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Chapter 1
Spins and springs

Through this chapter, we will overview some of the basic properties of a quantum harmonic
oscillator and a half spin as central quantum systems for many experimental realizations
of quantum information proposals such as trapped ions, nano-photonics, cavity quantum
electrodynamics and quantum superconducting circuits. For a more thorough exposure of
mathematical formulae attaeched to such systems we invite the reader to see e.g. [11].

1.1 Quantum harmonic oscillator: spring models

1.1.1 Quantization of classical harmonic oscillator

We start with the case of a classical harmonic oscillator of frequency w > 0, %x = —w?z.

In the case of a mechanical oscillator, this could represent the periodic motion of a particle
of mass m in a quadratic potential V(z) = mw?2?/2, or in the case of an electrical one, it
could represent the oscillation between the voltage across the capacitance and the current
through the inductance in an LC circuit (the frequency w being given by 1/v/LC). A generic
Hamiltonian formulation of this classical harmonic oscillator, is as follows:

d OH d 0H
%m:Wp:%’ —p=—wr =——
with the classical Hamiltonian H(z, p) = % (p® + 2?). Note that, in this formulation, we have
intentionally rendered the position and momentum coordinates x and p dimensionless, so as
to keep it generic with respect to the choice of the physical system.
The correspondence principle yields the following quantization: H becomes an operator
H on the function of x € R with complex values. The classical state (z(t),p(t)) is replaced
by the quantum state |1)); associated to the function ¢(z,t) € C. At each t, R > x — 1 (x,t)
is measurable and [ |¢(z,t)|*dz = 1: for each t, |¢); € L*(R,C).
The Hamiltonian H is derived from the classical one H by replacing the position coordi-
nate z by the Hermitian operator X = z (multiplication by ) and the momentum coordinate
p by the Hermitian operator P = —i%:

H-= %(P2+X2) = Y9 L9,

Through out these lecture notes, we will take 2 = 1 and thus all Hamiltonians encountered
in the sequel are homogeneous to the inverse of a time, i.e. to a frequency, as it is the case
for H here above.
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This Hamiltonian is defined on the Hilbert space L?(R,C) with its domain given by the
Sobolev space H%(R,C). The Hamilton ordinary differential equations are replaced by the
Schrodinger equation, % |y = —iH 1), a partial differential equation describing the dynamics
of ¢ (z,t) from its initial condition (¢(z,0))zer:

0P w 0?1 W

zg(:c,t) = _§W(m’t) + P P(x,t), xeR.
The average position is given by (X), = (¢|X|¢) = fj;o z|Y|?dz. Similarly, the average
momentum is given by (P), = (Y|P|¢) = —i fj;o w*%d% (real quantity via an integration
by part).

1.1.2 Spectral decomposition based on annihilation/creation operators

The Hamiltonian H = —%6’9—;2 + %af admits a discrete spectrum corresponding to the eigen-
values
E,=w(n+1/2), n=20,1,2,---

associated to orthonormal eigenfunctions

N 2/
U (x) = <7r> \/2Tn'€_r / H,(z)

where H,(z) = (—1)”e$2jx—nne*x2 is the Hermite polynomial of order n. While this spectral
decomposition could be found through brute-force computations, here we introduce the more
elegant proof applying the so-called annihilation/creation operators.

Indeed, as it will be clear through these lecture notes, it is very convenient to introduce

the annihilation operator a and, its hermitian conjugate, the creation operator a':

. X+iP_1<+8> o X—iP_1< a>
= — X ) = == €r — N

These operators are defined on L?(R, C) with their domains given by H!(R,C). We have the
commutation relations

X,P|=il, [a,al]=T, H=%P"+X*=w(ala+iI)

where [A, B] = AB — BA and I stands for the identity operator.

We apply the canonical commutation relation [a, aT] = I, to obtain the spectral decompo-
sition of a'a (and therefore the Hamiltonian H). Indeed, assuming |¢) to be an eigenfunction
of the operator a'a associated to the eigenvalue \, we have

ala(aly)) = (aa’ — Ialy) = a(a’a — I)|¢) = (A —1)(alv)),
a'a(a’|y)) = a'(aah)y) = a¥(ala + DY) = (A + 1)(alv)).
Therefore both alt) and a'|y) should also be eigenfunctions of a'a associated to eigenvalues

A—1 and A+ 1. Note however that the operator a'a is a positive semi-definite operator, and
thus the only choice for A is to be a non-negative integer. This means that spectrum of the
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operator a'a is given by the set of non-negative integers \,, = n, n =0,1,2, - - -. Furthermore,
the associated eigenfunctions are given by
tn w 1 b n
a 0
60) = Tt = Ty (7 3 ) (@)
lat *[vo)|[rz  V2rn! Oz

We can conclude by noting that |¢y) should satisfy a|¢y) = 0, or equivalently (z40/0x)vo(z) =
0. By solving this differential equation, we find

1 1/4 2
Yo(r) = <> e /2,

s

The eigenstates |1),) are usually denoted by simpler notation of |n) (this is the notation that
we will use through the rest of the lecture notes). These states are called Fock states or
photon-number states (phonon-number states in the case of a mechanical oscillator) and form
an eigenbasis for the wave-functions in L?(R, C). Following the approach of operators, we will
replace the Hilbert space L?(R,C) by the equivalent one

H =1 caln), (cn)nzo € 13(C) ¢, (1.1)

n>0
where [?(C) is the space of [? sequences with complex values. For n > 0, we have
aln) =vn n—1), a'ln)=vn+1|n+1).

In these new notations, the domain of the operators a and a' is given by

ch]n>, (cn)n>0 € hl((C) ) hl((c) = q (cn)n>0 € ZZ(C) | Zn\cn|2 < o0

n>0 n>0

The Hermitian operator N = a'a, is called the photon-number operator, and is defined with
its domain

ch|n>, (cn)n>0 € hZ(C) ) hl((c) =4 (cn)n>0 € l2((C) | Zn2|cn|2 <00

n>0 n>0

Finally, as proven above IN admits a discrete non-degenerate spectrum simply given by N.
For any analytic function f we have the following commutation relations

af(N) = f(N +Da, alf(N)=f(N - Ia'.

N 10N

In particular for any angle 6, eNae~ =e¢ Yq and eNale N = ¢qt.

1.1.3 Glauber displacement operator and coherent states

For any amplitude « € C, the Glauber displacement unitary operator D, is defined by

D. = ea al—a*a
a— .
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Indeed, the operator o a’ — a*a being anti-Hermitian and densely defined on 7, it generates

a strongly continuous group of isometries on H. We have D;l = DL = D_,. The following

Glauber formula is useful: if two operators A and B commute with their commutator, i.e.,
1

if [A,][A, B]] = [B,[A, B]] = 0, then we have ¢ATB = ¢4 ¢B 7248l Gince A = aa’ and

B = —a*a satisfy this assumption, we have another expression for D,

—M aal _—a*a —l—M —a*a _aal
D,=¢ 2 e =e" 2 ¢ e .

We have also for any «a, 8 € C

g*—a*p

DaDg =e 2 Da+6
This results from Glauber formula with A = aa’ — a*a, B = Ba' — f*a and [A, B] =
af* —a*p.

The terminology displacement has its origin in the following property:
Va€C, D_,aD,=a+al and D_,a'D,=a'+ oI

This relation can be derived from Baker-Campbell-Hausdorff formula
X~y —X 1 1
e*Ye :Y+[X,Y]+§[X,[X,Y]]+§[X,[X,[X,Y]]]+-‘~.

To the classical state (x,p) in the position-momentum phase space, is associated a quantum
state usually called coherent state of complex amplitude a = (z +ip)/v/2 and denoted by |a):

a|2 +oo

la) = D,0) :e*?Z\%W (1.2)
n=0

|a) corresponds to the translation of the Gaussian profile corresponding to the fundamental
Fock state |0) also called the vacuum state:

. _ (@=V2Ra)?
la) = <]R S ﬂl—l/éle“/im%‘e 2 ) .

This usual notation is potentially ambiguous: the coherent state |«) is very different from
the photon-number state |n) where n is a non negative integer. The probability p, to obtain
n € N during the measurement of N with |a) obeys to a Poisson law p, = el |a|2" /n!.
The resulting average energy is thus given by (a|N|a) = |al?. Only for a = 0 and n = 0,
these quantum states coincide. For any «, 8 € C, we have

|B—a] |B—al*> a*B—aB*

(a|B) = (0|D_oDgl0) =e~ 2 (0|B—a)=€¢ 2 e 2

This results from D_,Dg=e¢ 2  Dg_,.

The coherent state a € C is an eigenstate of @ associated to the eigenvalue o € C:

ala) = ala).
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Since H = w(N + %I), the solution of the Schrodinger equation %|@Z)> = —iH |¢), with initial
value a coherent state |1)i—g = |ap) (o € C) remains a coherent state with time varying
amplitude a; = e “ayq:

) = e 2 ay).

These coherent solutions are the quantum counterpart of the classical solutions: z; = v/2R(ay)
and p; = v/23(ay) are solutions of the classical Hamilton equations %x = wp and %p = —wzr
since %at = —iway. The addition of a control input, a classical drive of complex amplitude
u € C (encoding the amplitude and phase of the drive), yields to the following controlled
Schrédinger equation

Such a classical control is achieved in the case of a mechanical oscillator by a direct manip-
ulation of the particle (e.g. by applying an electric force to an ion trapped in a Coulomb
potential) and in the case of an electrical one, by connecting the oscillator to a large current
source whose quantum fluctuations could be neglected.
It is the quantum version of the controlled classical harmonic oscillator
d

Lo = op S, p = —wr — Ru(t)).

1.2 Qubit: spin-half models

1.2.1 Schrodinger equation and Pauli matrices

Figure 1.1: a 2-level system

Take the system of Figure 1.1. Typically, it corresponds to electronic states in the potential
created by the nuclei of an atom. The system is either in the ground state |g) of energy E,,
or in the excited state |e) of energy F. (E, < E.). We discard the other energy levels. This
simplification to a few energy levels is similar to the case of flexible mechanical systems where
one would consider only few vibrational modes: instead of writing the partial differential form
of the Schrodinger equation describing the time evolution of the electronic wave function, we
consider only its components along two eigenmodes, one corresponding to the fundamental
state and the other to the first excited state. Later, we will see that controls are chosen close
to resonance with the transition frequency between these two energy levels, and thus such a
simplification is very natural: the higher energy levels do not get populated.

The quantum state, described by [1) € C2 of length 1, (1|¢)) = 1, is a linear superposition
of |g) € C?, the ground state, and |e) € C?, the excited state, two orthogonal states, (gle) = 0,
of length 1, (g|g) = (ele) = 1:

[ = Wglg) + ele)
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with 14,7 € C the complex probability amplitudes'. This state |¢)) depends on time ¢. For
this simple 2-level system, the Schrodinger equation is just an ordinary differential equation

19 = Hly) = (Bylo)gl + Eole)el ) (1.3)

completely characterized by H, the Hamiltonian operator (H t=H ) corresponding to the
system’s energy .

Since energies are defined up to a scalar, the Hamiltonians H and H + ug(t)I (with an
arbitrary ug(t) € R) describe the same physical system. If |¢)) obeys i%\i@ = H|v) then
X) = e W) with 46y = uy satisfies i4|x) = (H + uoI)|x) where I = |g){g| + |e)(e|
stands for the identity operator. Thus for all 6, |¢/) and e~*%|)) are attached to the same
physical system. The global phase of the quantum state [¢)) can be arbitrarily chosen. It is
as if we can add a control ug of the global phase, this control input uy being arbitrary (gauge
degree of freedom relative to the origin of the energy scale). Thus the one parameter family
of Hamiltonians

(B, +u0)lg) g + (B + wo)le)(el),, 5

describes the same system. It is then natural to take ug = — Ee;EQ and to set weg = (Fe—Ey),

the frequency of the photon emitted or absorbed as a consequence of the transition between
the ground and excited states. This frequency is associated to the light emitted by the electron
during the jump from |e) to |g). This light could be observed in a spectroscopy experiment:
its frequency is a signature of the atom.

It is usual to consider the following operators on C2, the Hilbert space of the qubit:

o =lg)lel, o =o' =le)gl, =0 +0r = lg)el + e} o], (14)
oy =io_ —ioy =ilg)(e| —ile){g|, oz =010 —o_0op =|e)(e| —g)(g|-
0%, 0y and o are the Pauli operators. They satisfy 0.2 = O'y2 = 0,° = I, and anti-commute

0x0y = —OyOy = 10y, OyOy = —0,0y = 10z, Oy0; = —0z0; = i0y

and thus [0y, 0y = 2i0;, [0y,0;] = 2i0y, 05,0, = 2ioy. The above uncontrolled evo-
lution (1.3) is therefore governed by the Hamiltonian H = we0:/2 and the solution of

41y) = —iH|y) is given by

—1 Wogl o
W) =e (%) o = cos (25 ) [0 — isin (25) ax o
since for any angle 6 we have

9% — cos0I + isinfoy,, €% = cosOI + isin oy, ¢97% = cos I + isinfo.

'In a more standard formulation, |g) stands for ((1)>7 le) for (?) and |v¢) for <$g)'

) : 1 (1 0 0 (0 0
In a more standard formulation, |g){g| stands for 0) (1 0= (0 O)’ le) (e for 1 (0 1)= (O 1>

E;, 0
and H for ( 0 EE>'
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Since the Pauli operators anti-commute, we have the useful relationships:

—ifo; —ifo, 0o _ —ifo;
z, Y, e7TFoy = oxe .

0% g, = aye e%veg, = a,e
Assume now that the system is in interaction with a classical electromagnetic field (a large
field whose quantum fluctuations are neglected) described by the control input u(t) € C

(encoding the amplitude and phase of a classical drive). Then the evolution of |¢) is given by

i%!w = 5 (Wega + (W (D)o + u(t)o-)) [1) = 5 (wegaz + R(u(t))ow + S(u(t))oy) [1). (1.5)

Since oy, oy and o, do not commute, there is no simple expression for the solution of the
associated Cauchy problem when u depends on ¢ (in general the system is not integrable).

1.2.2 Bloch sphere representation

The orthogonal projector p = |[¢)(1|, the density operator associated to the pure state |},
obeys to the Liouville equation %p = —i[H, p]. While a more thorough description of the
density matrix formulation, together with its application to the modeling of open quantum
systems, will be given later, here we apply this formulation to present the Bloch sphere
representation of a single qubit system. Such a representation is a useful tool exploiting the
smooth correspondence between p and the unit ball of R? considered in Euclidian space:

T+ 20y +yoy + 20y
= 5 ,

p (z,y,2) €R3, 22 +¢2+22< 1.

(z,y,z) € R? are the coordinates in the orthonormal frame (7, 7, E) of the Bloch vector M € R3
M = 27+ Y7+ k.

