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Outline of the lectures (Autumn 2018 at Mines ParisTech )

Lect. 1& 2 (Oct. 24: 11:10-13:00 and 14:00–15:50) Feedback for classical and for
quantum systems; the first experimental realization of a
quantum-state feedback (LKB photon box); three quantum features
(Schrödinger; collapse of the wave packet, tensor product); Quantum
Non Demolition (QND) measurement of photons (ideal Markov model
and Matlab simulations).

Lect. 3 (Nov. 7: 11:10–13:00) Models of the LKB photon box: entanglement between
the probe-qubit and the photons; qubit-measurement back-action on
the photons; measurement errors and imperfections; decoherence as
unread fictitious measurements; discrete-time Markov chain; Kraus
map; quantum trajectories and realistic Matlab simulations of the
photon box

Lect. 4 (Nov. 14: 11:10–13:00) Feedback stabilization of photon-number state:
resonant interaction, the Lyapunov feedback scheme, closed-loop
simulations / experimental data.

Lect. 5 (Nov. 21: 9:00–10:50) The LPA super-conduction qubit under continuous-time
measurements (counting versus homo/hetero-dyne measurements):
continuous-time stochastic master equation (Poisson versus Wiener);
Lindblad master equation; QND measurement of a qubit and Matlab
simulations.

Lect. 6 (Nov. 28: 11:10–13:00) Feedback stabilization of the excited state of a qubit;
quantum-state feedback based on QND measurement;closed-loop
simulations.
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Outline

Notion of Feedback

Discrete-time systems: The LKB photon-box

Continuous-time systems: qubit in circuit QED

Continuous diffusive-jump SME
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Model of classical systems

control

perturbation

measure

system

For the harmonic oscillator of pulsation ω with measured position y ,
controlled by the force u and subject to an additional unknown force
w .

x = (x1, x2) ∈ R2, y = x1

d
dt

x1 = x2,
d
dt

x2 = −ω2x1 + u + w
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Feedback for classical systems

 feedback

observer/controller

perturbation

se
t 

p
o

in
t control

measuresystem

Proportional Integral Derivative (PID) for d2

dt2 y = −ω2y + u + w with
the set point v = yc

u = −Kp
(
y − yc)− Kd

d
dt
(
y − yc)− Kint

∫ (
y − yc)

with the positive gains (Kp,Kd ,Kint) tuned as follows (0 < Ω0 ∼ ω,
0 < ξ ∼ 1, 0 < ε� 1:

Kp = Ω2
0, Kd = 2ξ

√
ω2 + Ω2

0, ,Kint = ε(ω2 + Ω2
0)3/2. 6 / 39



Quantum feedback: the back-action of the measurement.

A typical stabilizing feedback-loop for a classical system

systemcontroller

w

Two kinds of stabilizing feedbacks for quantum systems

1. Measurement-based feedback: controller is classical;
measurement back-action on the system S is stochastic
(collapse of the wave-packet); the measured output y is a
classical signal; the control input u is a classical variable
appearing in some controlled Schrödinger equation; u(t)
depends on the past measurements y(τ), τ ≤ t .

2. Coherent/autonomous feedback and reservoir engineering: the
system S is coupled to the controller, another quantum
system; the composite system, HS⊗Hcontroller , is an
open-quantum system relaxing to some target (separable) state.
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The first experimental realization of a quantum state feedback

The photon box of the Laboratoire Kastler-Brossel (LKB):
group of S.Haroche (Nobel Prize 2012), J.M.Raimond and M. Brune.

u y

1

Stabilization of a quantum state with exactly n = 0, 1, 2, 3, . . . photon(s).
Experiment: C. Sayrin et. al., Nature 477, 73-77, September 2011.

Theory: I. Dotsenko et al., Physical Review A, 80: 013805-013813, 2009.
R. Somaraju et al., Rev. Math. Phys., 25, 1350001, 2013.

H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.
1Courtesy of Igor Dotsenko. Sampling period 80 µs. 8 / 39



Three quantum features emphasized by the LKB photon box2

1. Schrödinger: wave funct. |ψ〉 ∈ H or density op. ρ ∼ |ψ〉〈ψ|
d
dt
|ψ〉 = − i

~H|ψ〉, d
dt
ρ = − i

~ [H, ρ], H = H0 + uH1

2. Origin of dissipation: collapse of the wave packet induced by the
measurement of observable O with spectral decomp.

∑
µ λµPµ:

I measurement outcome µ with proba.
Pµ = 〈ψ|Pµ|ψ〉 = Tr (ρPµ) depending on |ψ〉, ρ just before
the measurement

I measurement back-action if outcome µ = y :

|ψ〉 7→ |ψ〉+ =
Py |ψ〉√
〈ψ|Py |ψ〉

, ρ 7→ ρ+ =
PyρPy

Tr (ρPy )

3. Tensor product for the description of composite systems (S,M):
I Hilbert space H = HS ⊗HM
I Hamiltonian H = HS ⊗ IM + H int + IS ⊗ HM
I observable on sub-system M only: O = IS ⊗OM .

