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This lecture covers time-dependent perturbation theory, and several examples. The mate-

rial here follows closely J. J. Sakurai, Modern Quantum Mechanics, Addison-Wesley (1994),

for the time-dependent perturbation theory, and Albert Messiah’s Quantum Mechanics,

Dover Publications, 1999, Chapter VIII, for Heisenberg and Dirac picture.

I. HEISENBERG AND DIRAC PICTURES

Let’s revisit the second postulate of quantum mechanics and go into more detail regarding

the time evolution operator. We have

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 , (1)

where U is a unitary operator. For Hamiltonian H time-independent, we have U(t, t0) =

e−iH(t−t0)/~. Defining the derivative with respect to time of an operator O(t) as the limit

limε→0
O(t+ε)−O(t)

ε
, one can show

i~
dU(t, t0)

dt
= HU(t, t0). (2)

U(t, t0) solves this first-order ordinary differential equation with initial condition U(t0, t0) =

I. Even if H is time-dependent, and so U(t, t0) 6= e−iH(t−t0)/~, the equations above can be

postulated as the definition of U .

The equations above are equivalent to an integral equation, U(t, t0) = 1− i
~

∫ t
t0
HU(t′, t0).

Differentiating Eq. (1) with respect to time gives d
dt
|ψ(t)〉 = d

dt
U(t, t0) |ψ(t0)〉, and using
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Eq. (2), one finds i~ d
dt
|ψ(t)〉 = HU(t, t0) |ψ(t0)〉 = H |ψ(t)〉. So we could have taken Eq. (1)

and Eq. (2) as postulates, and only then derived the Schrödinger equation formulation of

the second postulate.

Exercises: a) Show that if U(t, t0) is differentiable with respect to time t and unitary, then

H(t) = i~
(
d
dt
U(t)

)
U †(t) is Hermitian. b) If U(t) satisfies i~dU

dt
= HU , withH Hermitian and

time-dependent, then U †U is time independent, and i~ d
dt

(UU †) = [H,UU †]. In particular,

if U(t = t0) is unitary, then it remains so at all times t ≥ t0.

So far, we have formulated the postulates of quantum mechanics in the Schrödinger

picture. There is an equivalent formulation of the second postulate, in what is called the

Heisenberg picture. We establish below the relationship between these two pictures. For ease

of interpretation, we denote quantities pertaining to Schrödinger picture with a subscript

S, and those pertaining to Heisenberg picture by a subscript H. Schrödinger picture states,

as discussed so far, are time-dependent |ψS(t)〉 = U(t, t0) |ψS(t0)〉. We can turn them into

time-independent kets by applying the unitary operator U †(t, t0). This gives |ψH(t)〉 ≡

U †(t, t0) |ψS(t)〉 = |ψS(t0)〉. As opposed to their counterparts in the Schrödinger picture,

states are time-independent in the Heisenberg picture. On the other hand, time-independent

observables become time dependent, namely OH(t) ≡ U †(t, t0)OSU(t, t0). The previous

equation can be written more generally as OH(t) ≡ U †(t, t0)OS(t)U(t, t0) to allow for an

observable that has an explicit time-dependence in the Schrödinger picture (such as, for

example, terms entering the Hamiltonian of an externally-controlled system).

Differentiating the previous equation term by term, using the differential definition

of the time-evolution operator Eq. (2), we find i~ d
dt
OH(t) = i~U̇ †(t, t0)OS(t)U(t, t0) +

i~U †(t, t0)ȮS(t)U(t, t0)+i~U †(t, t0)OS(t)U̇(t, t0) = U †(t, t0)[OS(t), H(t)]U(t, t0)+i~U †(t, t0)∂OS

∂t
U(t, t0).

For the last term we write U †(t, t0)∂OS

∂t
U(t, t0) = ∂OH

∂t
, with the understanding that this is the

Heisenberg-picture operator corresponding to the Schrödinger picture operator ∂OS(t)/∂t.

Moreover, letting HH(t) = U †(t, t0)H(t)U(t, t0), we arrive at the Heisenberg equation of

motion

i~
dOH(t)

dt
= [OH(t), HH(t)] + i~

∂OH

∂t
. (3)

Exercises: a) Let H = ~ωq

2
σz and let σ± = 1

2
(σx ± iσy). Find σ±H(t), σzH(t). b) If [O,H] = 0,

and O is explicitly time independent, then OH is time independent.