In general, considering the case of an open quantum system undergoing dissipation, this vector
lies on or inside the unit sphere, called Bloch sphere. However, here considering the case of a
pure quantum state, where the density matrix is equivalent to a Rank 1 projector p = [¢) (1],
this vector lies on the unit sphere. In order to see this, we note that Tr (p2) =22 + 9% + 22,
and p being a projector Tr (pQ) = Tr(p) = 1. The translation of Liouville equation on M

yields with H = wego3/2: %]\7[ = weg/;: x M. For the two-level system with the coherent drive

described by the complex-value control u, H = %(Iz + %(Im + @a’y and the Liouville

equation reads, with the Bloch vector M representation,

%M — (R(w)T+ S(u)j+ wegk) x M.

1.3 Composite spin-spring systems

As discussed through the Appendix A, a composite quantum system is modeled on the state
space given by the tensor product of the subsystems as opposed to the classical case, where
this is given by the Cartesian product. In the particular case of the systems composed of
a spin-half particle and a quantum harmonic oscillator, the state space is given by C? ® H,
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where H the Hilbert space of the quantum harmonic oscillator (1.1) is equivalent to L?(R, C).
This Hilbert space is given by

CPH= Z(Cg,n’%n) + Cenlesn)) | (cgn)n>0, (Cen)n>0 € *(C),,
n>0

where |g,n) = |g) ® |n) (resp. |e) ® |n)) represent the case where the qubit is in the ground
(resp. excited) state and the quantum harmonic oscillator in the state [n). While, throughout
the lecture notes, we will follow such a representation consisting in the Hilbert basis decompo-
sition of the quantum states, this is also equivalent to a representation in C?>® L?(R, C), where
the quantum state [1)) is given by two components (14(t, x), ¥ (t, z)). In this representation,
for each time ¢, the complex value functions v, and 1. belong to L*(R,C).

1.3.1 Jaynes-Cummings Hamiltonians and propagators

Through this subsection, we will study the coupling of a two-level atom to a quantum harmonic
oscillator, modeling e.g. the electrical field confined in a cavity mode (see Figure 1.2). Thisis a
typical building block of experiments within the context of Cavity Quantum Electrodynamics

(CQED) [30].

Figure 1.2: A composite spin-spring system: two-level atom coupled to quantized electromag-
netic field confined in a cavity mode.

The Jaynes-Cummings Hamiltonians [37] provide the simplest modeling of such an inter-
action. We consider two possible coupling regimes, 1- the resonant regime where the qubit’s
transition frequency weg is close enough to the quantum harmonic oscillator’s frequency w,
such that the oscillator and the qubit exchange energy, 2- the dispersive regime, where such
an energy exchange does not occur, but where the qubit’s excitation shifts the resonance
frequency of the quantum harmonic oscillator. Here, we recall the simplest forms of these
Hamiltonians, and for a deeper and complete exposure we invite the readers to see [3(].

Absence of coupling - The Hamiltonian is given by the addition of the Hamiltonians of a
single qubit and a single quantum harmonic oscillator as presented in the previous sections

w I
H=H,+H. H-= ;gaz®16+wclq®(afa+§).

/

-~

H, H.
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Here I, and I stand respectively for the identity operator in the qubit and harmonic oscillator
Hilbert spaces. Also weg and w. represent the resonance frequencies of the qubit and the
harmonic oscillator.

Resonant coupling - A coupling between these two systems can be modeled by the addition
of the interaction Hamiltonian:

H;,; = i%aw ® ((JLT —a). (1.6)
As will be seen in the next chapter, such an interaction gives rise to a resonant exchange of
energy between the qubit and the harmonic oscillator as soon as the coupling strength €2 is
significantly larger than the difference between the two transition frequencies: Q > |A| =
|weg — we|. The system’s dynamics is given by the Schrédinger equation i%\"@ = H,.s|),
where H,.; = H, + H. + H;,;. This is equivalent to the following coupled set of partial
differential equations

g _ _Weg | Wen O, Q0
ot T T et 5@ 5 Zﬂ3x¢e
Ote _ Weg We , 9 0? Q0

ot T Vet W gl m s g Y

with ngHQLQ(R’C) + Hwe”%?(]R,(C) = 1. However, as it will be seen through the next chapter,
it is signifierntly easier to solve these dynamics in its previous form, using the creation and
annihilation operators.

Dispersive coupling - In the case where the coupling strength |2 is smaller than the
detuning |A = weg — wel|, the above model gives rise to another effective Hamiltonian:

X

Hdisp:Hc+Hq—§az®N. (1.7)

We leave the curious reader to follow the derivation of this effective Hamiltonian through [30,
Section 3.4.4]. Such an interaction Hamiltonian can be understood in the following way: In
the absence of the interaction Hamiltonian, the resonance frequency of the qubit is given by
weg and that of the harmonic oscillator is given by w.; In presence of such an interaction, the
frequency of the harmonic oscillator is shifted to w. + x/2 when the qubit is in the ground
state and shifted to w. — x/2 when the qubit is in the excited state; Similarly, the transition
frequency of the qubit is shifted to weg —n X, when the harmonic oscillator is in the Fock state
The Hamiltonian (1.7) is diagonal in the Hilbert basis given by the elements |g, n) and |e, n)
and therefore, the solution to the Schrodinger equation i%]i@ = H jips|?)) can be calculated
easily. Indeed, this solution is given by [1)); = U gisp(t)|00), where the unitary operator

U gisp(t) = €62 exp (=i(we + x/2)tN) @ |g){g] + e/ exp (—i(we — x/2)tN) @ [e) (el
(1.8)
where exp(i0N) = >, ¢™|n)(n| is a bounded operator on the Hilbert space H of the
harmonic oscillator. The above Schrodinger equation is also equivalent to the following set of
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uncoupled partial differential equations

Py 1 X 1 Xy2 O
t ot §(Weg+§)d)g+§(wc+§)(m al,Q)"ng
e _ Lo Xy L Xye O
4 ot _+2(weg+ 2)¢e+2(wc 2)('%' axg)we

Finally, we note that, in the case that the quantum harmonic oscillator and/or the qubit are
driven by classical fields, one needs to add to the above Hamiltonian, the controlled terms
(u’(t)a +u(t)al) and/or (ug(t)o— +uq(t)oy ). Notice that oy = (o_)" and thus the lowering
qubit operator o_ plays the role of a. Here u.,uy € C are local control inputs, u. attached

to the oscillator and u4 to the qubit.

1.3.2 Laser manipulation of a trapped ion

Through this subsection, we consider another composite system comprising a qubit and a
quantum harmonic oscillator. This corresponds to the laser manipulation of an ion that is
trapped in a Coulomb potential. The laser field could be considered as a large classical field,
where the quantum fluctuations are neglected, and therefore its coupling to the qubit could
be modeled in a similar manner to (1.5). However, in the present system the qubit (trapped
ion) undergoes vibrations and this oscillatory motion is quantized as a quantum harmonic
oscillator. The complex parameter u(t) in (1.5) depends on the position of this mechanical
oscillator, leading to the following Hamiltonian

T A ,
H=uw,I,® (a'a+ 7m) + w;ga'z QI+ (u*(t)oy @ einlatal) | u(t)o— ® e_“7(a+aT)).

In this Hamiltonian, I, and I,,, stand for the identity operator on the Hilbert space of the qubit
and of the mechanical oscillator. Also, wy, and wes stand for the vibration frequency of the
ion and the transition frequency of the qubit. Finally, in the last term, the operator ein(atal)
(a bounded operator on the Hilbert space of the mechanical oscillator, see Subsection 1.1.3)
models the dependence of the coupling on the position of the ion (here a quantum observable
X = (a +a')/v?2). Here nn = 1y cos(), where 0 denotes the angle between the propagation
axis of the laser field and the oscillation direction of the trapped ion, and 79 denotes the
Lamb-Dicke parameter which is generally smaller than 1.

Finally, the Schrodinger equation i%hﬁ) = HJy) is equivalent to the following set of
coupled partial differential equations:

aﬁ‘/) We, Wm 62 —i -
it = oty + g (0 = o)y +u(t)e Y
O, We W 0? w /N in/Bn
2 = By 4 002 et ()P,

Simplification of notations

Through the rest of these lecture notes, and in order to lighten the mathematical formulas,
we follow a generally accepted approach. Whenever no confusion is created, we remove the
tensor products in the operators defined on composite systems. For instance the Hamiltonian
H,.s of the Subsection 1.3.1

w

1 Q
H,. = %go'z Q@Ic+wdy;® (aTa+ ?C) +i50'm ® (aT —a)
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is replaced by

w I
H,. = ;go'z + WC(aTa + 5) +

where I =1,®1I..

_I.

—a),

17
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Chapter 2

Open-loop control of spins and
springs

This chapter investigates the following question: for [¢)) obeying a controlled Schrédinger
equation i%w) = (Ho+ Y_j-, uHg)|¢) with a given initial condition, find an open-loop
control [0,7] 3 ¢t — w(t) such that at the final time T, |¢) has reached a pre-specified target
state. In different sections of this chapter, emphasis is put on different methods to construct
efficient open-loop steering controls from one state to another one: resonant control and
the rotation wave approximation are treated in section 2.1; quasi-static controls exploiting
adiabatic invariance are presented in section 2.2; optimal control techniques minimizing [ u?
are investigated in section 2.3. All these control techniques are routinely used in experiments
that could be modeled as spins, springs or composite spin-spring systems. Therefore, while
we provide a general framework for these techniques, we will emphasize on their application
to spin-spring systems.

We consider a quantum system on the Hilbert space H given by its wave function |¢)) on
the unit sphere of H and satisfying the following controlled Schrédinger equation

i%’@ = (Ho + Zukﬂk> %) (2.1)

k=1

where u = (uy,...,uy) € R™ is formed by m independent controls and Hy, Hy, ..., H,,
are m + 1 Hermitian operators on H. Note once again that [1)) and e¥|y) for any phase
0 € [0, 27| represent the same physical state. Therefore, the relevant control problem consists
of, finding for a given initial and final state, |1;) and [¢f), a set of piecewise continuous
controls [0, 7] 5 ¢ + ug(t) such that the solution for [1)o = |1;) satisfies |1/)1 = € |¢)y).

2.1 Resonant control, rotating wave approximation

2.1.1 Multi-frequency averaging

Let us consider the system (2.1), defined on a finite-dimensional Hilbert space H (while we
will consider infinite dimensional examples later through this chapter, we will present the
general framework only for the finite-dimensional case). For simplicity sakes, we also consider
a single control, m = 1. We define the skew-Hermitian matrices Ay = —iHyg, k£ = 0, 1.

19



20 CHAPTER 2. OPEN-LOOP CONTROL OF SPINS AND SPRINGS

Assume that the single scalar control is of small amplitude and admits an almost periodic
time-dependence

.
u(t) =e | > e’ +ute it (2.2)
j=1

where € > 0 is a small parameter, eu; is the constant complex amplitude associated to the
frequency w; > 0 and r stands for the number of independent frequencies (w; # wy, for j # k).
We are interested in approximations, for € tending to 0T, of trajectories ¢ — [1)c)¢ of (2.1).
Such approximations should be explicit and valid on time intervals of length O(2) (first order
approximation) or O(E%) (second order approximation). The wave function |i).) obeys the
following linear time-varying differential equation

d - W * —iW;
Sl = | Ao+e > uje it 4 use it | Ay | [y, (2.3)
j=1

Consider the following change of variables

‘we>t = eAOt‘¢e>t (2'4)

where |t)¢) is replaced by |¢e). Through this change of variables, we put the system in the
so-called “interaction frame”:

d
o0 = eB(®]6J) (25)

where B(t) is a skew-Hermitian operator whose time-dependence is almost periodic':

r
B(t) — § :ujezwjte—AotAlert + U;e_lete_AotAlert.

J=1

More precisely each entry of B is a linear combination of oscillating terms of the form e™'t

with ' > 0. This results from the spectral decomposition of Ag to compute e4°t. Thus
one can always decompose B(t) into a constant skew-Hermitian operator B and the time
derivative of a bounded and almost periodic skew-Hermitian operator B(t) whose entries are
linear combinations of ™'t with ' > 0:

d ~

B(t) = B+ L B(t). (2.6)

Notice that we can always set B(t) = %é(t) where C is also an almost periodic skew-
Hermitian operator. Then (2.5) reads %\qﬁg) = (eB + e%é) |6e) and suggests the following

almost periodic change of variables

Ixe) = (I — eB(t))|¢e) (2.7)

well defined for e small enough and then close to identity. In the |y.) frame, the dynamics
reads

d o d- _\ -1
Zlxd) = <B—eBB—eBdtB> (I—GB) Ixe)-

! An almost periodic time function f is equal by definition to F(w:t,...,w,t) where the function F is a
2m-periodic function of each of its p arguments and the w;’s form a set of p different frequencies.



2.1. RESONANT CONTROL, ROTATING WAVE APPROXIMATION 21

~ -1 ~
Since B(t) is almost periodic and <I - eB) = I + B + O(¢?), the dynamics of |x.) reads

k) = (B -+ 2B, 0] - B0 B0 + SB(e0)) Iv)

where the operator E(e,t) is still almost periodic versus ¢ but now its entries are no more
linear combinations of time exponentials. The operator B(t)%B (t) is an almost periodic
operator whose entries are linear combinations of oscillating time exponentials. Thus we have

d ~

B(1) & B(1) = D+ & D(1)

where D(t) is almost periodic. With these notations we have

%Ix& - <eB —e?D + ¢ % ([B, Ct)] - f)(t)) + EE(e, t)) Ixe) (2.8)

where the skew-Hermitian operators B and D are constant and the other ones C , E, and FE
are almost periodic.

Similarly, the change of variable |£) = (I — €2 ([B, C@t) - l~7(t)> )‘Xe> yields to

%m) — (B - D + +EF(e.1)) |xe) (2.9)

where F'(¢,t) is a bounded operator uniformly bounded versus ¢.
The pseudo-periodic mapping J (e, t) close to identity

99 = o) = I, 0)]o) 2 (1= (IB,.C(1)] - DW) ) (T-B®)ls) (210

exchanges the solution of (2.5) and of (2.9).
The first order approximation of |¢¢) is given by the solution |¢)25t> of

1St 1St

\cb ) =eBlo, ) (2.11)

where B can be interpreted as the averaged value of B(t):

T '
= lim T/ B(t) dt = lim ilp/ ZujewjtefAOtAont+u;67’wjtefA°tA16A°t dt.
0

T»—)oo T+—o0 -
J=1
Approximating B(t) by B in (2.5) is called the Rotating Wave Approximation (RWA). The
second order approximation reads then

|¢2“d> (eB — &D)|g2™). (2.12)

In (2.11) and (2.12), the operators eB and eB — ¢2D are skew-Hermitian: these approxi-
mate dynamics remain of Schrédinger type and are thus characterized by the approximate
Hamiltonians

A" =ieB and A = i(eB — D).
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2.1.2 Approximation recipes

Such first order and second order approximations extend without any difficulties to the case
of m scalar oscillating controls in (2.1). They can be summarized as follows (without intro-
ducing the small parameter € and the skew-Hermitian operators Ay). Consider the controlled
Hamiltonian associated to |v)

m
H=H)+)» uH, (2.13)
k=1

with m oscillating real controls
,
up(t) = Z up €7 + uy et
j=1

where uy, ; is the slowly varying complex amplitude associated to control number £ and fre-
quency wj;. In the sequel, all the computations are done assuming wuy, ; constant. Nevertheless,
the obtained approximate Hamiltionians given in (2.15) are also valid for slowly time-varying
amplitudes.’

