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This lecture covers Schrieffer-Wolff perturbation theory and the Jaynes-Cummings model.

I. JAYNES-CUMMINGS HAMILTONIAN

The following Hamiltonian describes a spin—% interacting with a harmonic oscillator

H/h = Yart g L +wl,®adatglo™®at+o ®d) = %az + wyala+ gloTa+ o al).

2
(1)

The spin is described by the Pauli matrices o, together with the identity I,, whereas for

the harmonic oscillator we have the bosonic commutation relation [a,a’] = 1 as before.

A. Exact diagonalization

To diagonalize this Hamiltonian, it is simplest to find a conserved quantity, i.e. an operator
that commutes with it. This is the excitation number N = a'a + # We leave the proof
that [N, H] = 0 as an exercise. Then N and H will be diagonal in the same basis.

The eigenspaces of N are Vo = {]0,0)}, V1 = {|0,1),|1,0)},...,V, ={|[n — 1,1),|n,0)},...
where the subscript of V' denotes the eigenvalue of N, and the two labels of the kets count
the number of excitations in the simple harmonic oscillator and in the spin, respectively.

For the one-dimensional eigenspace V4, the eigenenergy is Ey o = —w,/2. Over V,, for n > 1,
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the Hamiltonian is represented by the two-dimensional block

- (n=L1Hln—11) {n= L1 Hn0)\ [ (n—Dw +% gVn
(n,0|H|n—1,1)  (n,0| Hn,0) g/n no— |y
1 a~ Wr
:(n_§)w’"[2+w 2w7Z+g\/ﬁf’”.

We have introduced Pauli matrices 7¢, along with the identity operator, that act on the
two-dimensional subspace V,,. The full Hamiltonian is block-diagonal, i.e. we write H =
HydoH ®Hy®...actingon V=V Vialhd...
We may further write
I T 4 ! I
T o T n——|w
5 2
. e (e (3)
7 = (gv/n,0,A/2) = r,(sinb,,0, cosb,),

Ty = || = V/ng? + A2/4, sinf, = g/n/r,, cosb, = A/(2r,).

From this form, we can calculate using the previous subsection the eigenenergies and eigen-

H,

vectors in the subspace V,, for n > 1

Eﬂ:,n = :l:rn)
On, . (b,
|94 n) = cos 5 |n, 0) + sin 5 In—1,1), (4)
. (On 0,
|- n) = sin (5> |n,0) — cos (5) In—1,1).

0,/2 can be interpreted as a ‘mixing angle’.

B. Schrieffer-Wolff Perturbation Theory

We rewrite the Jaynes-Cummings Hamiltonian Eq. in the form
H = Hy+ hgl,, ()
where we define the unperturbed Hamiltonian
0z
HO — h&)rpaTG + hwa?; (6)
and let

I =d'o_ +ao,. (7)



I, is the Hermitian operator that defines the perturbation, and I_ is an antihermitian
operator that will enter the definition of the generator of the Schrieffer-Wolff transformation
below.

Under the assumption that |A| = |w, — w,| > ¢, the Hamiltonian Eq. can be diago-

nalized by the unitary transformation

D= €7A(Nq)1_

: (8)

with the following definitions

A(N,) = _arctan (2/\\/Nq)7
2\/N, (9)
N, = ala +1I,,
where II, = |e) (e| is the projector onto the excited state of the atom o, |e) = |e).
Under the action of D in Eq. ,

. hA
HP = D'HD = hw,ala + hwa% —— (1 /Tt 4>\2Nq> 7. (10)

In the following subsection we derive this result. This solution draws from Boissonneault et

al., Phys. Rev. A 79, 013819 (2009).

1. Deriwation

We first define the commutator as a superoperator

m times
7\

-~

CiB=[AB], C}B=1A[A[A,... B, (11)
whence the Baker-Campbell-Hausdorff formula becomes
a1,
eABe ™ = Z HCAB' (12)
n=0
Writing the unitary that we are seeking in the form of Eq.
D = ¢ AN (13)

with A a yet unspecified function, we note that since N, commutes with either H or I,
then A(N,) can be treated as a scalar when considering the nested commutators of the BCH

formula Eq. applied with A = H and B = A(N,)I_.



