1
2. Origin of dissipation: collapse of the wave packet induced by the
measurement of observable O with spectral decomp. >, AP,
» measurement outcome p with proba.
P, = (¥|P,|v) = Tr(pP,) depending on |¢), p just before
the measurement
» measurement back-action if outcome p = y:

Py|1/’> - PyPPy

Sy T T TPy

3. Tensor product for the description of composite systems (S, M):
» Hilbert space H = Hs ® Hu
» Hamiltonian H = Hs ® Iy + Hipt + 1s @ Hy
» observable on sub-system M only: O = Is ® Oy.

V) = )4 =

28. Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities
and Photons. Oxford Graduate Texts, 2006.



Composite system built with an harmonic oscillator and a qubit. 2z

MINES
Yeen

,,,,,

» System S corresponds to a quantized harmonic oscillator:

Hs = {Zwm

n=0

(¥n)po € /2(«:)} :

where |n) represents the Fock state associated to exactly n
photons inside the cavity

» Meter M is a qu-bit, a 2-level system (idem 1/2 spin
system) : Hy, = C2, each atom admits two energy levels
and is described by a wave function cy4|g) + ce|€) with
lcgl? + |ce|? = 1; atoms leaving B are all in state |g)

» State of the full system |V) € Hg @ Hy:

+o0
W) =) Wngn) @g) + Vneln) @ ]€),  Wpe,Wpg € C.
n=0

Ortho-normal basis: (|n) ® |g), |n) ® |€))nen.

10/39



S: quantum harmonic oscillator (spring system) yog

» Hilbert space:
Hs = { Lnzo tnln), (n)nzo € F(C)} = L3(R, C)

» Quantum state space:
D={pecL(Hs),p' =p, Tr(p)=1,p>0}.

» Operators and commutations:
aln) = /n|n-1), at|n) = Vn+1|n+1);
N = a’a, N|n) = n|n);
[a,a'] = 1, af(N) = f(N + Da;
D, = eaa*—a a c E

a=X+iP= 5 (x+5), [X.Pl=u/2.

)

2)

)

10)

» Hamiltonian: Hs/h = wea'a + uc(a + ah). o,
(assomated classical dynamics:
% = wepP, dt = —weX — V2Uy).

» Classical pure state = coherent state |«)
a €Tt la) = Yo (679250 ) In):]a) = Jre2oer
ala) = ala), D,|0) = |a).

(x—V2ZRa)?
2



M: 2-level system, i.e. a qubit (half-spin system) 2z

» Hilbert space:
Huy=C2= {Cg\g> + Cel€), Cq,Ce € (C}~

» Quantum state space:
D ={pe L(MHnm),p' =p, Tr(p)=1,p>0}.

» Operators and commutations: ‘e>
o= |g)(el, & = ot = |e){g] Y A
ox = 0.+ 0, = |g)(e] + [e)(gl; Wy O
oy =lo. —io. = i|g)(e| —ile)(g]; Y

oz = v — o0y = [e)(e| — [g){g];
0'x2 - I, o-xo-y - io'z, [O'X7 o-y] - 2/0’2, N

» Hamiltonian: Hy/h = wq0z/2 + Ug0x.
» Bloch sphere representation:
D= {%(IJrXO'quyO'erZO'Z) | (x,y,2) ER3, x2+y?+ 22 < 1}

12/39



The Markov ideal model (1) 2z

W)g — A

R>

» When atom comes out B, |W)g of the full system is separable
W) = [¥) ®@19).

» Just before the measurement in D, the state is in general
entangled (not separable):

V)R, = Usm([¥) @ 19)) = (Mg|y)) @ [9) + (Me|¢)) @ |e)

where Ugy is a unitary transformation (Schrédinger propagator)
defining the linear measurement operators My and M, on Hs.
Since Usgy is unitary, MMy + MM = I.

13/39



The Markov ideal model (2) 2z

The unitary propagator Usgy, is derived from Jaynes-Cummings
Hamiltonian Hgy, in the interaction frame.
Two kinds of qubit/cavity Hamiltonians:
resonant, Hgy/h = i(Q(vt)/2) (a' ® oo — a® as),
dispersive, Hgy/h = (Q3(vt)/(26)) N ® o3,

2

where Q(x) = Qpe »2, x = vt with v atom velocity, Qo vacuum Rabi
pulsation, w radial mode-width and where ¢ = wq — w is the detuning
between qubit pulsation wq and cavity pulsation w (6] < Qo).