The interaction Hamiltonian

H;\(t) = Z (uk,jewft + uz’je*“’jt) eiHoter*iHOt (2.14)
k.j

is associated to the interaction frame via the unitary transformation |¢) = e*0|y)). It admits

the decomposition
t d
Hint(t) = H}:va + @IOSC(t)

to. . . . . .
where H %:va is the averaged Hamiltonian corresponding to the non-oscillating part of H it

(secular part) and I is the time integral of the oscillating part. I,e is an almost periodic
Hermitian operator whose entries are linear combinations of oscillating time-exponentials.
The Rotating Wave Approximation consists in approximating the time-varying Hamiltonian

Hu(t) by HE

twa- This approximation is valid when the amplitudes uy, ; are small. It is of

t
first order. The second order approximation is then obtained by adding to H %vsva a second

order correction made by the averaged part J,. of the almost periodic Hamiltonian

(d d
1 (dtIOSC(t)) Iosc<t) = Jiwa + %JOSC@)
with J s almost periodic. Notice J,,, is also Hermitian since %I 2= %I oscLose +osc %I osc-

We can summarize these approximations as the following recipes:

rwa rwa

HE = Ho,, HZS = HY — i(Hiy — Hiy) ( / (Hip — Hmt)) (2.15)
t

where the over-line means taking the average.

2More precisely and according to exercise 1, we can assume that each uk,; is of small magnitude, admits a
finite number of discontinuities and, between two successive discontinuities, is a slowly time varying function
that is continuously differentiable.
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2.1.3 Approximation lemma
A precise justification of the rotating wave approximation is given by the following lemma.

Lemma 1 (First and second order approximations). Consider the solution |¢¢); of (2.5) with
initial condition |pc)o = |pa). Denote by ]¢§St>t and \¢znd>t the solution of (2.11) and (2.12)

respectively with the same initial condition, |¢§St>0 = |¢§" Yo = |¢a). Then, there exist M > 0
and n > 0 such that for all € €)0,n[ we have

1St 2nd

max H]qbe —|oc N H Me and  max H|qf>6 — oz ) H Me
te [0 ] te [0 52]
Proof. We detail here only the proof for the second-order approximation. It is based on the
mapping J(e,t) defined by (2.10). The proof for the first order approximation is similar and
relies on the mapping defined by (2.7).
|€e)e = J(€,t)|pe)e is the solution of (2.9) starting from J(e,0)|¢,). According to (2.10),
there exist M; > 0 and n; > 0, such that for all € €]0,7;] and ¢ > 0 we have [|[€): — |pe)e]| <
Mje. Thus, it is enough to show that exist 72 and My > 0 such that for all € € [0, 72] we have

21’1d

max Hy@ L — |62 H < Mye.
tef0, 5]
Consider the following identity
t L
e = BEDg)g & [ LB g, dr (216)
0

where e!(¢B=<*D) i unitary for all t and F(e, 7) is uniformly bounded versus ¢ > 0 small and
t > 0. This means that exist My, no > 0 such that for all ¢ > 0 and € € [0, 7]

1€ =162 < || (9(6.0) ~ 1) 1)

since |¢)§nd>t: eB=e*D)| ¢\ Thus

+ te* My max H]{E )r
T€[0,¢]

max H 1€e)+ ¢2nd>

T€[0,¢]

<||(7e0 - 1)Ien)

nd
< Mie+ 7563-7\40 max H|§E>‘r - |¢§ >T
T€[0,t]

+ te> My max H\fe .

3M0

since (J(¢,0) = I)[ga) = |0 — [6a) and [I162"*)7l| = i) | = 1. Consequently

2nd < M1€+t€3M0

>T - 1—te3My

max H |€e)r
7€[0,t]

With ng = min(n, 1/(2My)) and My = 2(M; + My) we have, for all n € [0, 2],

d
max H|5€ o= 162"

H < Mse.
te[o



24 CHAPTER 2. OPEN-LOOP CONTROL OF SPINS AND SPRINGS

Exercice 1. The goal is to prove that, even if the amplitudes u; are slowly varying, i.e.,
uj = uj(et) where T — uj(7) is continuously differentiable, the first and second order approz-
imations remain valid. We have then two time-dependancies for

T) = Z uj(T)ei“’jte*AOtAlert + u;(r)e*wjte*AOtAleAOt

with T = et. Then dB— S0 +e%’f.

1. Extend the decomposition (2.6) to

B(t,7) = B(7) + %(t, 7)

where B(t, ) is t-almost periodic with zero mean in t ( is fized here).
2. Show that the approximation Lemma 1 is still valid where (2.11) is replaced by

1St 15t

\¢> B(et)o; )

3. Show that the approzimation Lemma 1 is still valid where (2.12) is replaced by

Mﬁ ) = (eB(et) — € D(et))|¢; )
and where Bi(t, T)a—B(t 7) = D(7) + %—’?(t, 7) with D(t,7) almost periodic versus t and
with zero t-mean.

4. Extend the above approximation lemma when T — u;(T) is piecewise continuous and,
on each interval where it remains continuous, it is also continuously differentiable (T —
u;j(7) is made by the concatenation of continuously differentiable functions).

2.1.4 Qubits and Rabi oscillations

Let us consider the spin-half system described by (1.5) and fix the phase of the drive, so that
the controlled dynamics is given by:

d (wes u(t)
'L%W}) = ( 2 o, + 3 U:c) |¢>

Furthermore, we assume that u(t) = ve™r! +v*e ™t where the complex amplitude v is chosen
such that |v| < weg and the frequency w, is close to weg, i.e., ]weg —wy| < weg. Denote by
A, = Weg — wy the detuning between the control and the system then we get the standard
form (2.13) with m =2, Hy = % o,, uyH = %a’z and us Hy = Mo& with || Ho|
much larger than ||u;H1 + usHo|. A direct computation yields to the following interaction
Hamiltonian defined by (2.14):

A,

! —1 twrt twpt
Uezwrt v¥e wpt W o, _ o
H=—0o,+ %e 2 ZoLe 2 9Z,
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With the identities €% = cos0I + isinfo, and o,0, = ioy we get the formula

2160

ez@az —i00% — 6219o_+ 4 e 204

oze

Thus we have
2wt * * ,—2iwpt
H;: = —AQ’"O'Z—i—i”e ;*” o+ LY 2T+”a'_.

The decomposition of Hj,y = H 1ot + dr osc reads:

rwa

A, * 2iwpt * ,—2iwpt
Hine = Fro: + 5o + 50+ 5o + =55 —o.
t
e, o

Thus the first order approximation of any solution [¢) of

‘17[}> (WT"FATO_ + ’Uelwrt‘i’g*e_“"?”t ) |w>

jwrt . . . . . . .
is given by e~'2 9%|¢) where |¢) is solution of the linear time-invariant equation

\<Z>> (5o + Gor +50-)[0), |8)o = [¥)o. (2.17)

According to (2.15) the second order approximation requires the computation of the sec-

. d . o ,Ue2iwrt ,U*672zw’,‘t
ular term in Tosc g5 Losc. Since Tose = T O+ — Tqm,0—, we have
d o2
IOSC@IOSC = 810‘.1 (e
where we have also applied 0,2 = 6.2 = 0 and 0, = 0,0_ — 0_0o,. The second order

approximation resulting from (2.15) reads:
iy ((2e o L2 v -
i10 = (5 +55) oet 5ou+50-) 9. I6)o = [¥)o. (2.18)

We observe that (2.17) and (2.18) differ only by a correction of % added to the detuning
A,.. This correction is called the Bloch-Siegert shift.
. 2
Set v = Q,¢ and A=A, + %TT with €, > 0 and 0 real and constant. Then

v * Qr . A;,
(( + ‘ | > o, + %oy + %0'_> =5 (cos oy + sinboy,) + 5 = (2.19)

Set

Q= \/<Ar P2 pa g = el +g821,n€0y) + A0,

Then 0,2 = I and thus the solution of (2.18),

/

0)e = ¢ E 6o = cos (

%) 16)0 — isin (%) onloo,

/

oscillates between |¢)¢ and —ioy|¢p)o with the Rabi frequency %



26 CHAPTER 2. OPEN-LOOP CONTROL OF SPINS AND SPRINGS

For A, = 0 and neglecting second order terms in ,, we have Q, =~ Q,, A ~ 0 and
o, =~ cos oy, +sinfoy. When |¢)g = |g) we see that, up-to second order terms, |¢); oscillates
between |g) and e~ *+2)|e). With § = —%, we have

x)e = cos (%) |g) + sin (%) [e),

and we see that, with a constant amplitude v = Q,.e™ for ¢t € [0,T], we have the following
transition, depending on the pulse-length 7" > 0:

e if O, T = m then |¢)r = |e) and we have a transition between the ground state to
the excited one, together with stimulated absorption of a photon of energy w.,. If we
measure the energy in the final state we always find F.. This is a w-pulse in reference
to the Bloch sphere interpretation of (2.18) (see Subsection 1.2.2).

e if 0,7 = Z then |[¢)7 = (|]g) + |e))/v/2 and the final state is a coherent superposition
of |g) and |e). A measure of the energy of the final state yields either E, or E. with a
probability of 1/2 for both E; and E,. This is a §-pulse.

iwprt

Since [1)) = e~ "2 %=|¢), we see that a m-pulse transfers |¢)) from |g) at ¢ = 0 to e™¥|e) at

t=T = QLT where the phase a = 5—:7? is very large since 2, < w;,. Similarly, a §-pulse,

transfers |¢) from |g) at ¢ = 0 to %\geml@ at t = T = 55~ with a very large relative

Wy

half-phase o ~ TomE

Exercice 2. Take the first order approzimation (2.17) with A, =0 and v € C as control.

1. Set ©, = %T. Show that the solution at T of the propagator U, € SU(2), i%U =

QT(COSQU§+S1n90y)U, Uy = I is given by

Ur = cosO,1 —isin©, (cosboy + sinfoy) ,

2. Take a wave function |¢). Show that there exist . and 6 such that Ur|g) = €'¥|¢),
where o is some global phase.

3. Prove that for any given two wave functions |¢,) and |pp) exists a piece-wise constant
control [0,2T] 5 t — wv(t) € C such that the solution of (2.17) with |¢p)o = |¢pa) and
A, = 0 satisfies |¢)r = eP|¢y) for some global phase 3.

4. Generalize the above question when |p) obeys the second order approzimation (2.18)
with A, as additional control.

2.1.5 A-systems and Raman transition

This transition strategy is used for a three-levem A-system. In such a 3-level system defined
on the Hilbert space H = {cg|g) + cele) + c|f), (cg, ces cf) € C3}, we assume the three energy
levels |g), |e) and |f) to admit the energies E,, E. and E; (see Figure 2.1). The atomic
frequencies are denoted as follows:

Wrg = (Ef - Eg)» Wre = (Ef - Ee), Weg = (Ee — Eg)-
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f)

I

Figure 2.1: Raman transition for a A-level system (0, < 0 and A, > 0 on the figure).

We assume a Hamiltonian of the form

H(t) = Eylg)(g| + Eele)(e| + Ey|f)(f| + 3 (ug(!g><f| +1£){g]) + pe(le)(f] + !f><e|))
(2.20)

where py and p. are coupling coefficients with the electromagnetic field described by wu(t).
Assuming the third level |f) to admit an energy Ey much greater than F, and E,, we will
see that the averaged Hamiltonian (after the rotating wave approximation) is very similar to
the one describing Rabi oscillations and the state |f) can be ignored. The transition from
lg) to |e) is no more performed via a quasi-resonant control with a single frequency close to
Weg = (Ee—Ey), but with a control based on two frequencies w4 and wre, in a neighborhood of
wrg = (Ey—Ey) and wye = (Ef— E,), with wy.g —wye close to wey. Such transitions result from
a nonlinear phenomena and second order perturbations. The main practical advantage comes
from the fact that w,. and wy, are in many examples optical frequencies (around 10® rad/s)
whereas we, is a radio frequency (around 10'° rad/s). The wave length of the laser generating
u is around 1 pm and thus spatial resolution is much better with optical waves than with
radio-frequency ones.

Indeed, in the Hamiltonian (2.20), we take a quasi-resonant control defined by the constant
complex amplitudes uy and ue,

_ Wrgt * _—iWpgt iWrel * _—fwpel
u(t) = uge"r9’ + ug e + uee + uge
where the frequencies w;y and wy. are close to wyy and wy.. According to Figure 2.1 set
— A, — O — A, -+ Or
Wrg = Wrg + Ay 5, Wfe =Wre + Ay + 7,

and assume that

(masc(lptg, |e]) max(|ug. |ue])) amd |5,
< min (ng7w7"€7wfg7wfea ‘A’I"7 ‘wre — Wrg + Ar|7 ’wre — Wrg — AT’D .

In the interaction frame (passage from |¢) where i|y) = H(t)[¢)) to |¢)),

) = (7B EN gy ] + T EE N eyie] + e Er 1) 11) Io)
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the Hamiltonian becomes (z%\(b) = Hin(t)|0)):

Hini(t) = % (e} (el — l9){g])
+ 1 (ugeiwrgt + ueeiwret + uze—iwrgt + u:e—iwret) (ei(ng+Ar)t|g> <f’ + e—i(ng+Ar)t|f> <g‘>

+ Ibe (ugeiwrgt + ueeiwrct + u;e*ingt + u:ef’iwret) (ei(wre+Ar)t|e> <f‘ + efi(wre+Ar)t’f> <€|) .