There is an intermediate picture, called the interaction, or Dirac, picture. We present
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it here since our future discussion of perturbation theory will rely on it. We postulated

Eq. (2), the differential definition of the time evolution operator U(t, t0). Suppose you

knew an approximate solution to this equation, U (0)(t, t0). It is convenient to set U(t, t0) =

U (0)(t, t0)U ′(t, t0), where U ′(t, t0) is also unitary. To piece together a solution U(t, t0), we

are interested in the dynamics of U ′(t, t0). By using Eq. (2), we have

i~
d

dt
U ′(t, t0) = U (0)†(t, t0)

[
H(t)U (0)(t, t0)− i~dU

(0)(t, t0)

dt

]
U ′(t, t0), (4)

with initial condition U ′(t0, t0) = I. If U (0)(t, t0) was a good enough approximate solution

to Eq. (2), then the term in the bracket almost vanishes, and hence U ′(t, t0) is almost

constant. Let’s define a new Hamiltonian H(0)(t) = i~
[
d
dt
U (0)(t, t0)

]
U (0)†(t, t0) such that

i~ d
dt
U (0)(t, t0) = H(0)(t)U (0)(t, t0). Then letH = H(0)+H ′. In accordance with the discussion

above, H ′ is an operator considered as perturbation, and H(0) is an operator whose time-

evolution operator is known. Then

i~
d

dt
U ′(t, t0) = H ′IU

′(t, t0), (5)

where H ′I(t) = U (0)†(t, t0)H ′U (0)(t, t0). The task of perturbation theory, as we will discuss

in Lecture 3, is to provide strategies to solve the equation above. As for kets and op-

erators, just as in the Heisenberg picture we may write |ψI(t)〉 = U (0)†(t, t0) |ψS(t)〉 , and

OI(t) = U (0)†(t, t0)OSU
(0)(t, t0). Hence, the Schrödinger equation in the interaction picture

is i~ d
dt
|ψI(t)〉 = H ′I |ψI(t)〉, and the equation analogue to the Heisenberg equation of motion

is i~ d
dt
OI = [OI , H

(0)
I ] + i~∂OI

∂t
.

II. TIME-DEPENDENT PERTURBATION THEORY

Consider a static Hamiltonian with a time-dependent perturbation,

H(t) = H0 + λV (t). (6)

We want to find |ψ(t)〉 that solves the time-dependent Schrödinger equation, expanded over

the known eigenbasis |n〉 of H0 (note the change of notation from the previous section).

Let’s revisit in this notation the interaction picture, introduced previously in Lecture 2.

We can define

|ψ(t)〉I = eiH0t/~ |ψ(t)〉S , (7)

OI = eiH0t/~OSe
−iH0t/~, (8)
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where we recall that the subscript S appears to distinguish Schrödinger picture operators

from interaction-picture operators. Here, using the second equation for the perturbation

operator appearing in Eq. (6), we get

VI(t) = eiH0t/~V (t)e−iH0t/~. (9)

Then the following Schrödinger-like equation holds for the interaction-picture wavefunction

i~
∂

∂t
|ψ(t)〉I = VI(t) |ψ(t)〉I , (10)

and the following Heisenberg-like equation holds for operators in the interaction picture

dOI(t)

dt
=

1

i~
[OI(t), H0]. (11)

The problem to find |ψ(t)〉 reduces to finding its expansion over the eigenbasis of H0

|ψ(t)〉 =
∑
n

cn(t) |n〉 . (12)

To do perturbation theory, we shall assume that cn(t) can be expanded as a series

cn(t) = c(0)
n + c(1)

n + . . . , (13)

where the superscript indicates the order in λ.

The time evolution operator UI(t, t0) in the interaction picture is defined as

|ψ(t)〉I = UI(t, t0) |ψ(t0)〉I , (14)

which together with the Schrödinger equation gives the following equation of motion for the

time evolution operator

i~
d

dt
UI(t, t0) = VI(t)UI(t, t0), (15)

with initial condition UI(t0, t0) = I. This ordinary differential equation can be brought to

integral form

UI(t, t0) = I − i

~

∫ t

t0

VI(t
′)UI(t

′, t0)dt′. (16)
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The main result of this section, the Dyson series, is derived by iteratively plugging in the

left-hand side of this equation into its right-hand side

UI(t, t0) = I − i

~

∫ t

t0

dt′VI(t
′)

[
1− i

~

∫ t′

t0

dt′′VI(t
′′)UI(t

′′, t0)

]

= I − i

~

∫ t

t0

dt′VI(t
′)

+

(
−i
~

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′VI(t
′)VI(t

′′)

+ . . .