Since
Cr_Hy = RhAI,, (14)

we can recast the transformed Hamiltonian Eq. using Eq.

+1)g+ AA

T cr, I, (15)

HP =D'HD = Hy+ 1y (n
n=0

To evaluate the sum, we need the following identities, which can be proved by induction

Ci 1, = (~4)"A™' Ny T,

(16)
2n+1 n A 2n+1 arn
CA L = =2(—4)"A*" ' N o,
This allows us to evaluate the sum in Eq.
Asin (2A4/N,
BP gy 4 250 ) 4 geos (2AVN,) p 1
2\/N, an
17

RN gsin (2A\ /Nq) N A [1 — cos (ZA, /Nq)]
- o8 :
! 2,/N, 4N,
Note that this expression contains both off-diagonal (second term in the equation above)
and diagonal terms (first and third terms). We may now make the choice
—arctan (2A/N,
A(N,) = ( ), (18)

N 2,/N,

that nulls the off-diagonal term, to obtain

HP = H, — % (1 i 4)\2Nq> 7.. (19)

We can now define Lamb and ac Stark shift operators as follows
hA
51, = HP(0,1) = HP(0, 1) — huw, = =~ (1 Vi 4/\2>
dg (aTa) = HP (aTa, 1) — HP (aTa, —1) — 01 — hw, (20)
_hA
2
Note that the unitary operator redefines the excitations in the problem. We have for

<\/1 AN (ala+ 1) + V1 +4X2afa — 1 — V1 + 4A2) .

the operators that were previously diagonal in the eigenbases of the atom and oscillator,

respectively

D

1 2\
0, = 0z - [+7
<\/1 +4)\2Nq> JI+ 12N, o

2 My —o0,/2
(aa)® :aT@JFU_JFM

2 \J/T4+4NN?




and
A2 1
a® ~a {1 + UZ} + A [1 — 3\ (aTa + 5)] o_ + XdPo,
1 (22)
P ~o_ [1 —\? (aTa + 5)} + Xao, — N0,
Finally, the Hamiltonian up to cubic order in A is
1 P
HP =~ h(w, +)ala+h [wa +2x (aTa + 5)] % + h¢ (oﬁa)2 o (23)
where we have introduced
2 2
x=yg (1-X)/A,
(1= 24

¢ =—g'/A°
C. Coupling to environment

Suppose that the system described by H in Eq. is coupled to a bath via the operator
A =a+al via Hsg = A® B with B some bath operator as introduced in earlier lectures
on the Lindblad master equation. Can we use the Schrieffer-Wolff approach to compute the
so-called Purcell relaxation rate? We assume zero temperature throughout this subsection.
First, the system-bath coupling would be written in the interaction picture with respect
to H, so we need to evaluate the time-evolution operator U(t,0). First we reexpress it as

follows using the unitarity of D
et — De 7T, (25)
Then we note that under D the system operator coupling to the bath transforms as (ac-
cording to Eq. (22))
2

Ao, 1
&+aT—>aD+aTD%a[1+ g } —{—)\{1—3)\2 (aTa+§>] o_+ Nada’o, +He.

: (26)
~a+ Ao_+ H.c.,
where we have kept the lowest-order contribution linear in \.
We now need to recall how the Lindblad master equation is derived. We first need to

express the system-bath coupling Hamiltonian in the interaction picture with respect to the

uncoupled system and bath Hamiltonians, that is, we need

A(t) = e (a + ahe P = DD (0 + a Y De DT = D7 (aP + aP)e VDI,
(27)



or equivalently
AP(t) = DIA(t)D = M7 (P 4 Pt = Z AP (w)e ™", (28)

This suggests it is more convenient to write the Lindblad master equation in the frame
rotated by D.

If the von Neumann equation is

p = _i[Htomb /)]7 (29)

then in the rotated frame
pD = _Z.[Hgtal? pD] (30>
Therefore the equation for the reduced density matrix pP (abuse of notation) is

5P = —i[HP, oP) + 3" 3(w)DIAP )], (31)

with «(w) being related to the bilateral power spectral density of the bath modes as in
Eq. (43) of Lecture 2 with a = . Then all that remains is then to evaluate Eq. (28). To
get our answer we will do this using the order-\ result of Eq. , and use HP of Eq.

up to order order A, i.e.