It is clear from (2.15), that HE = % (le)(e|] — |g)(g]) and thus second order terms should

rwa 2
. d . . . .
be considered and H fVI;a has to be computed for a meaningfull approximation. Simple but

tedious computations show that [(Hiy — H ") (the time primitive of zero mean) is given

rwa
by
pg ((uge!PergTATIE  y gilwrgtwretAr)t i upelArt grei(wrg—wretAr)t 9]
2 i(zwrg"l‘Ar) i(wrg+wre+Ar) 1Ay i(wrg_wre+Ar) g
X e ugei(wrg+wre+AT)t ueei(2w7'€+A”')t u;ei(wre*wrg‘FAr)t uzeiArt ’ ><f‘
2 i(w'rg+wre+A7‘) i(2w7‘e+A7‘) Z’(wrefwrg‘i’AT) Ay €

g u;e_i(Q“’Tg"'A"')t uze—i(wrg+wre+Ar)i uge—iArt uee—i(wrg—wre+Aq«)t
2 i(QWTgJ"A'P) + i(w7'g+wre+Ar) [7ANS + i(wrg _wre+Ar) |f> <g’

e u;efi(wrg+wre+ﬁr)t n u:e*i<2w7‘e+AT)t 4 uge—i(wrg—wrg+Ar)t ueefiATt |f>< ’
2 i(wrg+wre+Ar) i(2wre+Ar) i(wre_wrg+Ar) 1Ay :

The non-oscillating terms of 4 ( ft (H int — H 15t )) (H int — H iy ) are then given by simple

rwa rwa

but tedious computations:

nd e * * 57«
H?, =" (wrgﬂjmﬂr + A%) (uguclg) (el + uguzle)(gl) + % (le)(el — lg)(g])
2 2 2 2 2 2 2 2
+ % <2W‘:fyg‘~|‘Ar + l,lgl + Wrg_h:;‘e‘i‘Ar) ‘g> <g’ + % <2W‘:::“Ar + |kl + wre_‘,l:ilg‘i‘Ar) ’€> <€|

pilusl e el il | pdlusl bl | il seliel ) £
2wrg+Ar 2wre+Ar wrg+UJre+Ar Ay wre_wrg+Ar UJrg_wre+A7' '

(2.21)
This expression simplfies if we assume additionnally that
A, [wre — wrg + Arl, [Wre — Wrg — Al < Wrgs Wres Wrgr Wre.
With these additional assumptions we have 3 time-scales:
1. The slow one associated to 6, pg|tgl, fig|tel, te|tg] and fie|ue|
2. The intermediate one attached to A, |wype — wrg + Ar| and |wyre — wrg — Ay
3. The fast one related to wrg, Wre, wry and wy,.

We have then the following approximation of the average Hamiltonian

H2nd ~ Ngﬂeu;ue

~

fw R lg) el + R o) (gl + 5 (led (el — 1g){g])

#2 2 . 2 g . 2 2
4 (M Y vl + 4 (% e Y e el

_ 1 ( HalugP+uZlucl? pglug|? ueluel® ) | £y (]
4 Ay Wre_wrg+Ar Wrg_wre+Ar :
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If (¢|f), = 0 then (¢|f), = 0 up to third order terms: the space span{|g), e)} and span{|f)}
are invariant space of H nj. Thus, if the initial state belongs to span{|g), e)}, we can forget

the [f)(f| term in HZ, (restriction of the dynamics to this invariant subspace) and we get
a 2-level Hamiltonian, called Raman Hamiltonian, that lives on span{|g), |e) }:

HRaman = wlgﬂ |+ Habietas ey (g] + % (Je)(e| — |g){g])
+“4*"<|Zg‘ + e >Ig>< |+ L (‘“e‘ — )|e><e\. (2.22)

r Wrg —wret+Ar A Wre _Wrg+Ar

that is similar (up to a global phase shift) to the average Hamiltonian underlying Rabi oscil-
lations (2.19) with

/ 2 |ue? ugl? 1y ( Jugl? e |?

Wrefw'rg+Ar r W'rgfw're“l’Ar

i = Haletite

During such Raman pulses, the intermediate state |f) remains almost empty (i.e. (¢|f) ~
0) and thus, this protocol remains rather robust with respect to an eventual instability of the
state | f), not modeled through such Schrédinger dynamics. To tackle such questions, one has
to consider non-conservative dynamics for |¢)) and to take into account decoherence effects
due to the coupling of |f) with the environment, coupling leading to a finite lifetime. The
incorporation into the [¢)-dynamics of such irreversible effects, is analogous to the incorpo-
ration of friction and viscous effects in classical Hamiltonian dynamics. Later on through
these lecture notes, we will present such models to describe open quantum systems (see also
chapter 4 of [30] for a tutorial exposure and [16, 3] for more mathematical presentations).

2.1.6 Jaynes-Cummings model

Consider the resonant Jaynes-Cummings Hamiltonian H,.s of Subsection 1.3.1 that governs
the dynamics of [¢),

i) = <wegaz T <a*a " ;) T u(t)(a+ah) + 2oy (al - a)> %),

where we have additional considered a drive of real amplitude u(t) applied on the harmonic
oscillator. Assume that u(t) = ve™r! + v*e~*r! where the complex amplitude v is constant.
Define the following detunings

A¢ = we — Wy, Aeg:Weg_(«Ur

and assume that
|A, |Aeg|7 19, |v] < Weg, We, Wr.

Then H,.; = Ho+ eH{ where € is a small parameter and

I
HO = %Uz + wp (aTa+ 2>

I . 4
¢H, = (Aego.z+A < a+ 2) —{—(veth—i—v*eWrt)(a-f—aT)-i-igUag(aT—a))'
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Even if we the system is infinite dimensional, we apply here heuristically the rotating wave
approximation summarized in Subsection 2.1.2. First we have to compute the Hamiltonian
in the interaction frame via the following change of variables |¢) — |¢):

—twpt

) = eiert(alatl) =5 e g
We get the following interaction Hamiltonian
1 : ‘ ) .
Hi, = %o’z + A, (aTa + 2> + (ve™rt 4 v*e ™) (e ta + e“rtal)

+ Z% (e—into__ + einto_+) (eintCLT o e—iwrta)

where we have applied the following identities (see Subsections 1.2.1 and 1.1.2):

egdz o.me—%o'z — 6—1‘00__ + 6i90_+’ ei@(zﬂa-ﬁ-%) a e—iG(aTa—&-%) _ e—iea
The secular part of Hiy is given by
1St Aeg .i_ I * 1_ .Q 1_
H: ., =%+ A a'at; | +tva+via +i5(o_a' —ora) (2.23)

and its oscillating part by

st ; _ 9 . . i
(Hy — HL ) = veXrtgl 4 yre2rtg 4 z%(e%w’”tmr(ﬂ —e 2wl _q).

Then we have

/ (Hiw — HY) = oy (v al —v'e 2 ra 0§ (9 oyal + o7 "0_a))
t

and, following (2.15), the second order approximation reads

H, 6 =—F%0+A|a a+§ +wva+v'a' +iy(o_a' —ora)
2
i (vo- —v'oy) + Lozala— ({5 + HE) 1 (229)
(use [a,al] = 1, o0 = [e)e] and ooy = [g)(g]).

Consider now that the average Hamiltonian H 1 defined by (2.23) with v € C as control.

rwa

It splits into Hg + v1 H1 + voH9 where v = %(vl + ivg) with v1,v9 € R and

Hy= 20, + A(X? + P?)

- %(Xay +Po,), H =%2_X H,=5%_p,
(2.25)
With the commutation rules for the Pauli matrices o4 4,. and the Heisenberg commutation
relation [ X, P] = %, the Lie algebra spanned by :H, iH 1 and iH is of infinite dimension.
Thus, it is natural to wish that this system is controllable. To fix the problem, it is useful to
write it in the form of partial differential equations where powerful tools exist for studying
linear and nonlinear controllability (see, e.g. [27]). The controlled system i%|¢) = (Ho +
viH1 + voH3)|¢p) reads as a system of two partial differential equations, affine in the two
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scalar controls u; = v1/v/2 and up = va/v/2. The quantum state |¢) is described by two
elements of L?(R,C), ¢, and ¢., whose time evolution is given by
0
;9%

82¢g % — Ay 0
e 8x2+< 5 )%—i—(uw—l—zuz >¢g+12f<:v+ )(be

O¢e A, 0*¢e Act® + Agy _ 9
Yot T 2 o2 T 2 fet “1““‘2 Ge T gn ) %

since X stands for ﬁ and P for —

w‘[>

(2.26)

ﬁ 55+ An open question is the controllability on the set
of functions (g, ¢e) defined up to a global phase and such that ||¢g||z2 + ||¢ell2 = 1. In a
first step, one can take A. = 0 (which is not a limitation in fact) and Ay = 0 (which is a
strict sub-case).

Exercice 3. Consideri%W} = (Ho+viH1+voH)|Y) with Hy, Hy and Hy given by (2.25)
with Aeg = Ae =0, Q> 0 and (v1,v2) as control. The system is therefore given by

\w) ( L(o_a —o.a) +val —i—v*a) |v)

with v = Y1t
52

1. Set v € C solution of %V = —iv and consider the following change of frame |¢) =
—vat+v*a

D_,|¢) with the displacement operator D_,, = e . Show that, up to a global

phase change, we have

210 = (200’ ~ o1a) + (b0 +770-)) [9)

0

with v = i5v.

2. Take the orthonormal basis {|g,n), |e,n)} withn € N being the photon number and where
for instance |g,n) stands for the tensor product |g) ® |n). Set |¢) = >, dgnlg,n) +
benle,n) with dgn, pen € C depending on t and Y, |¢gnl? + |Pen|®> = 1. Show that,
forn >0

d Y . d ) -
Z@(Z)g’n_Fl = 15\/71 + 1pen + 0 e nt1, Z@‘ﬁse,n = —z%\/n +1pg ni1 + Vg n

. d ~
and i ;¢g0 = V" de0-

3. Assume that |p)g = |g,0). Construct an open-loop control [0,T] > t — 0(t) such that
|o)r = |g,1) (hint: take © = v(t) and adjust the constants v and T > 0, §(t) Dirac
distribution at 0).

4. Generalize the above open-loop control when the goal state |p)r is |g,n) with any arbi-
trary photon number n.
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2.1.7 Single trapped ion and Law-Eberly method

Through this subsection, we study the laser control of a single trapped ion as introduced in
Subsection 1.3.2. The Hamiltonian is given by

I . .
H = %a’z + wm(ala + 5) + (u*(t)oy einlata’) u(t)o— e*m(aﬂ‘f)). (2.27)

The Schrodinger equation i%h{}) = HJy) is equivalent to a system of partial differential
equations on the two components (g4, 1¢):

01 0? e i
’aTg =% <m2 a 6:E2) Vg = wzgwg + u(t)e zﬁm%
o 52 (2.28)
¢ 8; =3 (372 - 83:2> Ve + B + u*(t)e“/im”z/;g,
where v € C is the control input. In [32] this system is proven to be approximately con-

trollable for (14,1.) on the unit sphere of (L?(R,C))2. The proof proposed in [32] relies on
the Law-Eberly proof of spectral controllability for a secular approximation when u(t) is a
superposition of three mono-chromatic plane waves: first one of frequency weg (ion electronic
transition) and amplitude v; second one of frequency weg — wyy, (red shift by a vibration quan-
tum) and amplitude v,; third one of frequency weg + wy, (blue shift by a vibration quantum)
and amplitude v,. With this control, the Hamiltonian reads

I w
H = fa+ = °8
wm<aa+2>+ 5

+ (UbO'_ i((wegtwm )t—my(a+al)) + U;O.Jre—i((weg—&-wm)t—??b(a-l-aT)))

T+ (UU—ei(%gt_”(aJraT)) + U*O'Jre_i(wegt—??(a-l-aT)))

+ (vra_ei((wegwm)t—m(a+af)) n U;ﬂkoq_e—i((wegfwm)t—nr(aJraT))) .

We have the following separation of scales (vibration frequency much smaller than the qubit
frequency and slowly varying laser amplitudes v, v,., vp):

dt dt < wm|vb|.

d d d
Wi K Weg, — | <K Wm|v‘v —Ur| K Wm‘vr|’ %vb

Furthermore the Lamb-Dicke parameters ||, ||, |7-| < 1 are almost identical. In the inter-
action frame, [1) is replaced by |¢) according to

—iwegl

) = emHalat) =5 e ),
The Hamiltonian becomes
Hi, = giwmt(a’a) (va_e*in('”“f) + v*o‘+ei’7(a+af)) ¢—iwnt(ala)
i ciwt(ala) (Uba_eiwmte—mb(am*) i UZO_+€—iwmt€inb(a+aT)> o—iwmt(a’a)

+ eiwmt(ata) (UTO' e—iwmte—inT(a—i-aT) + v*a,+eiwmt€i77T(a+aT)> e—iwmt(aTa)
" r .
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With the approximation ¢“+0) & 1 4 ic(a-+af) for € = %7, mp, 1, the Hamiltonian becomes
(up to second order terms in €),

Hiy = vo_ (1 —in(e”“mta + e“mtal)) + v*oy (1 + in(e”“mta + e“mtal))
+ Ubeiwmto__(l _ inb(e_inta + eiwmtaT)) + Uge—iwta_Jr(l + inb(e—iwmta + eiwmtaT))

+ Ure_iwmtd_ﬂ o inr(e_i‘”mta + eiwmtaT)) + vjeiwmta,+(1 + inT(e_iw’"ta + eiwmtaT))

The oscillating terms (with frequencies +w,, and +2w,,) have zero average. The mean
Hamiltonian, illustrated on Figure 2.2, reads

1St
rwa

H. =vo_+v'o, +yao_ +tjalo; 4+ t,alo_ + 5aoy

where we have set v, = —imyvp and v, = —in,v,. The above Hamiltonian is ”valid” as soon
as |nl, m|, -] <1 and

d
<<wm‘v’a %Ub < Wm‘Ur’-

dt dt

d d

[v], [vpl, |vr| € Wi, 'v < Wi | s, ‘vr
To interpret the structure of the different operators building this average Hamiltonian, physi-
cists have a nice mnemonic trick based on energy conservation. Take for example ao_ at-
tached to the control vy, i.e. to the blue shifted photon of frequency weg + wy,. The operator
o_ corresponds to the quantum jump from |e) to |g) whereas the operator a is the destruction
of one phonon. Thus ao_ is the simultaneous jump from |e) to |g) (energy change of weg) with
destruction of one phonon (energy change of wy,). The emitted photon has to take away the
total energy lost by the system, i.e. weg +wy,. Its frequency is then weg +wy, and corresponds
thus to 7. We understand why afe_ is associated to o,: the system loses Weg during the jump
from |e) to |g); at the same time, it wins wy,, the phonon energy; the emitted photon takes
away Weg — Wy, and thus corresponds to v,.. This point is illustrated on Figure 2.2 describing
the first order transitions between the different states of definite energy.

The dynamics i%|q§> =H %::a|¢> depends linearly on 6 scalar controls: it is a drift-less sys-
tem of infinite dimension (non-holonomic system of infinite dimension). The two underlying
partial differential equations are

Doy _ (B (DN B (D
G () R (e
Dbe (T 0 o 0
Z&_(U+ﬁ<x_&c>+ﬂ<x+&r)>¢g

We write the above dynamics in the eigenbasis, {|g,n), e, n)}, y, of the operator wy, (afa + §)+
Weg - .
L0y

.d _ _

laqsg,n = Ud)e,n + Ur\/;wse,nfl + vpvVn + 1¢e,n+l

. d * s %

i 0en = V" Ggn + UV F 1y i1 + Oyt
w1 |¢> n=0 g,n|gy n> + ¢e,n|€a n> al Zn:() |¢g,n| + |¢e,n| .