2S. Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities
and Photons. Oxford Graduate Texts, 2006.
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Composite system built with an harmonic oscillator and a qubit.

I System S corresponds to a quantized harmonic oscillator:

HS =

{ ∞∑
n=0

ψn|n〉
∣∣∣∣ (ψn)∞n=0 ∈ l2(C)

}
,

where |n〉 represents the Fock state associated to exactly n
photons inside the cavity

I Meter M is a qu-bit, a 2-level system (idem 1/2 spin
system) : HM = C2, each atom admits two energy levels
and is described by a wave function cg |g〉+ ce|e〉 with
|cg |2 + |ce|2 = 1; atoms leaving B are all in state |g〉

I State of the full system |Ψ〉 ∈ HS ⊗HM :

|Ψ〉 =
+∞∑
n=0

Ψng |n〉 ⊗ |g〉+ Ψne|n〉 ⊗ |e〉, Ψne,Ψng ∈ C.

Ortho-normal basis: (|n〉 ⊗ |g〉, |n〉 ⊗ |e〉)n∈N.
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S: quantum harmonic oscillator (spring system)

I Hilbert space:
HS =

{∑
n≥0 ψn|n〉, (ψn)n≥0 ∈ l2(C)

}
≡ L2(R,C)

I Quantum state space:
D = {ρ ∈ L(HS), ρ† = ρ, Tr (ρ) = 1, ρ ≥ 0} .

I Operators and commutations:
a|n〉 =

√
n |n-1〉, a†|n〉 =

√
n + 1|n + 1〉;

N = a†a, N |n〉 = n|n〉;
[a,a†] = I , af (N) = f (N + I)a;
Dα = eαa†−α†a.
a = X + iP = 1√

2

(
x + ∂

∂x

)
, [X ,P] = ıI/2.

I Hamiltonian: HS/~ = ωca†a + uc(a + a†).
(associated classical dynamics:
dx
dt = ωcp, dp

dt = −ωcx −
√

2uc).

I Classical pure state ≡ coherent state |α〉
α ∈ C : |α〉 =

∑
n≥0

(
e−|α|

2/2 αn
√

n!

)
|n〉; |α〉 ≡ 1

π1/4 eı
√

2x=αe−
(x−
√

2<α)2

2

a|α〉 = α|α〉, Dα|0〉 = |α〉.

|0

|1

|2

ωc

|n

ωc
uc

...
 ..

.
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M: 2-level system, i.e. a qubit (half-spin system)

I Hilbert space:
HM = C2 =

{
cg |g〉+ ce|e〉, cg , ce ∈ C

}
.

I Quantum state space:
D = {ρ ∈ L(HM), ρ† = ρ, Tr (ρ) = 1, ρ ≥ 0} .

I Operators and commutations:
σ- = |g〉〈e|, σ+ = σ-

† = |e〉〈g|
σx = σ- + σ+ = |g〉〈e|+ |e〉〈g|;
σy = iσ- − iσ+ = i |g〉〈e| − i |e〉〈g|;
σz = σ+σ- − σ-σ+ = |e〉〈e| − |g〉〈g|;
σx

2 = I , σxσy = iσz , [σx ,σy ] = 2iσz , . . .

I Hamiltonian: HM/~ = ωqσz/2 + uqσx .

I Bloch sphere representation:
D =

{
1
2

(
I + xσx + yσy + zσz

) ∣∣ (x , y , z) ∈ R3, x2 + y2 + z2 ≤ 1
}

|g

|e
ωq

uq

12 / 39



The Markov ideal model (1)

C

B

D

R 1
R 2

B R 2

I When atom comes out B, |Ψ〉B of the full system is separable
|Ψ〉B = |ψ〉 ⊗ |g〉.