14/39



Dispersive and resonant Jaynes-Cummings propagators }Z“

The solution of 1% U = — £ Hgy(t)U, with Uy = I reads
» for Hoy(t)/h =i f(t)(a' ® |g)(e] — a® |e)(g|) (resonant)

U; = cos (%W) ® |g){(g| + cos (%\/W) ® |e)(e|
sin (%W) sin (%W)
VN VN
> for Hou(t)/h = f(t) N (e){e| — [9)(gl) (dispersive)

> ® |e)(g| + a'  |g)(el.

U(t) = exp (i6(t)N) @ |g)(g| + exp (—if(t)N) @ |e)(e].

where 6(t) = [1 f(r) dr.

15/39



Quantum trajectories

,,,,,

Just before detector D the quantum state is entangled:
[W)g, = (Mg|v)) ®[9) + (Me|¢)) ® [€)

Just after outcome y, the state becomes separable 3:

v <\/(¢|MTMy|1P ) oW
Outcome y obtained with probability B, = (1| M} M, |1))..

Quantum trajectories (Markov chain, stochastic dynamics):

[Yr+1) = { \/W'wk . ’
\/WWK) ¥k = e with probability (x| MiMe|vy);

with state |¢x) and measurement outcome yx € {g, e} at time-step k:

= g with probability (yi|M}Mg|ix);

3Measurement operator O = Is ® (|e){e| — |g)(g|).
16/39



Quantum Non Demolition (QND) measurement of photons #

|W) g, = U, UcUR, (lv) ® 19))
L —— Un, = (( 252 (gl + (*'-"&f'e ) tel)
— > ﬁz D
< y—= Uc=e"2"®|g)(gl+¢ ? N®le) (el
|W)e K\\U)Rz Ug, = U,q1

Us, (I9) ®19)) = 5 (Iv) @ |9) + [¥) @ e))
Usln, (19 019) = J5( (#0010 + (¢210)) w1e)

0

W)n, =3 ((e2%)) & )+ 1o + (#3411 ) & (—1g) + )
= (—isin(#N))) © [g) + (cos(RN)¥) ) © le)

Thus My = —isin(%2 N) and M, = cos( 2 N).
Quantum Monte-Carlo simulations with MATLAB:
IdealModelPhotonBoxWaveFunction.m

“M. Brune, .. .: : Manipulation of photons in a cavity by dispersive atom-field

coupling: quantum non-demolition measurements and generation of "Schrédinger cat”
states . Physical Review A, 45:5193-5214, 1992.

17/39



The Markov ideal model (3) Z

Just before D, the field/atom state is entangled:

My|y) @ |g) + Me|i) © |e)

Denote by 1 € {g, e} the measurement outcome in detector D: with
probability P, = (1/)|MLMNW> we get . Just after the measurement
outcome p = y, the state becomes separable:

U= —— (M Qy) = | ——r— Q |y).
Markov process (density matrix formulation p ~ |¢)(¢)
MgypM; . -
Lﬁ" with probability Py = Tr (MgpML);

p =
" S aeMi.. with probability P = Tr (MopM}).

Kraus map: I (o, /p) = K(p) = MgpM}, + MepM5.

18/39



LKB photon-box: Markov process with detection efficiency

vings
Tec n*

» With pure state p = |¢) (|, we have
1

Tr (MupML)

when the atom collapses in . = g, e with proba. Tr (MupML).

P+ = ) (4| = M, oM,

» Detection efficiency: the probability to detect the atom is
n € [0, 1]. Three possible outcomes for y: y = g if detection in g,
y = eif detection in e and y = 0 if no detection.

The only possible update is based on p: expectation p of |1 ) (1|
knowing p and the outcome y € {g, e,0}.

MgpM}

W if y=a9, probablllty n Tl’(Mgng)
pr =19 MeoMi bability  Tr (MepM,
TH(MopMy) if y = e, probability n Tr (MepMe)

MgpM}, + McpMY, it y = 0, probability 1 — n

p+ does not remain pure: the quantum state p, becomes a mixed

state; |¢;) becomes physically irrelevant.
19/39



LKB photon-box: Markov process with detection errors (1)

,,,,,

> With pure state p = |¢) (|, we have
"

Tr (MNpML)

when the atom collapses in © = g, e with proba. Tr (MupML).

P+ = V) (Y4 = MHPML

» Detection error rates: P(y = e/u = g) =ng € [0, 1] the
probability of erroneous assignation to e when the atom
collapses in g; P(y = g/ = €) = ne € [0, 1] (given by the
contrast of the Ramsey fringes).