Law and Eberly [?] illustrated that it is always possible (and in any arbitrary time 7" > 0)
to steer |¢) from any finite linear superposition of {|g,n),le,n)}, oy at t = 0, to any other
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|e,1> ,_ o
_|e'0 o o +0, o*
wm—(ﬂea u /Y
r
— ,3

Figure 2.2: a trapped ion submitted to three mono-chromatic plane waves of frequencies weg,
Weg — Wi and Weg + Wy

finite linear superposition at time ¢ = T' (spectral controllability). One only needs two controls
v and Ty (resp. v and ¥,): U, (resp. Up) remains zero and the supports of v and o (resp. v
and v,) do not overlap. This spectral controllability implies approximate controllability.

Let us detail now the main idea behind the Law-Eberly method to prove spectral control-
lability. Take n > 0 and denote by H, the truncation to n-phonon space:

My, =span{|g,0),le,0),...,|g,n),|e,n)}
We consider an initial condition |¢)g € H,, and T > 0. Then for ¢ € [0, Z] the control

Pe,n(0)

Pen ) eiarg(¢g,n(0)¢z,n(0))
g,’rL

op(t) = 0p(t) =0, v(t) = Zarctan

ensures that ¢.,(7/2) =0. For t € [%,T], the control

| Ty | iora(on (T T
op(t) =0v(t) =0, o,(t) = T%} arctan %‘"(2T) 8(00n(2)6001(3))
n e nfl(f)

ensures that ¢, ,(t) = 0 and that ¢4 ,(T") = 0. Thus with this two-pulse control, the first one
on v and the second one on v,, we have |p)r € H,—1.

After n iterations of this two-pulse process |¢),r belongs to Hg. Then for ¢ € [nT, (n +
)T, the control

Pe,0(nT)

L eiarg(¢g,o(nT)¢Z,o(”T))
g,0(T

Up(t) = 0p(t) =0, () = Zarctan

guaranties that |qz5>( =¢¥|g,0).

n+l)T

Up to a global phaQse, we can steer, in any arbitrary time and with a piecewise constant
control, any element of #,, to |g,0). Since the system is driftless (¢t — —t and (v, 0, Uy) —
—(v, Up, U ) leave the system unchanged) we can easily reverse the time and thus can also steer
lg,0) to any element of H,,. To steer |¢) form any initial state in H,, to any final state also in
H, it is enough to steer the initial state to |g,0) and then to steer |g,0) to the final state. To
summarize: on can always steer, with piecewise constant controls and in an arbitrary short
time, any finite linear superposition of (|g,v), |e,v)),>0 to any other one.
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2.2 Adiabatic control

2.2.1 Time-adiabatic approximation without gap conditions

We first recall the quantum version of adiabatic invariance. We restrict here the exposure
to finite dimensions and without the exponentially precise estimations. However we give the
simplest version of a time-adiabatic approximation result without any gap conditions. All the

details can be found in a recent book by Teufel [63] with extension to infinite dimensional
case.
Theorem 1. Take m + 1 Hermitian matrices of size n x n: Hy, ..., H,,. For u € R™ set

H(u):=Ho+Y - up Hi. Assume that u is a slowly varying time-function: u = u(s) with
s=et €[0,1] and e a small positive parameter. Consider a solution [0,1] >t |)§ of

d € __ €
@%’Wt = H (u(et))|y);.

Take [0,s] > s — P(s) a family of orthogonal projectors such that for each s € [0,1],
H(u(s))P(s) = E(s)P(s) where E(s) is an eigenvalue of H(u(s)). Assume that [0,s]
s+ H(u(s)) is C?, [0,5] > s — P(s) is C? and that, for almost all s € [0,1], P(s) is the
orthogonal projector on the eigenspace associated to the eigenvalue E(s). Then

im | sup [[[P(et)0)])? — [PO)w)s]2] | =o.
0" \iep.dy

This theorem is a finite dimensional version of Theorem 6.2, page 175, in [63] where, for
simplicity sake, we have removed the so-called adiabatic Hamiltonian and adiabatic propaga-
tor that intertwines the spectral subspace of the slowly time-dependent Hamiltonian H (u(et)).

This theorem implies that the solution of i%W)) = H (u(4)) ) follows the spectral
decomposition of H (u(4)) as soon as T is large enough and when H (u(4)) does not admit
multiple eigenvalues (non-degenerate spectrum): apply the above theorem with P = Py
where Py is the orthogonal projection on the k’th eigenstate of H to conclude that the
population on state |k) is approximatively constant. If, for instance, |1) starts at ¢ = 0 in
the ground state and if u(0) = u(1) then |¢) returns at ¢ = T, up to a global phase (related
to the Berry phase [58]), to the same ground state.

Whenever, for some value of s, the spectrum of H(u(s)) becomes degenerate the above
theorem says that the populations follow the smooth decomposition versus s of H(u(s)).
For example, assume that the spectrum of H is not degenerate except at § where only two
eigenvalues become identical: for all s we assume that the n eigenvalues of H (u(s)) are labeled
according to their order

Ei(s) < Ex(s) < ... < Ep(s) < Ep1(s) < Epqa(s) < ... < Ey(s)

and Ej(s) = Eg 4 (s) only when s = 5 for some k € {1,...,n}. Since s — H (u(s)) is smooth,
there always exists a spectral decomposition of H (u(s)) that is smooth versus s (this comes
from the fact that the spectral decomposition of a Hermitian matrix depends smoothly on its
entries). Thus we have only two cases:

1. the non-crossing case where s — [ (s) and s — Ej_(s) are smooth functions
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2. the crossing case where

s { Ei(s), fors

5 and 5 Ey,(s), fors <3
Erq(s), fors >

Ez(s), for s > s.
are smooth functions.

In the non-crossing case the projectors that satisfy the theorem’s assumption are the orthogo-
nal projectors Pg(s) on the k’th eigen-direction associated to Fj(s). In the crossing case, the
projectors on the eigenspaces associated to Ky and Ej | have to be exchanged when s passes
through 5 to guaranty at least the continuity of Py(s) and Py, (s): for s < 5, Py (resp.
Py, is the projector of the eigenspace associated to Ej (resp. Er,,); for s > 5, Py (resp.
P;_ ) is the projector of the eigenspace associated to Ej ; (resp. Ej); for s = 5, Py and
Pj_ , are extended by continuity and correspond to orthogonal projectors on two orthogonal
eigen-directions that span the eigenspace of dimension two associated to Ef(5) = Eg_(5).

2.2.2 Adiabatic motion on the Bloch sphere

Let us take a qubit system. Since we do not care for global phase, we will use the Bloch
vector formulation of Subsection 1.2.2:

%M = (ui 4+ vj4 wk) x M

where we assume that B = (ua— v+ wE), a vector in R3, is the control (in magnetic resonance,
B is the magnetic field). We set w € R and B = wb where b is a unit vector in R?. Thus we
have

d

%]\2 = wb X M, with, as control input, w € R, beS?

Assume now that B varies slowly: we take 7' > 0 large (i.c., wT > 1), and set w(t) = @ (%),
b(t) = ﬁ(%) where @ and § depend regularly on s = % € [0,1]. Assume that, at t = 0,
My = B(0). If, for any s € [0,1], w(s) > 0, then the trajectory of M with the above control
B verifies: M(t) ~ 5(%), i.e. M follows adiabatically the direction of B. If b(T) = b(0), i.e.,
if the control B makes a loop between 0 and T' (8(0) = (1)) then M follows the same loop
(in direction).

To justify this point, it suffices to consider |¢) that obeys the Schrédinger equation
i%\w) = (%0, 4 %oy + %0.) |¢) and to apply the adiabatic theorem of the previous sub-
section. The absence of spectrum degeneracy results from the fact that @ never vanishes
and remains always strictly positive. The initial condition My =g (0) corresponds to |1)g

v(0) w(0)

in the ground state of @az + =570y + —5-0.. Thus [); follows the ground state of

@Jm + @Jy + #UZ, ie., M(t) follows 5(%)

The assumption concerning the non degeneracy of the spectrum is important. If it is not
satisfied, |1); can jump smoothly from one branch to another branch when some eigenvalues
cross. In order to understand this phenomenon (analogue to monodromy), assume that w(s)
vanishes only once at § €]0, 1[ with w(s) > 0 (resp. < 0) for s € [0, 5[ (resp. s €]5,1]). Then,
around ¢t = 8T, |¢); changes smoothly from the ground state to the excited state of H (t), since
their energies coincide for ¢t = §7". With such a choice for w, B performs a loop if, additionally
b(0) = —b(1) and @(0) = —ww(1), whereas |¢); does not. It starts from the ground state at
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¢t = 0 and ends on the excited state at ¢ = 7. In fact, M (t) follows adiabatically the direction
of B(t) for t € [0,5T] and then the direction of —B(t) for t € [§T,T]. Such quasi-static
motion planing method is particularly robust and widely used in practice. We refer to [72, 1]
for related control theoretical results. In the following subsections we detail some important
examples.

2.2.3 Stimulated Raman Adiabatic Passage (STIRAP)
Consider the A-system of Figure 2.1. The controlled Hamiltonian reads

H(t) = wglg) (gl + wele) (el +wrl F)(fI+ ult) (g (lg) (FI+1F)gD) + per(le)(f] + [f)eD) -

Assume wyr = wp — wy > wer = wy — we > 0. We take a quasi-periodic and small control
involving perfect resonances with transitions g <> f and e < f:

U = Ugf cos(wgq ft) + Uef cOS(weft)

with slowly varying small real amplitudes u,r and u.r. Put the system in the interaction
frame via the unitary transformation e~*(wslg)(gl+wele){el+wrl/){(F)  We apply the rotating wave
approximation (order 1 in (2.15)) to get the average Hamiltonian

1St

Hi, = 5 (9) L+ 1) () + 5 (le) (L + 1) el)

with slowly varying Rabi pulsations ¢ = pigrugr and Qe = pleftiey.
Let us now analyze the dependence of the spectral decomposition of H }fvt on the two

a
parameters €, and Q.y. When QQ + Qef # 0, spectrum of HE
eigenvalues:

rwa admits three distinct

O = VEFN o o g, = YV
- — T T2 0o=VY, + = "9
associated to the following eigenvectors :

) — Qgr Qes _ L
1) oz, o) \/2 o) H 71
\o>=—*”ef 19) + 2l |e)

VOt VOt

— Qs Qe 1
)= o) rle) + i)

Assume now that the Rabi frequencies depend on s € [0, 37”] according to the following formula

Qgcos®s, for s e [Z,30; Qcsin?s, for s € [0, 7);

— 5 5 _
Qg5(s) { 0, elsewhere. ’ ey (s) { 0, elsewhere.

with Qg > 0 and Q. > 0 constant parameter. With such s dependence, we have three analytic
branches of the spectral decomposition:

T 3T

e for s €]0, 5[ we have

Q_(s) = —Qcsins with |-)s = %
Qp = 0 with |0)s = —|g)

Q+(8) = Qe sin s with ’+>s = %‘
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o for s €], [ we have

_ 102 4 2 34 . N Qg cos?s|g)+Qe sin®sle) 1
Q_(s) = \/Qgcos s+ Q2sin® s with |—)s O cosT st 02 smT) ﬁ’f>

; —Q, sin? Q 2
Qo = 0 with |0)s = \/es_;l; s\z)-&- _g2CO.S4S‘e>
g cost s+Zsin® s

— /02 cost s + 02 sint s wi _ Qgcos’s|g)+Qesin’sle) | 1
Q+(S) = \/Qg cos* s + Qe sin® s with |+>s - \/2((2300545-}—@3511145) + \/i’f>

e for s €|m, 3] we have

Q_(s) = =0y cos s| with |—), = |9>\;27|f>.

Qo = 0 with |0), = |e)

Q4 (s) = Qy| cos 5| with |[+)s = %.

Let us consider the eigenvalue €: it is associated to the projector Py(s) on |0), that depends
smoothly on s € [0, 37”} as shown by the concatenation of the above formula on the three
intervals 10, [, |5, 7[ and |, 2T[. Thus assume that 1))y = |g) then adiabatic Theorem 1

shows that, for e > 0 small enough, the solution of i%hﬁ} =H %jvtaW} with the time-varying
control amplitudes

T Qgr(et) Qer(et)
[07 %76] R (ufgauef) = <£;[Tv 'Uif )

is approximatively given by

—lg) for t € [0, 5];

i 00 ) sl 10, cotelle) gy n ).
|,¢}>t ~e |O>Et =€ \/Qg cost(et)+Q2 sin?(et) ’ ort e [ﬂ’ z]’
le), for t € [%,3{],

where 6, is a time-varying global phase. Thus at the final time t = g—:, |1) coincides, up to
a global phase to |e). It is surprising that during this adiabatic passage from |g) to |e) the
control u.; driving the transition e <+ f is turned on first whereas the control uy; driving
transition g <> f is turned on later. It is also very interesting that the precise knowledge of
the coupling parameter ji5¢ and fi.s is not necessary (robustness with respect to uncertainty
in these parameters). However the precise knowledge of the transition frequencies wy; and
wey is required. Such adiabatic control strategies are widely used (see, e.g., the recent review
article [39]).

Exercice 4. Design an adiabatic passage s — (Qq7(s),Qef(s)) from |g) to 7‘9\%@, up to a
global phase.

2.2.4 Chirped pulse for a 2-level system

Let us start with H = wgg o+ %Um considered in Subsection 2.1.4 and take the quasi-resonant
control (|wy — Weg| <K Weg)

u(t) =v (e“"”‘tw) + e_i(“TH"Q))
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where v,0 € R, |v] and |%| are small and slowly varying

[,

2
L) <weg %] <wegltl, |52

do
< weg |G -

Following similar computations to those of Subsection 2.1.4, consider the following change of
. wyt+6
frame |1)) = ™" 2 %%|¢). Then i%|1)) = H|¢)) becomes

d —wr—4g 2i(wrt+0) —2i(wpt—0)
2£‘¢> _ (weg “’27" i o, + ve 5 +Uo,++ ve 5 +U0._ ’¢>

With A, = Weg — wy and w = —%0 and using the first order rotating wave approximation
(see (2.15) with HE

+wa) We get the following averaged control Hamiltonian

— Artw v
H chirp = 50z + 50y

where (v,w) are two real control inputs. Take three constant parameters a > |A,|, b > 0,
0 <e<ka,b. Set
w = acos(et), v = bsin®(et).