HP = hw,.a'a + h(w, + X)% + hixatao, + O(\?) (32)

In evaluating Eq. we furthermore neglect terms of order y in HP, ultimately using its

order-\° contributions only. Then we find
AP(w,) = Mo, AP (—w,) = Aoy, AP(w,) = a, AP(~w,) = a, (33)
leading to
pP = —ilHP, p°] +y(w,)Dla]p® + X*y(wa)Dlo—-]p”. (34)
Assuming that the bath power spectral density is flat with y(w) = k, we get the result

PP = —i[H®, pP] + kD[a]p® + \?kDlo_]p", (35)



leading to the formula for the Purcell decay rate of the qubit (rate of radiative decay of an

atom coupled to a detuned lossy cavity)

e (@'

(36)

Note that this is primarily due to the ‘hybridization’ of the qubit with the cavity, given by

the hybridization coefficient A < 1, and that therefore this is an apparently weak effect on

the qubit vp < k, which however turns out to be important in practice.

II. ORDER-BY-ORDER ROTATING-WAVE APPROXIMATION FROM

SCHRIEFFER-WOLFF PERTURBATION THEORY

Note for Fall 2023 course: This material was not covered in class, so it will not be on the

exam. Below we consider a generic Schrieffer-Wolff perturbation theory for time-dependent

Hamiltonians. Let us consider a generic Baker-Campbell-Hausdorff expansion of the form

. R . . . o - |
B_Gl(t)(HI - i@t)eGI(t) = Hi —1iG; + [HI, GI] — %
1 2 A - A .
+§[[[HI7 GI]J GI]; GI] - Zat 4+ ...

Let us assume that the generator can be expanded as follows:

2!

N

Gi(t) = AGM (1) + NG (8) + ...
We can rewrite (37) up to contributions of order A\* as follows
e’él(ﬁl — iat)eél =

ay— iAW

+[E, AG) — %[Aé?’, MG —ixG®

A

FH, NG - 26 AG)

? ?
2 2

—i0; + O(\Y)

= ML) —iAGY
AP (1) — ip2GP
PRED (1) — iGP
—i0, + O(\Y).

(G, Gh] + = [[H, ), Gy — %HGI, Gi], Gyl

(37)

~

—iA3G

X o 1 - N ~ ] X N ~
NG NG+ Sl ANG G - S INGE AGAG]



The first, second, and third row contain terms that are first-order, second-order and third-

order in A, respectively. We needed to introduce the following notation:

~ £ (1) —(1) ~ (1)

and moreover let us define more generally for £ > 1 integer a separation over constant and

oscillatory terms:

~ —(k) ~ (k)
NeH® )= AH, + N H, (). (40)

Definition (DC and AC parts of a time-dependent operator). The definitions
above involved the DC part of a time-dependent operator O(t), defined as:

- 1 T o
O = lim —/ dtO(t). (41)
0

T—o0

Moreover, we may define the AC, or oscillatory part, of the operator, according to

O(t) = O(t) — O. (42)

—_——

Properties. The operations O and 5(75) are linear, in the sense that Oy + O, (t) = é;(t) +
5;(15), and O; + O(t) = O_l(t) +O_2(t). Moreover, they are idempotent: g = 5, and O — 5,
but application of one after another gives zero: 5 = 0, and 5 = 0. Thus, they appear to
share properties with a pair of projectors onto complementary Hilbert subspaces.

Having introduced these notations, we are equipped to write the iterative procedure to

derive the RWA Hamiltonian. The condition for removing non-RWA terms at order \*:

R : —(k)
AN HE () — ik G (1) = A H, (43)

Note that Aklfll(k) (t) for k > 2 is generally dependent on G%l), e G%k_l), which means that

this is an iterated procedure: Equation must be solved in order for £k = 1,2, 3,.... Once
the first k& equations have been solved, we can write down the RWA Hamiltonian in the
following form
k
A A A —(0)
e MO (Hy —i0)e" D =Y " NH; + O\, (44)
1=1

where terms of order A**! are time-dependent, but terms of order < k are stationary.