I Just before the measurement in D, the state is in general
entangled (not separable):

|Ψ〉R2 = USM
(
|ψ〉 ⊗ |g〉

)
=
(
Mg |ψ〉

)
⊗ |g〉+

(
Me|ψ〉

)
⊗ |e〉

where USM is a unitary transformation (Schrödinger propagator)
defining the linear measurement operators Mg and Me on HS.
Since USM is unitary, M†gMg + M†eMe = I .
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The Markov ideal model (2)

C

B

D

R 1
R 2

H SM

The unitary propagator USM is derived from Jaynes-Cummings
Hamiltonian HSM in the interaction frame.
Two kinds of qubit/cavity Hamiltonians:
resonant, HSM/~ = i

(
Ω(vt)/2

) (
a† ⊗ σ- − a ⊗ σ+

)
,

dispersive, HSM/~ =
(
Ω2(vt)/(2δ)

)
N ⊗ σz ,

where Ω(x) = Ω0e−
x2

w2 , x = vt with v atom velocity, Ω0 vacuum Rabi
pulsation, w radial mode-width and where δ = ωq − ωc is the detuning
between qubit pulsation ωq and cavity pulsation ωc (|δ| � Ω0).
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Dispersive and resonant Jaynes-Cummings propagators

The solution of ı d
dt U = − i

~HSM(t)U, with U0 = I reads
I for HSM(t)/~ = i f (t)

(
a† ⊗ |g〉〈e| − a ⊗ |e〉〈g|

)
(resonant)

U t = cos
(
θt
2

√
N
)
⊗ |g〉〈g|+ cos

(
θt
2

√
N + I

)
⊗ |e〉〈e|

− a
sin
(
θt
2

√
N
)

√
N

⊗ |e〉〈g| +
sin
(
θt
2

√
N
)

√
N

a† ⊗ |g〉〈e|.

I for HSM(t)/~ = f (t) N ⊗ (|e〉〈e| − |g〉〈g|) (dispersive)

U(t) = exp (iθ(t)N)⊗ |g〉〈g|+ exp (−iθ(t)N)⊗ |e〉〈e|.

where θ(t) =
∫ t

0 f (τ) dτ .
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Quantum trajectories

Just before detector D the quantum state is entangled:

|Ψ〉R2
= (Mg |ψ〉)⊗ |g〉+ (Me|ψ〉)⊗ |e〉

Just after outcome y , the state becomes separable 3:

|Ψ〉D =

(
My√

〈ψ|M†y My |ψ〉
|ψ〉
)
⊗ |y〉.

Outcome y obtained with probability Py = 〈ψ|M†y My |ψ〉..

Quantum trajectories (Markov chain, stochastic dynamics):

|ψk+1〉 =


Mg√

〈ψk |M
†
g Mg |ψk 〉

|ψk 〉, yk = g with probability 〈ψk |M†gMg |ψk 〉;
Me√

〈ψk |M
†
e Me|ψk 〉

|ψk 〉, yk = e with probability 〈ψk |M†eMe|ψk 〉;

with state |ψk 〉 and measurement outcome yk ∈ {g, e} at time-step k :

3Measurement operator O = IS ⊗ (|e〉〈e| − |g〉〈g|).
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Quantum Non Demolition (QND) measurement of photons 4

|Ψ〉R2
= UR2UCUR1

(
|ψ〉 ⊗ |g〉

)
C

B

D

R 1
R 2

B R 2

UR1 = IS ⊗
((
|g〉+|e〉√

2

)
〈g|+

(
−|g〉+|e〉√

2

)
〈e|
)

UC = e−i
φ0
2 N ⊗ |g〉〈g|+ ei

φ0
2 N ⊗ |e〉〈e|

UR2 = UR1

UR1

(
|ψ〉 ⊗ |g〉

)
= 1√

2
(|ψ〉 ⊗ |g〉+ |ψ〉 ⊗ |e〉)

UCUR1

(
|ψ〉 ⊗ |g〉

)
= 1√

2

((
e−i

φ0
2 N |ψ〉

)
⊗ |g〉+

(
ei
φ0
2 N |ψ〉

)
⊗ |e〉

)

|Ψ〉R2
= 1

2

((
e−i

φ0
2 N |ψ〉

)
⊗ (|g〉+ |e〉) +

(
ei
φ0
2 N |ψ〉

)
⊗ (−|g〉+ |e〉)

)
=
(
− i sin(φ0

2 N)|ψ〉
)
⊗ |g〉+

(
cos(φ0

2 N)|ψ〉
)
⊗ |e〉

Thus Mg = −i sin(φ0
2 N) and Me = cos(φ0

2 N).
Quantum Monte-Carlo simulations with MATLAB:
IdealModelPhotonBoxWaveFunction.m

4M. Brune, . . . : Manipulation of photons in a cavity by dispersive atom-field
coupling: quantum non-demolition measurements and generation of "Schrödinger cat"
states . Physical Review A, 45:5193-5214, 1992.
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The Markov ideal model (3)

Just before D, the field/atom state is entangled:

Mg |ψ〉 ⊗ |g〉+ Me|ψ〉 ⊗ |e〉

Denote by µ ∈ {g,e} the measurement outcome in detector D: with
probability Pµ = 〈ψ|M†µMµ|ψ〉 we get µ. Just after the measurement
outcome µ = y , the state becomes separable:

|Ψ〉D = 1√
Py

(My |ψ〉)⊗ |y〉 =

(
My√

〈ψ|M†y My |ψ〉
|ψ〉
)
⊗ |y〉.