+

(
−i
~

)n ∫ t

t0

dt′
∫ t′

t0

dt′′ . . .

∫ t(n−1)

t0

dt(n)VI(t
′)VI(t

′′) . . . VI(t
(n))

+ . . .

(17)

The Dyson series allows us to evaluate transition probabilities.

Transition probabilities

Note that

|ψ(t)〉I = UI(t, t0) |i〉 =
∑
n

|n〉 〈n|UI(t, t0) |i〉 ≡
∑
n

|n〉 cn(t) (18)

So the coefficient cn(t) in the expansion of the wavefunction in the interaction picture cor-

responds to a matrix element of the time evolution operator in the interaction picture.

Moreover, this is easily related to matrix elements of the time evolution operator in the

Schrödinger picture, that is

〈n|UI(t, t0) |i〉 = ei(Ent−Eit0)/~ 〈n| |U(t, t0) |i〉 , (19)

since by definition UI(t, t0) = eiH0t/~U(t, t0)e−iH0t0/~. Here, 〈n|U(t, t0) |i〉 is interpreted as

the transition amplitude for a transition into state |n〉 at time t if the system was prepared in

state |i〉 at time t0. Then | 〈n|U(t, t0) |i〉 |2 is interpreted as the transition probability. Note

that the transition probability is the same whether evaluated in the Schrödinger picture or

in the interaction picture, as the two amplitudes differ only by a phase factor when |n〉 and

|i〉 are energy eigenstates of H0.



6

Then the probability to measure the system in state |n〉 at time t, having prepared the

system in state |i〉 at time t0, is

|cn(t)|2 = | 〈n|UI(t, t0) |i〉 |2 = |c(0)
n (t) + c(1)

n (t) + . . . |2, (20)

where the first two terms are given by

c(0)
n (t) = δni,

c(1)
n (t) = − i

~

∫ t

t0

dt′ 〈n|VI(t′) |i〉

≡ − i
~

∫ t

t0

dt′eiωnit
′
Vni(t

′)

c(2)
n (t) =

(
−i
~

)2∑
m

∫ t

t0

dt′
∫ t′

t0

dt′′eiωnmt′Vnm(t′)eiωmit
′′
Vmi(t

′′),

(21)

with ωni = ∆ni/~ and ∆ni = En − Ei, analogous to the notation in the previous section.

Then the transition probability is P (i→ n) = |c(1)
n (t) + c

(2)
n (t) + . . . |2.

III. TIME-DEPENDENT PERTURBATION THEORY. EXAMPLES

A. Constant perturbation, turned on at t = 0

Consider the following time-dependent perturbation. It is a constant perturbation oper-

ator V that is turned on at t = 0

V (t) =

 0, for t < 0

V (independent of t), for t ≥ 0
(22)

Assume that the system is prepared in one of the eigenstates of H0, |i〉, at t = 0. Then

using Eq. (21) we have

c(0)
n = c(0)

n (0) = δin,

c(1)
n =

−i
~
Vni

∫ t

0

eiωnit
′
dt′ =

Vni
En − Ei

(
1− eiωnit

)
,

(23)

This gives the following for the transition probability defined above, obtained to lowest

nontrivial order in the small perturbation

∣∣c(1)
n

∣∣2 =
|Vni|2

|En − Ei|2
(2− 2 cosωnit) =

4 |Vni|2

|En − Ei|2
sin2

[
(En − Ei) t

2~

]
. (24)
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FIG. 1. Plot of ∝ 4 sin2 [ωt/2] /ω2 as a function of ω at constant time t after the perturba-

tion Eq. (22) has been turned on. Reproduced from J. J. Sakurai, Modern Quantum Mechanics,

Addison-Wesley 1994, page 330.