Bayes law: expectation p, of |, ) (11| knowing p and the imperfect
detection y.

(1_ng)MgPM;+neMePMl T t .
Tr((1_ng)MgpM;+neMepM1)'fy = g, prob. r <(1 — 19)MgpMg -+ "eMepMe)’

P+ =
ngMgPM;‘f‘U —ne)MePMl

Tr(ngMgPM;JrU —1e)MepM}

)if y = e, prob. Tr (ngMgpM; +(1— ne)MepML).

p+ does not remain pure: the quantum state p. becomes a mixed
state; 1) becomes physically irrelevant. 20/39



LKB photon-box: Markov process with detection errors (2)

,,,,,

We get
(1 *Wg)MgPM;JrﬁeMePMZ
Tr((1=mg)MgpMj+neMepM} )’

ngMgpMj+(1—ne)MepM}
TT(UQMgPM;‘FU —ne)MEPMl)

with prob. Tr ((1 — ng)MgpM}, + neMeng);
P+ =

with prob. Tr (ngMgpM_I, +(1— ne)MepML).
Key point:
Tr (1= 1g)MgpMl + noMopML) and Tr (1gMgpM} + (1 = 1) MopM}, )

are the probabilities to detect y = g and e, knowing p.
Generalization by merging a Kraus map K(p) = >, MMpML where

>, MM, = I with a left stochastic matrix (,.,.):

ZH ny,,LMupML
P+ = "
Tr (z# nMM#pM#)

when we detect y = 1.

The probability to detect y = 1/ knowing pis Tr (ZM ny,MMupMD.

21/39



Cavity decay (decoherence) seen as unread measurements yog

WWWWW

The cavity mirrors play the role of a detector with two possible
outcomes:
» zero photon annihilation during AT: Kraus operator
Mo —1— 5T L" L +, probability ~ Tr (Mop:M}) with back
MOPtM(T)
Tr(MoptM(J;) '
» one photon annihilation during AT: Kraus operator
M_; = VATL_, probability ~ Tr (M,1,o,MT_1) with back
M_ipM'
(MM’

action pyiat &~

action P+ AT =

where

L = 1a

Tcav
is the Lindbald operator associated to cavity damping (see
bellow the continuous time models) with T4, the photon life
time and AT <« T4, the sampling period (T¢q, = 100 ms and
AT =~ 100 us for the LKB photon Box).

22/39



Cavity decoherence: cavity decay, thermal photon(s)

,,,,,

Three possible outcomes:
» zero photon annihilation during AT: Kraus operator
Mo =1 - 5TLT Ly — ATL]Ly, probability ~ Tr (MopM} ) with
Mop:M]
Tr(Mop:M})
» one photon annihilation during AT: Kraus operator
M_; = VATL_;, probability ~ Tr (M_1 peMt 1) with back action

0 - M—1PIMJL1
t+AT Tf(qutML)

back action pr a7 ~

» one photon creation during AT: Kraus operator My = v/ATL;,
-
probability ~ Tr (M1 prI) with back action priar &~ —2:

Tr(Mthj)
— ./ 140m — [/ n gf
L=,/ T.la, L= \/Tra

are the Lindbald operators associated to cavity decoherence : Ty,

the photon life time, AT « T4, the sampling period and ny, is the

average of thermal photon(s) (vanishes with the environment

temperature) (n+ ~ 0.05 for the LKB photon box). 23/39
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Experimental results °

Valeur moyenne du nombre de photons le
long d'une longue séquence de mesure:
observation d'une trajectoire stochastique

Nombre moyen de photons <n>

See the quantum Monte Carlo simulations of the Matlab script:

o
1

Une trajectoire correspondant au résultat initial n=5

™ Des mesures répétées A partir de la probabilité P,(n)
confirment n=5 inférée aprés chaque atome, on
K | déduit le nombre moyen de photons:

(n)= 2711’,(11) (6-10)

Sau[s quantiques vers le vide dus a
I'amortissement du champ

I'état cohérent

i Premiére observation des
trajectoires stochastiques du
hojection de champ, en trés bon accord avec les

prédictions théoriques (simulations

surn=5 de Monte- Carlo. Voir cours
J précédents).
o] LMMLU L
T T T T
0 100 200 300 400 500 600 700

time (ms)

RealisticModelPhotonBox.m.

SFrom Serge Haroche, Collége de France, notes de cours 2007/2008.