Markov process (density matrix formulation ρ ∼ |ψ〉〈ψ|)

ρ+ =


MgρM†g

Tr(MgρM†g )
, with probability Pg = Tr

(
MgρM†g

)
;

MeρM†e
Tr(MeρM†e )

, with probability Pe = Tr
(

MeρM†e
)

.

Kraus map: E (ρ+/ρ) = K (ρ) = MgρM†g + MeρM†e.
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LKB photon-box: Markov process with detection efficiency

I With pure state ρ = |ψ〉〈ψ|, we have

ρ+ = |ψ+〉〈ψ+| =
1

Tr
(

MµρM†µ
)MµρM†µ

when the atom collapses in µ = g,e with proba. Tr
(

MµρM†µ
)

.

I Detection efficiency: the probability to detect the atom is
η ∈ [0,1]. Three possible outcomes for y : y = g if detection in g,
y = e if detection in e and y = 0 if no detection.

The only possible update is based on ρ: expectation ρ+ of |ψ+〉〈ψ+|
knowing ρ and the outcome y ∈ {g,e,0}.

ρ+ =


MgρM†g

Tr(MgρMg) if y = g, probability η Tr (MgρMg)

MeρM†e
Tr(MeρMe) if y = e, probability η Tr (MeρMe)

MgρM†g + MeρM†e if y = 0, probability 1− η

ρ+ does not remain pure: the quantum state ρ+ becomes a mixed
state; |ψ+〉 becomes physically irrelevant.
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LKB photon-box: Markov process with detection errors (1)

I With pure state ρ = |ψ〉〈ψ|, we have

ρ+ = |ψ+〉〈ψ+| =
1

Tr
(

MµρM†µ
)MµρM†µ

when the atom collapses in µ = g,e with proba. Tr
(

MµρM†µ
)

.

I Detection error rates: P(y = e/µ = g) = ηg ∈ [0,1] the
probability of erroneous assignation to e when the atom
collapses in g; P(y = g/µ = e) = ηe ∈ [0,1] (given by the
contrast of the Ramsey fringes).

Bayes law: expectation ρ+ of |ψ+〉〈ψ+| knowing ρ and the imperfect
detection y .

ρ+ =


(1−ηg)MgρM†g +ηeMeρM†e

Tr((1−ηg)MgρM†g +ηeMeρM†e )
if y = g, prob. Tr

(
(1− ηg)MgρM†g + ηeMeρM†e

)
;

ηgMgρM†g +(1−ηe)MeρM†e
Tr(ηgMgρM†g +(1−ηe)MeρM†e )

if y = e, prob. Tr
(
ηgMgρM†g + (1− ηe)MeρM†e

)
.

ρ+ does not remain pure: the quantum state ρ+ becomes a mixed
state; |ψ+〉 becomes physically irrelevant. 20 / 39



LKB photon-box: Markov process with detection errors (2)

We get

ρ+ =


(1−ηg)MgρM†g +ηeMeρM†e

Tr((1−ηg)MgρM†g +ηeMeρM†e )
, with prob. Tr

(
(1− ηg)MgρM†g + ηeMeρM†e

)
;

ηgMgρM†g +(1−ηe)MeρM†e
Tr(ηgMgρM†g +(1−ηe)MeρM†e )

with prob. Tr
(
ηgMgρM†g + (1− ηe)MeρM†e

)
.

Key point:

Tr
(

(1− ηg)MgρM†g + ηeMeρM†e
)

and Tr
(
ηgMgρM†g + (1− ηe)MeρM†e

)
are the probabilities to detect y = g and e, knowing ρ.
Generalization by merging a Kraus map K (ρ) =

∑
µ MµρM†µ where∑

µ M†µMµ = I with a left stochastic matrix (ηµ′,µ):

ρ+ =

∑
µ ηy,µMµρM†µ

Tr
(∑

µ ηy,µMµρM†µ
) when we detect y = µ′.

The probability to detect y = µ′ knowing ρ is Tr
(∑

µ ηy,µMµρM†µ
)

.
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Cavity decay (decoherence) seen as unread measurements

The cavity mirrors play the role of a detector with two possible
outcomes:

I zero photon annihilation during ∆T : Kraus operator
M0 = I − ∆T

2 L†−1L−1, probability ≈ Tr
(

M0ρtM
†
0

)
with back

action ρt+∆T ≈ M0ρt M
†
0

Tr
(

M0ρt M
†
0

) .