We are now interested in analyzing the frequency and time dependence of the transition

probability from i → n, Eq. (24). In a physical system, the energy spectrum of H0, the

set {En|n = 0, 1, 2, . . .}, may have a large number of states of nearby energies, say around

a given energy En; in some instances we can talk about a continuum of states around the

energy En, and it then makes sense to rewrite the transition probability Eq. (24) in terms

of the transition energy ω, defined as

ω ≡ En − Ei
~

, (25)

in which case the transition probability is ∝ 4 sin2 [ωt/2] /ω2, with the proportionality con-

stant determined by the square of the matrix element of the perturbation. We plot this

transition probability in Fig. 1. The transition probability is peaked for states whose energy

is nearby Ei, i.e. ω = (En − Ei)/~ ≈ 0. The height of this peak scales as t2, and its width

scales as 1/t. That is, for large t, only states |n〉 satisfying

t ∼ 2π

|ω|
=

2π~
|En − Ei|

(26)
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have appreciable transition probability |c(1)
n |2 from the initial state |i〉. If we call the time t

that the perturbation has been turned on ∆t, then only those transitions have appreciable

probability that satisfy

∆t∆E ∼ ~. (27)

This equation is not to be interpreted as of the same nature as the Heisenberg uncertainty

principle. It indicates that for short time intervals ∆t, the peak in Fig. 1 is broad, and there-

fore transitions to states with energy far detuned from the initial state have non-negligible

probability. As time ∆t this degree of energy nonconservation decreases, that is, only states

with energy close to the initial state energy have appreciable transition probability from it.

Finally, note that for states |n〉 that are exactly degenerate with the initial state |i〉 in

the spectrum of H0, the transition probability depends quadratically on time∣∣c(1)
n (t)

∣∣2 =
1

~2
|Vni|2 t2. (28)

Note, however, that in practice, there is a continuum of states En around the energy Ei, as

given by the density of states ρ(E), where

ρ(E)dE (29)

gives the number of states in the energy interval [E,E + dE). The transition probability

from the initial state |i〉 into those states with energy nearby Ei can therefore be expressed

as ∑
n,En≈Ei

∣∣c(1)
n

∣∣2 → ∫
dEnρ (En)

∣∣c(1)
n

∣∣2
= 4

∫
sin2

[
(En − Ei) t

2~

]
|Vni|2

|En − Ei|2
ρ (En) dEn,

(30)

with the integral running over a neighborhood of Ei. Which neighborhood this is is not

important in the limit t→∞, where we use

1

|En − Ei|2
sin2

[
(En − Ei) t

2~

]
∼ πt

2~
δ (En − Ei) as t→∞. (31)

We may then take the average of the matrix element squared over the states En with energy

in the vicinity of Ei, |Vni|2, outside of the integral sign, and perform the energy integral in

Eq. (30) to get ∫
dEnρ (En)

∣∣c(1)
n (t)

∣∣2 ∼ 2π

~
|Vni|2ρ (En) t

∣∣∣∣
En≈Ei

as t→∞. (32)
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Note that now the transition probability only scales linearly with the time t that the constant

perturbation has been turned on, which is due to the fact that the total transition probability

in the limit t→∞ should go like the area under the central peak of Fig. 1, that is ∼ t2/t = t.

These facts all seem reasonable.

In practice, what we care about is the transition rate, that is the time-derivative of the

transition probability wi→[n] = d
dt

(∑
n

∣∣∣c(1)
n

∣∣∣2), where [n] stands for the set of states with

energy nearby Ei. Then

wi→[n] =
2π

~
|Vni|2ρ (En)En'Ei

. (33)

This is Fermi’s Golden rule, a formula that we will be encountering again in this course.

It gives a constant rate of transition, as a function of time, provided that first-order time-

dependent perturbation theory is valid. This can be recast as

wi→n =
2π

~
|Vni|2 δ (En − Ei) (34)

in the sense that it will be integrated over final state energies
∫
dEnρ (En).

Second-order corrections. Virtual transitions

Going to next order in perturbation theory, we have

c(2)
n =

(
−i
~

)2∑
m

VnmVmi

∫ t

0

dt′eiωnmt′
∫ t′

0

dt′′eiωmit
′′

=
i

~
∑
m

VnmVmi
Em − Ei

∫ t

0

(
eiωnit

′ − eiωnmt′
)
dt′.

(35)

The first term in the integrand has the same time dependence as the one in the first-order

contribution. If this were the only term present, we would conclude that the only significant

contribution as t→∞ occurs when the final state is near the initial state, i.e. En ≈ Ei.