Ve
F Tt‘(‘h*
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Feedback: Kraus operators depend on the control input u® }Zi

u = 0: dispersive interaction with

N
My(0) = cos ((bo 2+¢H) and M¢(0) = sin (W) 7
u=1: resonant interaction with atom prepared in |e)
(6
sin (?Ux/N)
- 1 - Y0

My(1) = —=——a' and Me(1) = cos,(2 N+l)

u = —1: resonant interaction with atom prepared in |g)
sin vN
)= % /N )= — 7( 2
Mg(—1) = cos (¢VN) and Mq(~1) = ~a v

(¢0, PR, 00) are constant parameters.

8Zhou, X.; Dotsenko, |.; Peaudecerf, B.; Rybarczyk, T.; Sayrin, C.; S.
Gleyzes, J. R.; Brune, M.; Haroche, S. Field locked to Fock state by quantum
feedback with single photon corrections. Physical Review Letter, 2012, 108,
243602.

25/39



The Lyapunov feedback law you

WINES
Tec n*

» Compute uk as a function of p, such that px converges towards
the goal |n)(n|.

» Lyapunov function V(p) = Tr ((N — n)?p) for example: when
ux = 0 we have

IE (V(oks1 / prs uk = 0) = V(px)  (martingale)

» Lyapunov control: choose uy in {0, 1, —1} at each step k in order
to minimize u — I (V(pki1 / px, v).

> In closed-loop, £ (V(pk.1) will be decreasing. It is reasonable to
guess that V(pk) tends to 0, i.e., that px converges to |n)(n|.

26/39



Closed-loop experimental results

N

Sensor
detection
—‘u’;’ Q o o

Distance, d
o
o

o
o
=

A

T T T

i T T T
| |
33
|
1 L 1

absorber
1 1

8 T T T T T

Photon number, n

T T
0 20 40 60 80 100

Time [ms]

T
120

140

0.8

0.6

0.4

0.2

0.0

Zhou et al. Field
locked to  Fock
state by quantum
feedback with single
photon corrections.

Physical Review
Letter, 2012, 108,
243602.

See the closed-loop quantum Monte Carlo simulations of the Matlab

script: RealisticFeedbackPhotonBox.m.

vings
Tec n*
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Stochastic Master Equation (SME) and quantum filtering

,,,,,

Discrete-time models are Markov processes
K .
Pkl = 'I?(I?(T(f();i))’ with proba. py, (p«) = Tr (K, (p«))
where each K, is a linear completely positive map admitting the

expression
p)=>_ M, oM, , with > M, M,, =1
7

K = Zy K, corresponds to a Kraus maps (ensemble average,
quantum channel)

E (ps1lpn) = Z Ky (pk)-

Quantum filtering (Belavkin quantum fllters)
data: initial quantum state pg, past measurement outcomes
yiforle{0,..., k—1};
goal: estimation of p, via the recurrence (quantum filter)

KYl(pl)
= —— 7 [=0,...,k—1.
P T (K (on))

28/39
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Continuous/discrete-time Stochastic Master Equation (SME) yog

Discrete-time models are Markov processes
K \
Pkl = %a with proba. py, (p«) = Tr (K, (p«))

associated to Kraus maps (ensemble average, quantum channel)

IE (pks110x) = K(px) = > Ky (px)
y
Continuous-time models are stochastic differential systems
- 1
dpt = <—;§[H, pi] + Z L,peL}, — E(LJLLVPI + p,LlLl,)) dt
+ Z \/UT(LVPT +pell — Tr ((Lu + Ll)ﬂt) Pt) aw,,

driven by Wiener process’ dW,,; = dy,: — /m, Tr ((LV +L) p,) dt
with measures y, ;, detection efficiencies n,, € [0, 1] and
Lindblad-Kossakowski master equations (1, = 0):

d ; 1
P = w1+ D Lupikl — S(LiLopi+ L] L)

"and/or Poisson processes, see next slides. 29/39



Ito stochastic calculus pog
Given a SDE
aX; = F(X;, ydt + Y G, (X, H)aW,.,

we have the following chain rule summarized by the heuristic
formulae:

dW, ;= O(Vdt), dW, dW, =4, dt.
Ito’s rule Defining f; = f(X;) a C? function of X, we have

of 02 f
dfy = ( X,F(Xh ) 2 ax2‘ (G (Xta )’ GV(XT’ t») dt
+Z Xh dWyt
Furthermore
d of
E (dtft X1> = ]E ( X[, 2 Z axz‘ Xta )7 Gy(Xl‘v t))) .