I one photon annihilation during ∆T : Kraus operator
M−1 =

√
∆T L−1, probability ≈ Tr

(
M−1ρtM

†
−1

)
with back

action ρt+∆T ≈
M−1ρt M

†
−1

Tr
(

M−1ρt M
†
−1

)
where

L−1 =
√

1
Tcav

a

is the Lindbald operator associated to cavity damping (see
bellow the continuous time models) with Tcav the photon life
time and ∆T � Tcav the sampling period (Tcav = 100 ms and
∆T ≈ 100 µs for the LKB photon Box).
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Cavity decoherence: cavity decay, thermal photon(s)

Three possible outcomes:
I zero photon annihilation during ∆T : Kraus operator

M0 = I − ∆T
2 L†−1L−1 − ∆T

2 L†1L1, probability ≈ Tr
(

M0ρtM†0
)

with

back action ρt+∆T ≈ M0ρt M†0
Tr(M0ρt M†0 )

.

I one photon annihilation during ∆T : Kraus operator
M−1 =

√
∆T L−1, probability ≈ Tr

(
M−1ρtM†−1

)
with back action

ρt+∆T ≈
M−1ρt M†−1

Tr(M−1ρt M†−1)

I one photon creation during ∆T : Kraus operator M1 =
√

∆T L1,

probability ≈ Tr
(

M1ρtM†1
)

with back action ρt+∆T ≈ M1ρt M†1
Tr(M1ρt M†1 )

where
L−1 =

√
1+nth
Tcav

a, L1 =
√

nth
Tcav

a†

are the Lindbald operators associated to cavity decoherence : Tcav
the photon life time, ∆T � Tcav the sampling period and nth is the
average of thermal photon(s) (vanishes with the environment
temperature) (nth ≈ 0.05 for the LKB photon box). 23 / 39



Experimental results 5

Valeur moyenne du nombre de photons le
long d’une longue séquence de mesure:

observation d’une trajectoire stochastique
Une trajectoire correspondant au résultat initial n=5

Sauts quantiques vers le vide dus à
l’amortissement du champ

Des mesures répétées
confirment n=5

Projection de
l’état cohérent

sur n=5

n
N

om
br

e 
m

oy
en

 d
e 

ph
ot

on
s

A partir de la probabilité Pi(n)
inférée après chaque atome, on

déduit le nombre moyen de photons:

Première observation des
trajectoires stochastiques du

champ, en très bon accord avec les
prédictions théoriques (simulations

de Monte- Carlo. Voir cours
précédents).

n = nP
i
(n)

n

! (6 "10)

See the quantum Monte Carlo simulations of the Matlab script:
RealisticModelPhotonBox.m.

5From Serge Haroche, Collège de France, notes de cours 2007/2008.
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Feedback: Kraus operators depend on the control input u6

u = 0: dispersive interaction with

Mg(0) = cos
(
φ0N + φR

2

)
and Me(0) = sin

(
φ0N + φR

2

)
,

u = 1: resonant interaction with atom prepared in |e〉

Mg(1) =
sin
(
θ0
2

√
N
)

√
N

a† and Me(1) = cos
(
θ0
2

√
N + I

)
u = −1: resonant interaction with atom prepared in |g〉

Mg(−1) = cos
(
θ0
2

√
N
)

and Me(−1) = −a
sin
(
θ0
2

√
N
)

√
N

(φ0, φR , θ0) are constant parameters.
6Zhou, X.; Dotsenko, I.; Peaudecerf, B.; Rybarczyk, T.; Sayrin, C.; S.

Gleyzes, J. R.; Brune, M.; Haroche, S. Field locked to Fock state by quantum
feedback with single photon corrections. Physical Review Letter, 2012, 108,
243602.
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The Lyapunov feedback law

I Compute uk as a function of ρk such that ρk converges towards
the goal |n̄〉〈n̄|.

I Lyapunov function V (ρ) = Tr
(
(N − n̄)2ρ

)
for example: when

uk = 0 we have

E (V (ρk+1 / ρk ,uk = 0) = V (ρk ) (martingale)

I Lyapunov control: choose uk in {0,1,−1} at each step k in order
to minimize u 7→E (V (ρk+1 / ρk ,u).

I In closed-loop, E (V (ρk+1) will be decreasing. It is reasonable to
guess that V (ρk ) tends to 0, i.e., that ρk converges to |n̄〉〈n̄|.
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Closed-loop experimental results

Zhou et al. Field
locked to Fock
state by quantum
feedback with single
photon corrections.
Physical Review
Letter, 2012, 108,
243602.