Putting the two together gives rise to (exercise: prove this)

wi→[n] =
2π

~

∣∣∣∣∣Vni +
∑
m

VnmVmi
Ei − Em

∣∣∣∣∣
2

ρ (En)

∣∣∣∣∣∣
En'Ei

. (36)

The first term corresponds to nearly energy conserving real transitions. In the second

term, the system first has an energy-nonconserving transition i → m, then an energy non-

conserving transition m → n, while maintaining overall energy conservation, i.e. the final

state energy En ≈ Ei. The two intermediate transitions are said to be virtual transitions.
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B. Harmonic perturbation

In this section, we consider the same problem but for a time-periodic perturbation

V (t) = V eiωt + V †e−iωt (37)

where V is a linear operator acting on the Hilbert space of H0, not necessarily Hermitian.

As before, using Eq. (21), we arrive at the lowest order correction

c(1)
n =

−i
~

∫ t

0

(
Vnie

iωt′ + V †nie
−iωt′

)
eiωnit

′
dt′

=
1

~

[
1− ei(ω+ωni)t

ω + ωni
Vni +

1− ei(ωni−ω)t

−ω + ωni
V †ni

] (38)

We can readily see that this result is analogous to the one obtained previously for a

constant perturbation turned on at t = 0, but with the following change

ωni =
En − Ei

~
→ ωni ± ω. (39)

Thus, c
(1)
n will only be sizeable if the drive frequency ω matches the frequency associated

with the transition i→ n, or n→ i, in the spectrum of H0, that is

ωni + ω ' 0 or En ' Ei − ~ω,

ωni − ω ' 0 or En ' Ei + ~ω.
(40)

In other words, the drive term V (t) can either deexcite the system, by inducing a transition

that lowers its energy Ei − En ≈ ω, or excite the system En − Ei ≈ ω (see Fig. 2).

Following an analogous calculation as for the constant perturbation, we arrive at the

emission and absorption rates, respectively,

wi→[n] =
2π

~
|Vni|2ρ (En)

∣∣∣∣
En
∼=Ei−~ω

,

wi→[n] =
2π

~

∣∣∣V †ni∣∣∣2ρ (En)

∣∣∣∣
En
∼=Ei+~ω

.

(41)

This can be written more compactly as

wi→n =
2π

~

 |Vni|
2∣∣∣V †ni∣∣∣2
 δ (En − Ei ± ~ω) . (42)

Noting that,

|Vni|2 =
∣∣∣V †in∣∣∣2 (43)
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FIG. 2. A drive ‘photon’ of frequency ω can be either i) emitted by the system, thereby deexciting

the system (stimulated emission), or ii) absorbed, thereby exciting it. Reproduced from J. J.

Sakurai, Modern Quantum Mechanics, Addison-Wesley 1994, page 335.

and swapping i ↔ n in the second Eq. (41) to express the absorption rate from the state

n into the states nearby i, we arrive at the following relation between rates, called detailed

balance

emission rate for i→ [n]

density of final states for [n]
=

absorption rate for n→ [i]

density of final states for [i]
. (44)

C. Slow turning on of perturbation. Wigner-Weisskopf theory.

Assume that the perturbation is slowly turned on

V (t) = eηtV. (45)

We will in the end be interested in taking η → 0 to consider the case of a perturbation that

is turned on infinitely slowly.

We can ask the same question as in the previous sections, and find that for any state

n 6= i,

c(0)
n (t) = 0

c(1)
n (t) =

−i
~
Vni lim

t0→−∞

∫ t

t0

eηt
′
eiωnit

′
dt′

=
−i
~
Vni

eηt+iωnit

η + iωni
.

(46)

Note that we have taken the limit t0 → −∞ which signifies that the perturbation is null in

the infinite past, and it is slowly turned on such that it takes value V at t = 0. The above
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leads to

|cn(t)|2 ' |Vni|
2

~2

e2ηt

η2 + ω2
ni

,

d

dt
|cn(t)|2 ' 2 |Vni|2

~2

(
ηe2ηt

η2 + ω2
ni

)
.

(47)

Noting that in the limit of an infinitely slow turn on the Lorentzian gives the Dirac

δ−function,

lim
η→0

η

η2 + ω2
ni

= πδ (ωni) = π~δ (En − Ei) , (48)

we recover the Fermi Golden Rule result of the previous subsections

wi→n '
(

2π

~

)
|Vni|2 δ (En − Ei) . (49)

This indicates, at least on an intuitive level, that the value of the transition rate is insensitive

to the qualitative aspects of the turn on of the perturbation, which can be sudden at t = 0,

or slow.