30/39



Continuous/discrete-time diffusive SME

(N[S
Tec n*

With a single imperfect measure dy; = /5 Tr ((L +Lh p;) dt + dW; and detection
efficiency n € [0, 1], the quantum state p; is usually mixed and obeys to

: 1
Aot = (—%{H, o+ Loikt — 2 (Lt + thL)) ot

(Lot o = T (L L) 1)
driven by the Wiener process dW; (Gaussian law of mean 0 and variance dt).
With Ito rules, it can be written as the following "discrete-time" Markov model
May,peM}y, + (1 —n)Lp;LT ot

dyt

Tr (Mdy, MY, + (1 = n)LpLt dt)

Pt+dt =

with Mgy, = I + (—é -3 (LTL)) dt + \/ndy:L. The probability to detect dy; is
given by the following density

<2

Tr (MsptMl (- n)LptLTdt>
e 2d ds

Vverdt

close to a Gaussian law of variance dt and mean /5 Tr ((L +Lh pf) at.

]P’(dy, €[s,s+ ds]) =

31/39



A key physical example in circuit QED®

B it
Ret
compact am

readout resonator HEMT
pulse

guantum
JPC noise

AR

(AN AT
— I—D—

’@‘trans mon

qubit

Superconducting qubit
dispersively coupled
to a cavity traversed
by a microwave signal
(input/output theory).
The back-action on the
qubit state of a single
measurement of  both
output field quadratures /;
and Q is described by a
simple SME for the qubit
density operator.

dp: = ( — é[uax + voy, pi] + y(ozpoz — p,))dt
+\/m1/2(0zpt + proz — 2 Tt (ozpt) pr) AW/ + 13/1y/2[ 0, pr] dW?

with Iy and Q; given by dly = \/nv/2 Tr (20%p;) dt + dW/ and

aqQ; = tho, where v > 0 is related to the measurement strength and
n € [0, 1] is the detection efficiency. u and v are the two control inputs.

8M. Hatridge et al. Quantum Back-Action of an Individual
Variable-Strength Measurement. Science, 2013, 339, 178-181.

vings
Tec n*
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Qubit, density matrix and Bloch sphere Z

With ) = vg|g) + ve|€) satisfying 1 %|v) = H|v), the density
operator corresponds to p = |¢)(¢)|. Then p is non negative
Hermitian operator such that Tr(p) = 1 and obeying to

d z[

a’” = " h
I4+xox+yoy+zoz . .
+ with

H, p].

For mixed states, p =
x = Tr(oxp), y = Tr(oyp) and z = Tr(ozp).
Then (x, y, z) € R? are the cartesian coordinates of vector M
inside Bloch sphere ( Tr (p?) = x2 + y? + 22 < 1):
5;/\77 = (UT+ v]) x M.

is another formulation of p = —%[uox + vay, p]. Here u stands
for the rotation speed around x-axis and v the rotation speed

around y-axis.
33/39



QND measurement: asymptotic behavior in open-loop yog

Almost such convergence: Consider the SME

dpi = (= sluox + voy, pi] + ¥(0zpoz — py)) dt
+\V/m/2(0zpt + proz — 2 Tt (ozp1) pr) AW/ + 13/11v/2[ 0, pr] d W2

withu=v=0andn > 0.

» For any initial state pg, the solution p; converges almost surely
as t — oo to one of the states |g)(g| or |e){e]|.

» The probability of convergence to |g){(g| (respectively |e)(e|) is
given by pg = Tr(|g){(glpo) (respectively Tr(|e)(e|po))-

Proof based on the martingales Vy(p) = Tr(|g){(glp) = (1 — z)/2 and
Ve(p) = Tr(le){e|lp) = (1 + z)/2, and on the sub-martingale
V(p) = T (0zp) = 2%

2
E (aVylp) = E (adVelp) =0, E(aV|p) = 29y (1 - 2%)"dt > 0.
Confirmed by the quantum Monte Carlo simulations:

IdealModelQubit.m
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Adding decoherence due to finite life-time of |e) Z

dpt = (— Luox + vay, pi] +v(ozp0z — pt))dt
+\/17/2(02pt + proz — 2 Tt (azpt) pt) AW, +13/17 /2] 0z, prl dWE