See the closed-loop quantum Monte Carlo simulations of the Matlab
script: RealisticFeedbackPhotonBox.m.
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Stochastic Master Equation (SME) and quantum filtering

Discrete-time models are Markov processes
ρk+1 =

K yk (ρk )

Tr(K yk (ρk ))
, with proba. pyk (ρk ) = Tr (K yk (ρk ))

where each K y is a linear completely positive map admitting the
expression

K y (ρ) =
∑
µ

My,µρM†y,µ with
∑
y,µ

M†y,µMy,µ = I .

K =
∑

y K y corresponds to a Kraus maps (ensemble average,
quantum channel)

E (ρk+1|ρk ) = K (ρk ) =
∑

y

K y (ρk ).

Quantum filtering (Belavkin quantum filters)

data: initial quantum state ρ0, past measurement outcomes
yl for l ∈ {0, . . . , k − 1};

goal: estimation of ρk via the recurrence (quantum filter)

ρl+1 =
K yl (ρl )

Tr (K yl (ρl ))
, l = 0, . . . , k − 1.
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Continuous/discrete-time Stochastic Master Equation (SME)

Discrete-time models are Markov processes
ρk+1 =

K yk (ρk )

Tr(K yk (ρk ))
, with proba. pyk (ρk ) = Tr (K yk (ρk ))

associated to Kraus maps (ensemble average, quantum channel)

E (ρk+1|ρk ) = K (ρk ) =
∑

y

K y (ρk )

Continuous-time models are stochastic differential systems

dρt =

(
− i

~ [H, ρt ] +
∑
ν

LνρtL†ν −
1
2

(L†νLνρt + ρtL†νLν)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρtL†ν − Tr

(
(Lν + L†ν)ρt

)
ρt

)
dWν,t

driven by Wiener process7 dWν,t = dyν,t −√ην Tr
(

(Lν + L†ν) ρt

)
dt

with measures yν,t , detection efficiencies ην ∈ [0,1] and
Lindblad-Kossakowski master equations (ην ≡ 0):

d
dt
ρ = − i

~ [H, ρ] +
∑
ν

LνρtL†ν −
1
2

(L†νLνρt + ρtL†νLν)

7and/or Poisson processes, see next slides. 29 / 39



Ito stochastic calculus

Given a SDE

dXt = F (Xt , t)dt +
∑
ν

Gν(Xt , t)dWν,t ,

we have the following chain rule summarized by the heuristic
formulae:

dWν,t = O(
√

dt), dWν,tdWν′,t = δν,ν′dt .

Ito’s rule Defining ft = f (Xt ) a C2 function of X , we have

dft =

(
∂f
∂X

∣∣∣
Xt

F (Xt , t) +
1
2

∑
ν

∂2f
∂X 2

∣∣∣
Xt

(Gν(Xt , t),Gν(Xt , t))

)
dt

+
∑
ν

∂f
∂X

∣∣∣
Xt

Gν(Xt , t)dWν,t .

Furthermore

E
(

d
dt

ft

∣∣∣∣ Xt

)
= E

(
∂f
∂X

∣∣∣
Xt

F (Xt , t) +
1
2

∑
ν

∂2f
∂X 2

∣∣∣
Xt

(Gν(Xt , t),Gν(Xt , t))

)
.
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Continuous/discrete-time diffusive SME

With a single imperfect measure dyt =
√
η Tr

(
(L + L†) ρt

)
dt + dWt and detection

efficiency η ∈ [0, 1], the quantum state ρt is usually mixed and obeys to

dρt =

(
− i

~ [H, ρt ] + Lρt L† −
1
2

(
L†Lρt + ρt L†L

))
dt

+
√
η

(
Lρt + ρt L† − Tr

(
(L + L†)ρt

)
ρt

)
dWt

driven by the Wiener process dWt (Gaussian law of mean 0 and variance dt).

With Itō rules, it can be written as the following "discrete-time" Markov model

ρt+dt =
Mdyt ρt M

†
dyt

+ (1− η)Lρt L†dt

Tr
(

Mdyt ρt M
†
dyt

+ (1− η)Lρt L†dt
)

with Mdyt = I +
(
− i

~H − 1
2

(
L†L

))
dt +

√
ηdyt L. The probability to detect dyt is

given by the following density

P
(

dyt ∈ [s, s + ds]

)
=

Tr
(

Msρt M
†
s + (1− η)Lρt L†dt

)
√

2πdt
e−

s2
2dt ds

close to a Gaussian law of variance dt and mean
√
η Tr

(
(L + L†) ρt

)
dt .
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A key physical example in circuit QED8

Superconducting qubit
dispersively coupled
to a cavity traversed
by a microwave signal
(input/output theory).
The back-action on the
qubit state of a single
measurement of both
output field quadratures It
and Qt is described by a
simple SME for the qubit
density operator.

dρt =
(
− i

2 [uσx + vσy , ρt ] + γ(σzρσz − ρt )
)
dt

+
√
ηγ/2

(
σzρt + ρtσz − 2 Tr (σzρt ) ρt

)
dW I

t + ı
√
ηγ/2[σz , ρt ]dW Q

t

with It and Qt given by dIt =
√
ηγ/2 Tr (2σzρt ) dt + dW I

t and
dQt = dW Q

t , where γ ≥ 0 is related to the measurement strength and
η ∈ [0,1] is the detection efficiency. u and v are the two control inputs.