A. First-order RWA

In the first iteration we write Eq. for k =1:
STOYANRE) 7
AH () —idG;/(t) = NH (45)
which yields, upon recalling the separation of )\]fll(l)(t), Eq. 1’

=) R A
A, —idGV =0 « AGW@) =

~ (1) —(1)
=G, (1) + \Gy (46)

Note that the integral is indefinite, so that the first term is oscillatory, and we can set
%ft dt'l?l(f)(l)(t’) = Aéil)(t), while the second term is the integration constant, which sets
the DC part of the order-\ generator )\CA?% = )\Eil). Imposing the equation above, we
rewrite Eq. where to O(\) we have obtained a stationary Hamiltonian:

" A . —(
e Y1(Hy —i0,)e%t = M, (1) + O(\?), (47)

—( =
where we recall that, from the definition , AH, (1) = Hy. This is the standard RWA

approximation.

B. Second-order RWA

We move on to second order in A\. The second-order terms were:

~ 72 X X

NI (1) — NG = [ (), A\ ()] — 2PGD (), \GD ()] — ia2G

N

N 7. X ~ Lo A
= [Hi(t) — MG (1), \GP ()] — ix2GP

B ]

) A

—(1) A
SN+ G 0G0 -G ()
Condition for k = 2 implies the following equation for G%Q) (t):
=1 2 A —(2)
N, + %AGS)(t), AGO )] —in2G® = \2H, (49)

where the second-order RWA Hamiltonian is

—(2) —1) 7 =z A
NH, =[\H, +§AG§”(t),AG§”(t)] (50)
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We can simplify this form by using the separation of é%l)(t) into DC and AC components:

27(2) —(1) 7~ ~ (@) —(1)
NH, =M, +50Gr (0,0Gr (1) + Gy |

—1) =) 5~ =@
:P‘HI >/\G1 ]+[§)‘GI (t)v)‘GI (t)] (51)

Remark that the cross terms vanished under time-averaging. We may wish to express this

in terms of the Hamiltonian, so we can write

—(2) —(1) —=(1) 17 =@ o~
2 ! !

—(1) =) 1]~ —1) [t/ —(1)
=[\H; ,\G; ]|+ % Hy(t) — \H, Hy(t') — \H, |dt'|. (52)
i
Note the first term, which corresponds to the boundary condition, and hence the DC part,
of the generator.

For further use in the third-order RWA, recall that the generator obeys the equation

= @) : . A2 ~ @) .
NH, —iXGP =0 o NP1 = Z / dt'H, (¢) + NG

~(2) —(2)
= \G; (1) + Gy (53)
where we write the oscillating part of the Hamiltonian at second-order in A as follows:

~(2) ~ —(2)
NH, (t) = NHP () - NH, . (54)

C. Third-order RWA

The third-order terms are

N ~ ) X ~ ) X ~ 1. - o R ) X ~ ~
NG = SIVGEY G = SAGE NG + Sl AGELAGH] = NG AG G

—in3G®
3 71(3) 360 — g7 4 g 3A6) _ s
= N H ™ (t) — MG =NH, +NH ; () —iNGYY = N H, (55)
The third-order RWA Hamiltonian is
—(3) ——— 1 i R T XN Ao
NH, = Ay, 2267 —%WG?’, AGY] —%[AGP, A2G?)]
N—_—— —_— . —_—
term 1 term 2 term 3
1= = = 7 R N N
5 ([ G AGH] = 1 [AG MGV NG (56)

. AN . 2
~\~ N~

term 4 term 5
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D. RWA Hamiltonian up to third-order assuming no DC part to generator

—(k
We collect here the simpler expressions under the assumption G

; = 0. We will test the

validity of this assumption by checking this RWA transformation against some simple test
cases.

—( =

—(
NH,(2)

—_
L
—
-
=

= S| WG @)

— 1 =@ =@ 1. =0 =@ =@
NH(3) = ‘1”5[[/\]']1 (1), AG; (B)],AGr ()] + g[[)‘HI (1), \G; )], AGr (B)]]. (57)
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