+ (Lopelh — 3 (LbLopt + piLbLe) ) ci

where Lo = \/1/T1|g)(e| and T is the life time of the excited
state |e).
For u = v = 0, convergence of all trajectories towards |g), the
ground state. Proof based on the super-martingales
Ve(p) = Tr(le){elp) = (1 +2)/2:

T
Confirmed by the quantum Monte Carlo simulations:
RealisticModelQubit.m
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Feedback stabilization of the excited state pog

dp: = ( — é[uax + voy, pi] + y(ozpoz — p,))dt
+V171/2(0zpt + proz — 2 Tt (0zp1) pr) AW} + 13/ v/ 2] 0%, p] AW
With u and v arbitrary, we have for V(p) = Tr(ozp) = z,
E (aVilpt) = u Tr (aypr) — v T (oxpt) = uy — vx.

With the quantum state feedback

y Si9ny)

W vy, vy,

T
we get in closed loop IE (aV;|pr) = XX (1 — V) and thus V tends to
converge towards 1, i.e., z tends to converge towards 1. Confirmed
by the closed-loop simulations: IdealFeedbackQubit.m
Robustness of such feedback illustrated by the more realistic
simulations:

RealisticFeedbackQubit.m
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Continuous/discrete-time jump SME 2z

With Poisson process N(t), (dN(t)) = (5+ﬁ Tr (VpeVT) ) dt, and

detection imperfections modeled by # > 0 and 77 € [0, 1], the quantum
state p; is usually mixed and obeys to

dpr = (~ilH. pd + VorVi = L (VIVpr+ V1)) o

Opt +Vp V1 ) =
S B N(t) — (6 +7 Tr (Vp VT
(9+77Tr(Vp,VT) ) (AN = (0-+7 T (Vo V) ) o)

) 7 T
For N(t + df) — N() = 1 we have pr.gr = — 2L 1VPtV

0+7Tr(Vp V)
For dN(t) = 0 we have

Mop:My + (1 — )V Vidt
Tr (MoptMg +(1—7)Vp VTdt)

Pt+dt =

with My = I+ (—iH + 1 (7 Tr (Vp V1) 1= VIV)) dt.
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Continuous/discrete-time diffusive-jump SME

,,,,,

The quantum state p; is usually mixed and obeys to
. 1 1
dpt = <—I[H, pt] + LpelT — E(LTLpt +pelTL) + Vpr VT — E(vT Vpr + p V7 V)> ot

+ \/ﬁ(Lpr + szT - Tr ((L + LT)PI) pr) aw;

(% _ p,> (anet) - (2+7T (Vouv') ) o)
6pt —i—ﬁszV1L

For N(t + dt) — N(t) = 1 we have =
(t+db) = N P T T (Vo VT

For dN(t) = 0 we have
May, ptMJy, + (1 = n)Lp:LTdt + (1 —7)Vp, Vi dt

Tr (Mdy,ptMZyI + (1 = n)lplidt+ (1 =)V Vi dt)

Pt+dt =

with May, = 1+ (—iH — JLTL+ 3 (7 Tr (Vpe V) 1= VIV)) at + /iidyeL.
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Continuous/discrete-time general diffusive-jump SME

vings
Tec n*

The quantum state p; is usually mixed and obeys to

dpy = (—f[H, pdl + S Lupild, — YW Lo+ peld L) + Vo VE = SV Viupr + V] vu)) dt
v

+> Viaw (Lum okl — T ((L,, + Ll)m) Pt) aw,
v

Oppt+ 0 7yt VotV
+Z w M B,

7 aNu (1) = (0 + > 7, 0 T (VoroV! dt>
o\ O+, Tr(V“/p,vZ/) " ( Iz Z/ ok ( w Mz))

n

where n,, € [0, 1], @uﬁu ' > 0 with Ny = Eu Myt < 1 are parameters modelling measurements
imperfections.

Oppt+ 32,0 My V“/PtV:/

If, for some p, Ny, (t + dt) — N, (t) = 1, we have ps g = — .
Op + 32,0y T (Vu/PtV;/)
When YV, dN,(t) = 0, we have

Mdy,P[MZyt +3,(1— nu)LuPiL,T,df + ZMU - ﬁH)V“p[VJdt

T (May, peMly, + 52, (1 = nu)Lupelb ot + 52, (1 = 7,) Vi pr Vi )

Pt+dt =

with Mgy, = 1+ (7/'H i L+ i, (ﬁ“ T (vup,vjt) -V} vu)> dt+ Y, /Ao dy,iL, and
where dy,, = /75 Tr ((L,, +10) p,) at + dw,, ;.
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