Set s = et varying in [0, 7]. These explicit expressions are not essential. Only the shape of
s +— w(s) and of s — v(s) are important here: w decreases regularly from a to —a; v is a bump
function that remains strictly positive for s €]0, 7| and that vanishes with its derivatives at
s=0and s =m.

The spectral decomposition of Hcpiyp, for s €]0,n[ is standard with two distinct and
opposite eigenvalues.

0 —_ vV (Art+w)2+v2
-= 2

cosalg) — (1 —sina)le)

associated to eigenstate |—) =

2(1 —sina)
2 2 1 —q]
Q) = 7V(Ar+2w)+v associated to eigenstate |4) = (1 =sina)lg) —.I_COS&M
2(1 —sina)
where a €]57, 5[ is defined by tana = %. Since limg, o+ a = § and limg, ,,- o = =5
lim |[—)s=1g), lim |[+)s=]le), lim [—)s=—[e), lim [+)s=g).
s—0t s—0t ST ST

Consequently the adiabatic approximation of Theorem 1 implies that the solution |¢) of

. A,+acos(e sin? (e
gy = (Brtegello 4 b 6 ) 16 gy = |g)

is given approximatively, for € small and ¢ € [0, ], by

’¢>t - eiﬁt ’_>s:et

with ¢ a time-varying global phase. Thus for ¢t = T, |¢) coincides with |e) up to a global
phase. Notice the remarkable robustness of such adiabatic control strategy. We do not need
to know precisely neither the detuning A, nor the chirp and control amplitudes a and b.
This means in particular that such adiabatic chirp control from ¢ to e is insensitive to all
parameters appearing in a 2-level system.

This adiabatic chirp passage can be extended to any ladder configuration that is slightly

an-harmonic.
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2.3 Optimal control

Take the n-level system i-%|)) = (Ho+ Y pq usHp)|1), initial and final states [1/,) and [ty)
and a transition time T > 0 ((¢q|ta) = (Yp|thp) = 1). We are looking for optimal controls
[0,7] 5 t — wu(t) minimizing foT(ZZl:l u}) and steering [¢) from |th,) at t = 0 to [tp) at
t = T (assuming the system to be controllable, we consider only the cases where such a
control exists). Thus we are considering the following problem

min 1 T<mu2 )d
up € L2([0,T),R), k=1,...,m 2/0 ; k(t) | dt (2.29)

igl) = (Ho+ Y1y upHy)|9), t € (0,7)
[¥)i=0 = Ya), | (o) [for =1

for given T, |1pg) and |vp) ((altba) = (Wp|thp) = 1). Notice that | (1p]1) |*> = 1 means that
) = €|3hp) where 6 € R is an arbitrary global phase.

Since the initial and final constraints are difficult to satisfy simultaneously from a nu-
merical point of view, we will consider also the second problem where the final constraint is
relaxed

min / (Zuk )dt-i- |<¢b|¢>|%) (2.30)

up € L2([0,T|,R), k=1,...,m
iglv) = (Ho+ 5L  up Hy)[W), t € (0,T)
|¢>t:0 = |wa>

with the positive penalization coefficient o > 0. Notice that for « large this problem tends
to the original one (2.29).

2.3.1 First order stationary condition

The first order conditions recalled in Appendix E yield to the following set of necessary
conditions. Notice that the adjoint state can be seen as a Ket, denoted by [p) € C" (of
constant length but different of one in general) since it satisfies the same Schrédinger equation

as [1).

For problem (2.29), the first order stationary conditions read:

| (Ho+ >y ueHp)[Y), ¢ € (0,T)

) =
’ > (HO"’—ZZL:l uka)\p>, te (OvT)
up = — < ’Hkhb)),k':l,...,m, tE(O,T)
D)e=0 = [Ya)s [ {Wl¥) g =1

For the relaxed problem (2.30), the first order stationary conditions read:

&‘Qﬁ*

(2.31)

(Ho+ > 5 weHp)|Y), ¢ € (0,T)
(HO + ZZLZI uka)\p>, te (OvT)

<p|Hk|w>>,k=1,...,m, Le (0,7)
Bhico = [ta)s [Phet = — (ol [t0).

&‘&.&

!p

¥)
)
x (2.32)
up = -

I
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These optimality conditions differ only by the boundary conditions at ¢t = 0 and ¢t = T": the
common part

i) = (Ho+ Yjey weHp) ), t € (0,7)
%l ) = (Ho+ Yj uHy)lp), t € (0,7)

- ((p|Hglw)) ,k=1,...,m, te(0,T)

is a Hamiltonian system with |¢)) and |p) being the conjugate variables. The underlying
Hamiltonian function is given by : H(|¢), |p)) = min,erm H(|), |p), u) where

s (G (o o). o

Thus for any solutions (|1), [p), u) of (2.31) or (2.32), H(|¢), |p), w) is independent of ¢. Notice

that
m 2
H(4), |p) = S ((p| Hol¥)) ;(Z ( \HHM)

k=1

m
HO"‘Zuka
k=1

2.3.2 Monotone numerical scheme

For the relaxed problem (2.30) a general monotone iteration scheme exists. Defining the cost

function cm
J(u) = %/O (ZU%(@) dt + 5 (1 = |(o|vu)[7)
k=1

where |1,) denotes the solution of z%|¢> = (Ho+ > -, uHy)|¢Y) starting from |1),), and
starting from an initial guess u® € L2([0, 7], R™), this scheme generates a sequence of controls
u” € L*([0,T],R™), v = 1,2,..., such that the cost J(u") is decreasing, J(u**1) < J(u¥).

This scheme does not guaranty in general the convergence to an optimal solution. But
applied on several examples, with a correct tuning of the penalization coeflicient «, it produces
interesting controls with |1))r close to |¢3). Such monotonic schemes have been proposed for
quantum systems in [61] (see also [73] for a slightly different version). We follow here the
presentation of [12] which also provides an extension to infinite dimensional case. See also
[19] for much earlier results on optimal control in infinite dimensional cases.

Take u,v € L2([0,T],R™), denote by P = |3){(v3| the orthogonal projector on |t/3), then

G — Pl — )t (e — ol Pl g+ (Pl — wm)
2

J(u) — J(v) = — <<

Ty (g — vg) (ug + k)
2

Denote by |p,) the adjoint associated to v, i.e. the solution of the backward systems

d m
i lpo) = <H0 + kaHk) [pv)s |po)T = —aPlhy)r.

k=1
We have

ziuwm—m»:(Hwkaﬂk) (1) = ) (Z (. — v) k> ).
k=1

k=1
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We consider the Hermitian product of this equation with the adjoint state |py):

(P Y= o) + (py |l g, )

An integration by parts yields

[

%

(d’u ¢'v) > o < ‘HO+ZZI:1 'Uka
=\Pv |/ —

d(wu vo) > <pv|¢u d}v)T - (piju - %)o - /OT < & 77[) ¢U>

_ . 4 Ho+> 0t v Hy
a<wv|P"¢u w’U>T+ o Po I E—

wu - wv>
since [12,)0 = [u)o, [po)r = —a Pl and & (p,] = —(p,| (FEZEHE) We ger:

Yu)-

Thus af ((1hy| Py, — y) ) = — fo ({pv >y (u, — v) H | 1y)). Finally we have

—a (o] Pltu — o)y = / (po | Bttt

J(u) = J(v) = =5 ((Yu — Vo[ Pltby — ¥u)) 7
m T
+13 (/0 (wr — ve) (g + v + 23 ((po | Hk| ) dt) .

k=1

If each uy, satisfies up = — ((py |Hk|¥y)) for all ¢t € [0,T) we have
m T
J(u) - J(U) = _% ((dju - wv‘PW}u - wv»T - %Z (/0 (Uk - 'Uk>2>

and thus J(u) < J(v).

These computations suggest the following iteration scheme. Assume that, at step v, we
have computed the control u”, the associated quantum state |¢)”) = [i,v) and its adjoint
|p¥) = |pur). We get their new time values u¥™!, [1p**1) and [p**!) in two steps:

1. Imposing u}/ ™ = - ((p" |Hy| ¥ *1)) as a feedback, one get u”*! just by a forward
integration of the nonlinear Schrodinger equation,

a <Ho—z (0" |Hl ) H )\w, %o = [¥a),

k=1
that provides [0,7] 3 ¢ — [¢"*!) and the m new controls u} ™.

2. Backward integration from ¢ =T to t = 0 of

dt <H0 + Z“yﬂ ) p), Ip)r=—a <¢b!¢”+1>T |1p)

yields to the new adjoint trajectory [0,7] 3t s [pT1).



Chapter 3

Quantum Measurement and
discrete-time open systems

3.1 Quantum measurement

Whenever talking about the quantum state of a system, we refer to an observer’s knowledge
about a system. More precisely, it is the knowledge of the observer about the outcome of the
future measurements on the system.

Such information theoretical definition of the state of a physical system may appear unfa-
miliar and uncomfortable as for instance, the observers with different knowledge may assign
different states, simultaneously, to a single system. The most natural way to talk about the
consistency of these assigned states is to define a common state of maximal knowledge as
a common pure state. So far through these lecture notes, we have only considered such a
common state of maximal knowledge and its evolution for a closed quantum system where
no measurement is performed on the system. This pure state is well represented by a wave
function [¢)) and its evolution is given by a Schrodinger equation as discussed through the
previous chapters. The rest of these notes, however, is devoted to the study of the case where
the quantum system is measured by an observer and in such a case, one needs to consider
a wider formulation of the quantum state called the density operator (or density matrix in
the case of finite dimensional quantum system). A density operator p is a Hermitian, semi-
definite positive, trace-class operator defined on the Hilbert space of the quantum system.
Moreover its trace is constant and equals unity during the evolution of the system. Such a
density operator represents the knowledge of an observer about the quantum system.

Considering the collection {p,} of different density matrices assigned by different observers
to a same physical system, the common state of mazimal knowledge is a pure state defined
by a wave function |¢)) such that there exists an € > 0 for which, p; — €[¢))(¥| is a positive
operator, i.e. p; is the mixture of |1b) with some other states. From a system theoretical
point of view, we can think of this common state of maximal knowledge as the actual state
of the system and the density matrix p; is the filtering state encoding the information gained
by an observer j.

Another consequence of such definition of the quantum state is that any measurement of
the system, which leads to obtaining information on the system, necessarily changes the state
of the system. This is known as the projection postulate. Through this section, we provide a
brief overview of important measurement paradigms for quantum systems and the two next

43
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sections are devoted to some concrete examples. This chapter is strongly inspired from [30)]
and [71].

3.1.1 Projective measurement

The projective measurement is the traditional description of measurement in quantum me-
chanics. Indeed, assume the measurement of a physical quantity O to which we can assign a
Hermitian operator (observable) O defined on H the Hilbert space of the system. We start

by diagonalizing the operator as
0=> AP,

where A\, ’s are the eigenvalues of O, which are all real and different, and P, the projection
operator over the associated eigenspace. Note that, in general, the spectrum of the operator
O can be degenerate and therefore the projection operator P, is not necessarily a rank-1
operator.

When we measure O, the result will be necessarily one of the eigenvalues A,. Moreover,
an outcome A, of the measurement implies an instantaneous projection of the state of our
knowledge through the associated projection operator. We also talk of the conditional state
of the system as it is conditioned on the measurement outcome. Indeed, assuming that our
state of knowledge at time ¢ is given by the density matrix' p , measurement of the physical
observable O at time ¢ can be formulated as below:

1. The probability of obtaining the value A, is given by p, = Tr (pP,); note that ) p, =1
as »., P, = Iy (Iy represents the identity operator of H).

2. After the measurement, the conditional (a posteriori) state of the system given the

outcome A\, is
. — P,pP,
- Py

Here, p, denotes the state of the system just after the measurement. Furthermore, we have
assumed that the evolution, from other causes, of the system during the measurement process
is not significant and can be neglected.

A particular feature of the projective measurement is that, if the same measurement is
immediately repeated, then the same result is guaranteed. Indeed, the probability of obtaining
the same result A, for the second measurement of the observable O is given by

Tr(PVP—i—) =Tr (P, p P,)/py =1,

where we have applied the fact that P, P, = P,,.
For pure states (encoding the common state of maximal knowledge), p = [¢)(¢|, the
projective measurement can be more simply expressed as

pv = (Y| Py[1),
Py
Yy = Nk

'p is a Hermitian, semi-definite positive, trace-class operator on H of trace 1. Thus Tr (p*) < 1 with
equality only when p is an orthogonal projector on some pure quantum state |¢), i.e., p = |¥)(¢].
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Finally, the particular case of a projective measurement where the eigenvalues {\,} are non-
degenerate, and therefore the eigenprojections P, are rank-1 operators, is called a von Neu-
mann measurement.

3.1.2 Positive Operator Valued Measure (POVM)

The projective measurements are, generally, inadequate for describing real measurements, as
the experimenter never directly measures the system of interest. In fact, the system of interest
(for instance an atom or a quantized electromagnetic field) interacts with its environment
(electromagnetic field or a probe atom), and the experimenter observes the effect of the
system on the environment (the radiated field or the probe atom).

In order to formulate such measurement paradigm, we need to consider the quantum state
in a larger Hilbert space consisting of the system and the measurement apparatus (also called
the meter). Indeed, we consider a total initial state (before the measurement process) for the
system together with the meter, which is given by a separable wavefunction

(W) = [bs) ® |0ar)

living on the total Hilbert space Hg ® Hps. The measurement process consists in a unitary
evolution of the whole state (leading to a non-separable-entangled— state) followed by a
projective von Neumann measurement of the measurement apparatus. Let us denote by
Ug ar the unitary evolution entangling the state of the system to that of the meter, and
by Oy = Ig ® (ZV /\VP,,) the measured observable for the meter. Here, the projection
operator P, is a rank-1 projection in H,s over the eigenstate |\,) € Hyr: P, = |[A,) (A ].
The measurement procedure can be formulated as below

1. The probability of obtaining the value ), is given by p, = (vg| M| M, |hg) where M,
is an operator defined on Hg, the Hilbert space of the system, by

(M, |s)) @ \) = (Is @ P,)Us(|ths) © |0ar)).

Thus we have

Usu([¢s) @ [00)) =D (Mo [ihs)) @ |\).

v

Note that > p, =1 as

v

Z<¢S\M1Mu|7/fs> = (lvs) ® |9M>)TUTS,JW (Z Iy ®Pu> Usm([vs) ®0m)) =1, (3.1)

where we have used ), |\,)(A\y| = Iy and UL,MUS,M =TIgn.

2. After the measurement, the conditional (a posteriori) state of the system given the
outcome A\, is

o MVW}S>
lvs)+ = Y

The operators M, are called the measurement operators (see appendix C).
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This can also be extended to the case of a mixed state where the probability of obtaining
the value A, is simply given by p, = Tr (M wpM IT,) and the conditional state given the
outcome A, is

M, pM],
py =M,(p): -

= T (MM (3.2)

with M, a nonlinear superoperator (it sends an operator to an operator) on Hg. Indeed,
through the computations of (3.1), >, M{ M, = I's and this, together with the positiveness
of the operators M IM v, are the only conditions for the set {M,} to define a Positive
Operator Valued Measure (POVM).