8M. Hatridge et al. Quantum Back-Action of an Individual
Variable-Strength Measurement. Science, 2013, 339, 178-181.
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Qubit, density matrix and Bloch sphere

With |ψ〉 = ψg |g〉+ ψe|e〉 satisfying ı~ d
dt |ψ〉 = H|ψ〉, the density

operator corresponds to ρ = |ψ〉〈ψ|. Then ρ is non negative
Hermitian operator such that Tr (ρ) = 1 and obeying to

d
dt
ρ = − ı

~
[H, ρ].

For mixed states, ρ =
I+xσx +yσy +zσz

2 with

x = Tr (σxρ) , y = Tr (σyρ) and z = Tr (σzρ) .

Then (x , y , z) ∈ R3 are the cartesian coordinates of vector ~M
inside Bloch sphere ( Tr

(
ρ2) = x2 + y2 + z2 ≤ 1):

d
dt
~M = (u~ı+ v~)× ~M.

is another formulation of d
dt ρ = − i

2 [uσx + vσy , ρ]. Here u stands
for the rotation speed around x-axis and v the rotation speed
around y -axis.
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QND measurement: asymptotic behavior in open-loop

Almost such convergence: Consider the SME

dρt =
(
− i

2 [uσx + vσy , ρt ] + γ(σzρσz − ρt )
)
dt

+
√
ηγ/2

(
σzρt + ρtσz − 2 Tr (σzρt ) ρt

)
dW I

t + ı
√
ηγ/2[σz , ρt ]dW Q

t

with u = v = 0 and η > 0.

I For any initial state ρ0, the solution ρt converges almost surely
as t →∞ to one of the states |g〉〈g| or |e〉〈e|.

I The probability of convergence to |g〉〈g| (respectively |e〉〈e|) is
given by pg = Tr (|g〉〈g|ρ0) (respectively Tr (|e〉〈e|ρ0)).

Proof based on the martingales Vg(ρ) = Tr (|g〉〈g|ρ) = (1− z)/2 and
Ve(ρ) = Tr (|e〉〈e|ρ) = (1 + z)/2, and on the sub-martingale
V (ρ) = Tr2 (σzρ) = z2:

E (dVg |ρt
)

= E (dVe|ρt ) = 0, E (dV |ρt ) = 2ηγ
(
1− z2)2

dt ≥ 0.

Confirmed by the quantum Monte Carlo simulations:
IdealModelQubit.m
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Adding decoherence due to finite life-time of |e〉

dρt =
(
− i

2 [uσx + vσy , ρt ] + γ(σzρσz − ρt )
)
dt

+
√
ηγ/2

(
σzρt +ρtσz −2 Tr (σzρt ) ρt

)
dW I

t + ı
√
ηγ/2[σz , ρt ]dW Q

t

+
(

LeρtL
†
e − 1

2

(
L†eLeρt + ρtL

†
eLe

))
dt

where Le =
√

1/T1|g〉〈e| and T1 is the life time of the excited
state |e〉.
For u = v = 0, convergence of all trajectories towards |g〉, the
ground state. Proof based on the super-martingales
Ve(ρ) = Tr (|e〉〈e|ρ) = (1 + z)/2:

E (dVe|ρt ) = − 1
T1

Ve dt .

Confirmed by the quantum Monte Carlo simulations:
RealisticModelQubit.m
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Feedback stabilization of the excited state

dρt =
(
− i

2 [uσx + vσy , ρt ] + γ(σzρσz − ρt )
)
dt

+
√
ηγ/2

(
σzρt + ρtσz − 2 Tr (σzρt ) ρt

)
dW I

t + ı
√
ηγ/2[σz , ρt ]dW Q

t

With u and v arbitrary, we have for V (ρ) = Tr (σzρ) = z,

E (dVt |ρt ) = u Tr (σyρt )− v Tr (σxρt ) = uy − vx .