Following Sakurai, we may calculate higher-order corrections in order to understand the

Fermi Golden Rule rate in yet another way, as the lowest-order correction to the imaginary

energy shift of the eigenenergies, i.e. a linewidth. To do so, we evaluate c
(i)
n up to second-

order corrections in V

c
(0)
i = 1

c
(1)
i =

−i
~
Vii lim

t0→−∞

∫ t

t0

eηt
′
dt′ =

−i
~η
Viie

ηt

c
(2)
i =

(
−i
~

)2∑
m

|Vmi|2 lim
t0→−∞

∫ t

t0

dt′eiωimt
′+ηt′ e

iωmit
′+ηt′

i (ωmi − iη)

=

(
−i
~

)2

|Vii|2
e2ηt

2η2
+

(
−i
~

)∑
m 6=i

|Vmi|2 e2ηt

2η (Ei − Em + i~η)
,

(50)

Note how the introduction of the inverse timescale η fixes the problem of the vanishing

denominator of c
(1)
i . The above leads to the following expression depending explicitly on η

ci(t) ' 1− i

~η
Viie

ηt +

(
−i
~

)2

|Vii|2
e2ηt

2η2
+

(
−i
~

)∑
m 6=i

|Vmi|2 e2ηt

2η (Ei − Em + i~η)
(51)
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In order to get at corrections to eigenenergies, we may try to recast the time-dependence

of ci(t) into an exponential. To make this obvious, we look at the ratio

ċi
ci
'
−i
~ Vii +

(−i
~

)2 |Vii|2
η

+
(−i

~

)∑
m6=i

|Vmi|2
(Ei−Em+i~η)

1− i
~
Vii
η

' −i
~
Vii +

(
−i
~

)∑
m 6=i

|Vmi|2

Ei − Em + i~η
.

(52)

The rhs of this differential equation is time-independent. This leads us to try the exponential

Ansatz

ci(t) = e−i∆it/~,
ċi(t)

ci(t)
=
−i
~

∆i, (53)

where, as usual in perturbation theory, we may expand the energy difference in the exponent

in powers of the perturbation

∆i = ∆
(1)
i + ∆

(2)
i + · · · , (54)

We find that the first order correction is real, and corresponds to the result expected from

Rayleigh-Schrödinger perturbation theory

∆
(1)
i = Vii. (55)

Moreover, using the Sokhotski-Plemelj theorem

lim
ε→0

1

x+ iε
= P

1

x
− iπδ(x) (56)

we have for the real and imaginary parts of the second-order corrections to the eigenenergies

Re
(

∆
(2)
i

)
= P

∑
m6=i

|Vmi|2

Ei − Em
,

Im
(

∆
(2)
i

)
= −π

∑
m 6=i

|Vmi|2 δ (Ei − Em) .

(57)

The real part is just the second-order Rayleigh-Schrödinger perturbation theory result for

the energy correction. Moreover, inspecting our result from Fermi’s Golden rule, we can

readily identify the relaxation rate of state i as twice the imaginary part of the second-order

energy correction ∑
m6=i

wi→m =
2π

~
∑
m 6=i

|Vmi|2 δ (Ei − Em) = −2

~
Im
[
∆

(2)
i

]
(58)
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Let’s go back to the weight of the state i as a function of time, which writes as

ci(t) = e−(i/~)[Re(∆i)t]+(1/~)[Im(∆i)t] (59)

Denoting

Γi
~
≡ −2

~
Im (∆i) (60)

we have the following time-dependence for the population of the state i

|ci|2 = e2 Im(∆i)t/~ = e−Γit/~. (61)

To this order in perturbation theory, we can also readily check that the populations of all

levels sum up to 1, i.e. there is conservation of the norm

|ci|2 +
∑
m6=i

|cm|2 = (1− Γit/~) +
∑
m 6=i

wi→mt = 1. (62)

We can define the lifetime of the state i as

~
Γi

= τi (63)

which gives the characteristic decay time of the population of the state i into any other state

|ci|2 = e−t/τi (64)

Defining the Fourier transform of the wavefunction coefficient as f(E)∫
f(E)e−iEt/~dE = e−i[Ei+Re(∆i)]t/~−Γtt/2~ (65)

we find

|f(E)|2 ∝ 1

{E − [Ei + Re (∆i)]}2 + Γ2
i /4

, (66)

i.e. Γi can be interpreted as the full width at half-maximum (FWHM) of the resonance at

Ei.

The energy-time uncertainty relation

∆t∆E ∼ ~ (67)

can be recovered once the FWHM is identified as the uncertainty in energy, and τi = ∆t as

the uncertainty in time.
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