Also, one can define the Generalized POVM as the case where the initial state of the meter
is not a pure state or that the projective measurement of the meter is not a von Neumann
measurement (see [71, chapter 1] for a tutorial exposure of quantum measurement).

3.1.3 Quantum Non-Demolition (QND) measurement

Before anything, we need that the measurement of the meter observable O, after the inter-
action between the system and the meter encodes some information on the system S itself.
This imposes some constraints on unitary transformation U g s considered in the previous
subsection:

US,M‘\II> = US,M(W}S> ® ‘9M>)

Assume that such unitary transformation U g ys results from a Hamiltonian H = H g+ H s+
H gy where Hg and H j; describe, respectively, the evolutions of the system and the meter
and H g)s denotes the system-meter interaction Hamiltonian. Then Ug js is the propagator
generated by H during the interaction interval of length 7 between S and M (for time-
invariant H, we have Ug = e "H) Tt is clear that a necessary condition for the influence
of S on Ojy just after the interaction is that [H, O] # 0. Otherwise O U g = UgmOwnr-
Using the spectral decomposition Oy = Y, A\ Is ® |\,) (see previous subsection), we have
for any v,

OnmUsn([vs) @ I\)) = UsmOu([vs) @ [A) = MUsa([s) @ [0ar)).

Thus, necessarily Ug y ([t0s) @ [A)) = (Up|tbs)) ® |\) where U, is a unitary transformation
on Hg only. With |0x) =", 0,|\), we get, for any |¢)g),

Usa([vs) ®10a)) = D 0,(Uslvs)) @A)

Then measurement operators M, are equal to 6, U,. The probability to get measurement
outcome v, <1/JS|M1T/M,/|¢S> = |6,|2, is completely independent of systems state |1g). This
means that the measurement statistics for the meter observable O); does not encode any
information on the system S and therefore [H, O] must not vanish. When H j; = 0, this
necessary condition reads [H gys, O] # 0.

Let us consider the measurement of a physical observable Og defined for the system S,
through its coupling with a meter M with a von Neumann measurements of an observable O s
on the meter. The essential condition for a measurement process of Og to be quantum non-
demolition (abbreviated as QND) is that the measurement should not affect the eigenstates
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of Og when Og admits a non degenerate spectrum (other-wise we have to consider the
eigenspace instead of the eigenstate). A sufficient but not necessary condition for this is

[H,O05] =0

Under this condition Og and Ug ) commute. For eigenstate |pu) of Og associated to eigen-
value u, we have

OsUs (1) @ 10a)) = Us,mOs (1) @ 100)) = pU s (1) @ 1001))-

Exercice 5. Prove that the above formula implies U g (|11) ® |0ar)) = |p) @ (U |0h1)) where
U, is a unitary operator on Hy only: Ug y does not entangle eigenstates of Og with the
meter.

With the measurement operators M, we also have

Usa () @ 10a)) = M|y @ |\).

Thus necessarily, using exercise 5 each M, |u) is colinear to |u). Whatever the measurement
outcome v is, the conditional state provided by (3.2) remains unchanged: p, = M, (p) when
P = |)(1|. When the spectrum of Og is degenerate and P, is the projector on the eigenspace
associated to the eigenvalue p of Og, this invariance reads: for all v, M, P, = P,M,. Any
eigenspace of Og is invariant with respect to all the M, ’s.

3.1.4 Stochastic process attached to a POVM

To any POVM defined by a set of measurement operators (M, ) on Hg, is attached a stochastic
process. This process admits the set {p} of density operators on Hg as state space. It is
defined by the transition rules:

M,pM],

P+ 7 o (M, pMT)

with probability p, = Tr (Ml,pM,JL) . (3.3)

For any observable A on Hg, its conditional expectation value after the transition knowing
the state p just before the transition is given by

E (Tr (Ap,) /p) = Tr (AK(p)) (3.4)

where the linear map K(p) = 3", M, pM], is a Kraus map (see appendix C).
Assume that this POVM provides a QND measurement of an observable Og on Hg. Then
the orthogonal projector Pog on any eigenspace of Og, yields to a martingale’ Tr (pPo g):

E (Tt (Pogspy) /p) = Tr (Pogp)

since Poy is a stationary point of the dual Kraus map K*: K*(Pog) =), MIPOSMV =
Po,. Moreover, if Pg, is of rank one, then it corresponds to a stationary state p = Pog of
the Markov process (3.3): for all v, M,pM, = Tr (M,pM}) p.

Exercice 6. Prove that for a QND measurement of a system observable Og, the random
process Tr (pOg) is also a martingale.

2See appendix F.
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3.2 Example of the photon-box

This section is devoted to the case study of a photon box consisting of a cavity quantum
electrodynamics setup developed within Laboratoire Kastler-Brossel (LKB) at Ecole Normale

Supérieure.
S
_ﬂz
"y =l
\ / |
. \ 4 ‘/ : D

Figure 3.1: The LKB photon box; atoms get out box B one by one, undergo then a first Rabi
pulse in Ramsey zone R;, become entangled with electromagnetic field trapped in C', undergo
a second Rabi pulse in Ramsey zone Ro and finally are measured in the detector D.

3.2.1 Markov chain model

Here S corresponds to a quantized trapped mode inside the cavity. It is described by a wave
function |¢)) in the Hilbert space Hg (see section 1.1)

Hs = {Z Ynln) | (Yn)peo € lQ(C)} )
n=0

where |n) represents the Fock state associated to exactly n photons inside the cavity and
I?(C) is the space of square summable sequences in C (0% |1,|? = 1). The meter M is
associated to atoms : Hjys = C?, each atom admits two energy levels and is described by a
wave function cy|g) + cele) with |c,]? + |ce|* = 1.

Let us follow an atom leaving B where it is prepared in state |g). It is symbolized by
a small horizontal and blue torus in Figure 3.1. When atom comes out B, the state of the
composite system atom/field is separable and is denoted by |U)p € Hyr @ Hg

W) B = lg) ® ). (3.5)

When atom comes out the first Ramsey zone R; (pink torus between R; and C), the state
remains separable but has changed to

V)R, = (Ur, @ D)|¥)p = (Ur,l9)) @ |¢) (3.6)
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where the unitary transformation performed in R; only affects the atom:

>

U o —i%(rlo’m—&-way—&-zla'z) o 01\ s 01

R, =€ = cos(5) — isin(F)(z10z + Y10y + 210%) (3.7)

corresponds, in the Bloch sphere representation, to a rotation of angle ; around the oriented

axis defined by the unit-length vector x17+ y17+ 2k (22 +y? + 22 = 1), see section 1.2.2.
When atom leaves the cavity C', the state is not anymore separable: atom and field become

entangled and the state is described by

W)e =Uc|¥)r, (3.8)

where the unitary transformation Ug on Hjyr ® Hg is associated to a Jaynes-Cummings
Hamiltonian for describing the atom/field interaction:

Hq = %az + i%(a_(ﬂ —oya) (3.9)

is the Jaynes-Cumming Hamiltonian after the rotating wave approximation (A = weg — we
de-tuning between atom and cavity field, 2 the vacuum Rabi pulsation, see section 2.1.6 and
(2.23) with v =0, w, = we and A, = 0 and A,y = A). The precise form of U is given in
next subsection for resonant and dispersive cases.

When the atom leaves the second Ramsey zone R», the state becomes

V)R, = (Ur, @ I)|¥)c
where U, is similar to Up, but with different parameters 62, 2, y2, 22,

.0
—172(x20m+y20y+220z) _ COS(92 0

Ugr,=¢€ F) —isin(F)(220% + Y20y + 220%). (3.10)

This means that, just before the measurement in D, the state is given by
()R, = Ulg) @ [¢) = |g) @ My[¢)) + |e) ® Mcl|y) (3.11)

where U = URr,UcURg, is the total unitary transformation defining the linear measurement
operators M, and M, on Hg.

Denote by s € {g,e} the measurement outcome in detector D: with probability ps =
(| M M s[Y) we get s. Just after the measurement outcome s, the state becomes separable.
It has partially collapsed to

|s) © (M[¢))

JwIMIM,Jp)

We have a Markov process: after the complete passage of an atom, the cavity state initially
equal to [¢)) undergoes an irreversible and stochastic jump to [|¢)4 driven by M, and M.
defined via unitary operator U = U g, UcUR, and (3.11):

W)p = L |s) @ (ML) =

Mal) - ith probability py = (4| M M|0);

] i)

V)4 = M. |0 B

———<%___ with probability p. = ()| MIM_.|¢)).
 (eIMEMC )

(3.12)
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For the density matrix formulation we have thus

_ _ MypM, - Y _ .
My (p) Tr<MgpM;), with probability p, = Tr (Mgng),

M, (p) = %, with probability p. = Tr (Mele).

(3.13)

Exercice 7. Consider My and M. defined by (3.11). Show that, for any density matriz p
the operator (defining a Kraus map, see appendiz C)

MgpM; —i—MepMi

does not depend on (02, x2,y2, 22), the parameters of the second Ramsey pulse Ug,.

3.2.2 Jaynes-Cummings propagator

In the resonant case, A = 0. The atom/cavity propagator U based on Jaynes-Cummings
Hamiltonian (3.9) admits the following form (see [30] for the detailed derivations including
Gaussian radial dependence of the quantized mode and atom velocity):

Uc =|g){g| cos (%W) + |e) (e| cos (%\/N + I)
in( & sin =)
+lg)el (Qﬁm)) al ~ [e)(gla (Q@) (3.14)

where N = a'a is the photon number operator, the adjustable parameter © being the Rabi
angle with zero photon.

In the dispersive case, |A| > ||, Uc based on Jaynes-Cummings Hamiltonian (3.9) admits
the following form (see [30] for the detailed derivations based on adiabatic invariance):

Uc = |g){gle” ™) + |e)(e|e N D (3.15)

where the dephasing ¢(IN) depends on the photon number and can be approximated by a
linear real function: ¢(IN) = ¥ + YN, the phases Jy and ¥ being adjustable parameters.
The exercise below can be seen as a simplified derivation of the above formulae for U¢.

Exercice 8. Let us assume that the Jaynes-Cummings propagator U admits the following
form

, (A(e><e—|g><g|) .9(9><e|a*—|6><ga)>
—T 3 +1 3
Uc=e

where T s an interaction time.

1. Show by recurrence on integer k that

(A (el ~ l9)lgl) +(1g)(ela’ — |e)ola))™ =
le)(e] (A2 + (N +1)22)" + [g)(g] (A2 + NQ2)*
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and that

(A(Ie><e| —19){g]) +i2(|g)(e|a’ — |e)(g|a) =
le)(e]A (A2 + (N + 1)22)" — [g)(glA (A2 + NQ2)"

+ iQ(]g><e| (AQ + NQQ)k a’ —le){gla (A2 + NQQ)k)

)2k+1

2. Deduce that

Asin (wm)
Uc =1g){g| | cos (TvAQJNm)—i-i 2
VAZ + N2
A sin <T,/A2+(2N+1)Q2>

2

+leNel | cos (TVAQ*(N“)QQ> _
VA2 + (N +1)02

. TVA2LNQ?
) sin (+>

VA2 + NQ?

. TVA2LNQ?
) sin (%)

+ |g><€| \/m

al —le)(gla

(3.16)

3. In the resonant case, A =0, express the vacuum Rabi angle © appearing in (3.14) with
respect to Q) and 7.

4. In the dispersive case, |A| > ||, and when the interaction time T is large, AT ~ (%)2,
show that, up to first order terms in Q/A, we get

[ AlleXel=lg)gl) =~ 2lg)(elal—le){gla
z'r( ( 3 )+z ( 5 )) Z(%+%N)
e = lg){gle

(Ar 9°r
N ]e><e|el< 3+ AA (N+1)).

Express the phases 99 and 9 appearing in (3.15) with respect to 7, A and .

3.2.3 Resonant case

Let us detail the operators M, and M. defined in (3.11) when U¢ is given by (3.14),

.0
Ug, = e 2% and Upg, = 1I. Since Ug, = cos (%1) + sin (%) (lg){el = le){g]), W) R, given
by (3.6) reads:

@)r, = (cos (%) l9) —sin (%) ) @ ).
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Then |¥)¢ given by (3.8) becomes

W)e = cos (% )(|g>®cos(ef)|w> & ® a( E}m)w)
—sin (%) <|e> @ cos (SVN +1) [9) +lg) @ (%) aw)
10 (oo (3 e (3v0) = () (G5 ) )
10 (s (3 eon (VAT T) o () (R )

Since Ug, = I, |¥)c = |V)R,. The measurement operators are thus given by

e, = () o (39) i () (L5 ) o

. (3.17)
= () ) - (5) (0557

©|®

Exercice 9. Verify that the operators (measurement operators) given by (3.17) satisfy M;Mg—l-
MM, =T (hint: use, N =ala, a f(N)=f(N +1) a and alf(N) = f(N - 1) af).
3.2.4 Dispersive case

Let us now describe the measurement operators M, and M, defined in (3.11) when U¢ is
given by (3.15), Ug, = ¢ 4% and Up, = ¢ "4(~5n19%+€0519%) (with angle 5 chosen below).
Since Upg, = % |¥) g, given by (3.6) reads:

0y, = D1 gy

V2
Then |¥)c given by (3.8) becomes
o = Lo & e g) — Lje) @ N+ |y,

Since Ug, = % (I + €e"|g)(e| — e "|e){g]), we have

2[5, = (lg) — e le)) @ e N y) — (e]g) + |e) @ N TD]y)

=|g)® (e—z’qﬁ(N) _ ez’(n+¢(N+1))> ) — |e) ® ( —i(n+¢(N) 4 gid(N+1) ) )

where ¢(IN) = J9 + N9. Take g an arbitrary phase and set n = 2(pg — ¥g) — 9 — w. Then
the measurement operators are given by the simple formulae

M, = cos(po + NVU), M. =sin(¢g+ ND) (3.18)

where we have removed the irrelevant global phase factors e'(#0=%) for M g and ei(Po—pot+7/2)
for M. In the Fock basis {|n)}3°), the operator M, (resp. M.) is diagonal with diagonal
elements cos(nd + ¢g) (resp. sin(nd + ¢p). We note in particular that M;Mg +MIM,=1.
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Exercice 10. Take M, and M . defined by (3.11) with U ¢ given by (3.15) with ¢ an arbitrary
real value function.