With the quantum state feedback

u =
sign(y)

T
(1− Vt ), v = −sign(x)

T
(1− Vt )

we get in closed loop E (dVt |ρt ) = |x|+|y|
T (1− Vt ) and thus V tends to

converge towards 1, i.e., z tends to converge towards 1. Confirmed
by the closed-loop simulations: IdealFeedbackQubit.m
Robustness of such feedback illustrated by the more realistic
simulations:
RealisticFeedbackQubit.m
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Continuous/discrete-time jump SME

With Poisson process N(t), 〈dN(t)〉 =
(
θ + η Tr

(
VρtV †

) )
dt , and

detection imperfections modeled by θ ≥ 0 and η ∈ [0,1], the quantum
state ρt is usually mixed and obeys to

dρt =
(
−i[H, ρt ] + VρtV † − 1

2
(V †Vρt + ρtV †V )

)
dt

+

(
θρt + ηVρtV †

θ + η Tr (VρtV †)
− ρt

)(
dN(t)−

(
θ + η Tr

(
VρtV †

) )
dt
)

For N(t + dt)− N(t) = 1 we have ρt+dt =
θρt + ηVρtV †

θ + η Tr (VρtV †)
.

For dN(t) = 0 we have

ρt+dt =
M0ρtM

†
0 + (1− η)VρtV †dt

Tr
(

M0ρtM
†
0 + (1− η)VρtV †dt

)
with M0 = I +

(
−iH + 1

2

(
η Tr

(
VρtV †

)
I − V †V

))
dt .
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Continuous/discrete-time diffusive-jump SME

The quantum state ρt is usually mixed and obeys to

dρt =

(
−i[H, ρt ] + LρtL† −

1
2
(L†Lρt + ρtL†L) + VρtV † −

1
2
(V †Vρt + ρtV †V )

)
dt

+
√
η

(
Lρt + ρtL† − Tr

(
(L + L†)ρt

)
ρt

)
dWt

+

(
θρt + ηVρtV †

θ + η Tr (VρtV †)
− ρt

)(
dN(t)−

(
θ + η Tr

(
VρtV †

))
dt
)

For N(t + dt)− N(t) = 1 we have ρt+dt =
θρt + ηVρtV †

θ + η Tr (VρtV †)
.

For dN(t) = 0 we have

ρt+dt =
Mdyt ρtM†dyt

+ (1− η)LρtL†dt + (1− η)VρtV †dt

Tr
(

Mdyt ρtM†dyt
+ (1− η)LρtL†dt + (1− η)VρtV †dt

)
with Mdyt = I +

(
−iH − 1

2 L†L + 1
2

(
η Tr

(
VρtV †

)
I − V †V

))
dt +

√
ηdytL.
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Continuous/discrete-time general diffusive-jump SME

The quantum state ρt is usually mixed and obeys to

dρt =

(
−i[H, ρt ] +

∑
ν

Lνρt L
†
ν −

1
2 (L†νLνρt + ρt L

†
νLν ) + Vµρt V

†
µ −

1
2 (V†µVµρt + ρt V

†
µVµ)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρt L

†
ν − Tr

(
(Lν + L†ν )ρt

)
ρt

)
dWν,t

+
∑
µ

 θµρt +
∑
µ′ ηµ,µ′Vµρt V

†
µ

θµ +
∑
µ′ ηµ,µ′ Tr

(
Vµ′ρt V

†
µ′
) − ρt


dNµ(t)−

(
θµ +

∑
µ′
ηµ,µ′ Tr

(
Vµ′ρt V

†
µ′
) )

dt



where ην ∈ [0, 1], θµ, ηµ,µ′ ≥ 0 with ηµ′ =
∑
µ ηµ,µ′ ≤ 1 are parameters modelling measurements

imperfections.

If, for some µ, Nµ(t + dt) − Nµ(t) = 1, we have ρt+dt =
θµρt +

∑
µ′ ηµ,µ′Vµ′ρt V

†
µ′

θµ +
∑
µ′ ηµ,µ′ Tr

(
Vµ′ρt V

†
µ′
) .

When ∀µ, dNµ(t) = 0, we have

ρt+dt =
Mdyt ρt M

†
dyt

+
∑
ν (1− ην )Lνρt L

†
νdt +

∑
µ(1− ηµ)Vµρt V

†
µdt

Tr
(

Mdyt ρt M
†
dyt

+
∑
ν (1− ην )Lνρt L

†
νdt +

∑
µ(1− ηµ)Vµρt V

†
µdt
)

with Mdyt = I +
(
−iH − 1

2
∑
ν L†νLν + 1

2
∑
µ

(
ηµ Tr

(
Vµρt V

†
µ

)
I − V†µVµ

))
dt +

∑
ν
√
ηνdyνt Lν and

where dyν,t =
√
ην Tr

(
(Lν + L†ν ) ρt

)
dt + dWν,t .
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