1. Show that any Fock state |n) is an eigenvector of My and M., whatever Ug, and U,
are.

2. Deduce from preceding question that, for any density operator p, any integer n and any
Ramsey pulses Ur, and Upg,, we have

(nIMypMJn) + (n|M pM|n) = (n|pln)

3. What does-it mean for the Markov chain associated to such M, and M. and defined
by (3.13).

3.2.5 QND measurements: open-loop asymptotic behavior

Through this subsection, we consider the measurement associated to the dispersive coupling
regime between the system (cavity) and the meter (atoms). As discussed through the previ-
ous subsection, the measurement operators M, and M are given by (3.18). These operators
being diagonal in the basis {|n)}°2, of photon number states, they commute with the physical
observable N = a'a (photon number operator). Indeed, following the definition of Subsec-
tion 3.1.3, they define a quantum non-demolition (QND) measurement of the photon number
observable IN. Here, we study the asymptotic behavior of the Markov chain associated to a
repetitive application of such QND measurements. The cavity state after the k’th measure-
ment is represented by p; and follows the Markov chain dynamics

pk+1 = Msk (pk')7

where s, takes the value g (resp. e) with probability p,; = Tr (MgpkM;) (resp. with
probability p = Tr (M ePrM l)) We have the following theorem:

Theorem 2. Consider the Markov process defined above with an initial density matriz pg
defined on the subspace span{|n) | n = 0,1,--- ,n™®*}. Also, assume the non-degeneracy
assumption

cosQ(gom) % COS2(g0n) Vn #me{0,1, -, n™max},
where @, = o +nd. Then

o for anyn € {0,...,n™**} Tr(pg|n)(n|) = (n|py|n) is a martingale

e p, converges with probability 1 to one of the n™** + 1 Fock state |n)(n| with n €
{0,...,nmax},

e the probability to converge towards the Fock state |n)(n| is given by Tr(pyln)(n|) =
(nlpoln).

Proof. First, we note that, the measurement operators M, and M . being diagonal in the basis
of photon number states, and p, being defined on the subspace span{|n) | n =0,1,--- ,n™**},
the state p,, remains in this subspace for all £ > 0. We can therefore restrict the proof to this
finite dimensional Hilbert space.
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Let us prove that Tr (pi|n)(n|) is a martingale. Set € = |n)(n|. We have

Pg.k

M,p, M| . 1
E (Tr (€prs1) | i) = pos Tr <s”) + ey Tr (Mol )
= Tr (6M,p,M}) + T (EMpM]) = Tr (p (MM, + MgM.,)) .

Since £ commutes with M, and M, and M;M9+M;[Me =1I,wehaveE (Tr (€ppyy) | pi) =
Tr (€py,). This implies that Tr (p,|n)(n|) is a martingale.
Now, we consider the Lyapunov function

nmax

V(p) = Y f(Tx(In)(nlp)), (3.19)
n=0

where f(x) = 22/2. The function f being convex and each Tr (|n)(n|p) being a martingale,
we infer that V' (p) is a sub-martingale:

E (V(ors1) | pr) = View)-

Indeed, we have

(Tr (In)(nIM M) )

B (Vipear) | o) = 32 3 T (MupML) 5 | — (M0}
r uPrVty,

n=0 p=g,e
max 2
1 n 2 . 2
— V(pk) + 5 Z TI' <Mgp]gM;) TI' (Meple) |COS(90’I’L)| <n|pk‘n> _ |Sln(@n)| <n‘pk|n> .
= Tr (MgpkM;) Tr (MepkMi)

Here, we have used the fact that

_ [ cos(en) | (nlpg|n) _ |sin(en)? (nlpe|n)
<n‘Mg(pk)’n> T (MgplgML) , and  (n|Mc(py)In) = Tr (MePkMD

Thus, V(p;,) is a sub-martingale, and in addition we have a precise bound on the difference
E (V(prs1) | Pi) — V(py). Furthermore, it is easy to see that the function

1"~ |cos(pa) 2 (nlpln)  [sin(pa)|? (nlpln) \°
W(p) - 5 nz:O Tr (MgPMI]) Tr (Mele> ( Tr (MgpM;) - Tr (Mele) )

is a continuous function of p. Now, we apply the Theorem 7 of Appendix F. The w-limit
set K (in the sense of almost sure convergence), for the trajectories p;, is a subset of the
set {p | W(p) = 0}. Let us consider a density matrix p,, in this w-limit set. Therefore
W(ps) = 0 implies

| COS(@”)‘Q <n|poo|n> — | Sin((pn)|2 <n|p00’n> , \v/n — 07 17 .. ’nmax‘ (320)
Tr (Mgypo. M) Tr (MepooMe)

Since Tr (p,,) = 1, there is at least one 7 such that (n|p,,|n) > 0. Then the above equation
leads to

Tr (M poMY) [sin(pn)? = Tr (Mepo ML) |cos(in) 2
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and therefore

Tr (MngOMD = (Tr (MgpooMD + Tr (MepooMl)> | cos(wn)|?.
Noting that M;Mg + MM, = I, we have

Tr (MgpooM;) = |cos(pn)|*> and Tr (MepooMl) = |sin(ypn)|?.

Assume now that there exists 17 and 7ig such that (71|p|71) > 0 and (n2|py|72) > 0. Then,
the above equation implies that

cos? (i) = cos”(n, ),

which is in contradiction with the non-degeneracy assumption of the theorem. This closes the
proof of the second assertion, and the w-limit set is reduced to the set of fixed points |n)(n|,
with n € {0,1,--- , n™ax},

We have shown that the probability measure associated to the random variable p; con-
verges to ZZZZX Pndjny(n|, Where djn) ¢, denotes the Dirac measure at [n)(n| and p, is the
probability of convergence towards |n)(n|. In particular, we have E (Tr (p|n)(n|)) — pn.
But Tr (pi|n)(n|) is a martingale, thus E (Tr (pg|n)(n[)) = E (Tr (p|0){0])) and consequently

Pn = (1]po|n). O

3.2.6 QND measurements and quantum-state feedback

The Theorem 2 implies that the QND measurement of the Subsection 3.2.4 can be seen as a
photon-number state preparation tool. However, this state preparation is non-deterministic
as we can not be sure to converge towards a desired Fock state |n)(n|. One way of removing
this indeterminism is to repeat the QND measurement process by re-preparing the same
initial state and re-launching the same measurement process up to reaching |n)(n|. However
this can be very time-consuming and perhaps inefficient when dealing with the measurement
uncertainties and relaxations (to be studied later through these notes).

This non-deterministic preparation tool can be turned into a deterministic stabilization
protocol with the addition of an appropriate feedback strategy [56]. Indeed, one can consider
that after the passage of each atom a control pulse is injected in the cavity (see Figure 3.2.6).
This could be modeled through the following Markov chain:

kar% = Msk (pk)v Pr+1 = ]D)Otk (kar%),

where Dy (p) = DopD,, with the displacement operator (see Section 1.1.3) D, = exp(aa’ —
a*a). Here, oy is a complex control amplitude denoting the amplitude and phase of the
applied pulse. The idea is to construct a Lyapunov function V(p) similar to (3.19) but with
a different weighting on various photon-number states to favor the convergence towards a
particular Fock state with n photon (set-point),

Vip) =V(p)+ Y f(n) Tr (pln)(n]),

n>0

with N © n — f(n) being a real function, maximum at n = 7, strictly increasing (resp.
decreasing) for n € {0,...7n} (resp. n € {n,...+ oo}).
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The control input will then be selected so that the function V(p,) becomes a submartin-
gale. This means that at each time-step k, the value a; is the argument of the maximum of
the conditional expectation of V(pj, +1) knowing the density operator at step k, py, and the
control input at step k, o = a with || < @ (@ > 0 being a fixed upper-bound):

Q= argmaX{E (V(prs1)|prs ok = ) }

lo|<a

where
E (V(prs1)lows o = @) = Tr (Mg M) V (Do (My (1)) ) +Tr (Mep M) V (Do (Me(py)) ).

Thus «ay, is a function of pg, the quantum-state at step k. This kind of feedback law is called
a measurement-based feedback since the controller is a classical controller based on the past
measurement outcomes summarized in the present quantum state pg. Note furthermore that
one needs to take care of the fact that the system lives on an infinite dimensional Hilbert
space. We refer to [60, 5] for more details on such a feedback strategy.

Figure 3.2: A schematic of the closed-loop system borrowed from [30]: an appropriate coherent
pulse with a controlled amplitude and phase is injected between two atom passages.

Exercice 11 (Open-loop convergence in the resonant case). Consider the Markov chain
Prr1 = Mg, (pg) where s, = g (resp. s, = e) with probability py ) = Tr (MgpkM;) (resp.
De = Tr (MepkM:[,)) The Kraus operator are given by (3.17) with 61 = 0. Assume the
initial state to be defined on the subspace {|n)}"_ and that the cavity state at step k is
described by the density operator py,.

1. Show that

E(Tr (Npgsa1) | pp) = Tr(Npy) — Tr (Sin2 (%\/ﬁ) Pk) :
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2. Assume that for any integer n, ©+/n/7w is irrational. Then prove, using Theorem 7 of
Appendiz F, that almost surely p;, tends to the vacuum state |0)(0| whatever its initial
condition is.

3. When ©+/n/m is rational for some integer n, describes the possible w-limit sets for p;,.

3.2.7 Measurement uncertainties and Bayesian quantum filtering

This subsection is directly inspired from [30, 59]. Let us consider now the situation where
the atom passes through the cavity but we do not detect it after the second Ramsey zone.
To describe the cavity state we have to use mixed states and thus density matrix p and the
operator My and M, defined in (3.2). Having no knowledge on whether the atom ends up in
the state |g) or |e), the best we can say about the cavity state (our knowledge of the system)
after the passage of the atom is its expectation value:

py = gMy(p) + peMe(p) = MygpM + McpM|. (3.21)

The above map, sending p to p,, defines the Kraus representation for a linear quantum
operation (see Appendix C for a definition and properties of linear quantum operations).

Now consider the case where we realize the atom detection but we are uncertain about
its result. Indeed, in practice, the detection process is not perfect and we need to take into
account at least three kinds of uncertainties:

e the atom preparation process is itself a random process following a Poisson law; indeed
the samples carrying the atoms that pass through the setup might be empty of atoms;
we note the occupancy rate of the pulses by 7, €]0,1] (n, is about 0.4 for the LKB
experimental setup);

e the atom detector is imperfect and can miss a certain percentage of the atoms; we
denote the detector’s efficiency by 14 €]0,1] (14 is about 0.8 for the LKB experimental
setup);

e the atom detector is not fault-free and the result of the measurement (atom in the state
lg) or |e)) can be interchanged; we denote the fault rate by 1 € [0,1/2) (n; is about
0.1 for the LKB experimental setup).

Whenever realizing the atom detection, we can achieve three results: 1- the atom is in |g),
2- the atom in |e), 3-the detector does not detect any atom. For each situation we may have
various possibilities:

Atom in |g): Either the atom is actually in the state |e) and the detector has made a mistake
by detecting it in |g) (this happens with a probability p_{; to be determined) or the atom
is really in the state |g) (this happens with probability 1 — pg ). Indeed, the conditional
probability of having the atom in |e) while the detection result has been |g) may be
computed through the Bayesian formula and is given by:

f _ NfDe
. =

P ,
nfpe + (1 —ng)pg

where p, = Tr (Mgle;) and p, = Tr (Mele).
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Also, the conditional evolution of the density matrix (as our knowledge on the cavity
state conditioned on the measurement result) is given as follows:

pi = p)Me(p) + (1 — p))My(p)
_ nr + 1L —mny
= M.pM! +
ngpe + (L —np)pg < nype+ (1 —np)pg
_ nfMepM+ (1 —np)MypM]
Tr (nyMepM{ + (1 —ns) MgpM]})

MypM]|

Atom in |e): Exactly in the same way, the conditional evolution of the density matrix is
given as follows:

_ nf — Ny

~ nppg + (1 —15)pe Nfpg + (1 —1nf)pe
M ypM + (1 —n;)M.pM]

CTr (nfMgpM; +(1- nf)Mele) '

o, M, oM + M.pM]

No atom detected: Either the pulse has been empty (this happens with a probability ppa, to
be determined) or there has been an atom which has not been detected by the detector
(this happens with the probability 1—py,). Indeed, the conditional probability of having
an empty pulse while no atom has been detected by the detector can be computed
through the Bayes rule and is given by:
1—n, 1—n,

p _= _= .
Pl =n) + (L —n0) 1 —1ana

In such case the density matrix remains untouched. The complementary situation corre-
sponding to an undetected atom leads to an evolution of the density matrix through the
Kraus map (3.21). Finally, the conditional evolution of the density matrix (conditioned
on the result of the measurement indicating no detected atoms) is given as follows:

P4 = Pna P+ (1 _pna)(MgpM; + MepMi)
1— 1—
1 —nana 1 —nang
(1 = na)p +na(l — 1na) (Mgng + Mele)

1 (1= o+ a1 — o) (M, M)+ M. pMY) )

oPM + M.pMY)

Here, still, we have a Kraus representation for a linear quantum operation.

With the following quantum operations:

Ky(p) = nana (nfMele +(1- nf)MgpM;)
Ke(p) = nana (nfMgng +(1— nf)Mele)

Ko(p) = (1 = na)p + na(1 — na) (MgpM_I, - Mele)
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the above computations define the following Markov describing the imperfect measurement
process with three possible outcomes, one detection in g, one detection in e and zero detection:

Tm , with probability p, = Tr (K, (p));
Py = T}fﬁ:@,)), with probability p. = Tr (Ke(p)); (3.22)
TSy, with probability p, = Tr (Ko(p)):

Notice that, since K4(p) + Ke(p) + Ko(p) = (1 — na)p + 74 (MgpM; + Mele> and

MM+ MM, = I, we have pg + pe + po = 1.

These transition rules provide simple update rules of p;., depending on p, and the
detection outcomes at step k belonging to {g, e,0}. The resulting quantum state p, depends
thus on the initial state p, and the measurement outcomes between 0 and k—1. In other words,
The quantum state obeys to a filtering process of state p with the measurement outcomes as
input, a so called quantum filter.

3.2.8 Relaxation as an unread measurement

Additionally to the above uncertainties in the measurement process, one needs to consider
the relaxation of the system due to its coupling to the environment to obtain a complete
model for the open system. Two main sources of relaxation can be considered here. A first
source concerns the photon loss phenomenon caused by their absorption by the environment
(the mirrors in particular). The second source concerns the photon gain phenomenon due to
the coupling of the field with a reservoir of non-zero temperature (7" ~ 0.8K). Denoting by
k— and by k4, respectively the photon loss and the photon gain rate, and assuming that the
environment is in thermal equilibrium at temperature 7', we have (k;, denoting the Boltzmann
constant and w, the cavity’s resonance frequency),

hwe

Ky =k_e FT.

We refer to [36, Chapter 4, Page 187] for more details. By defining nyy, as the average number
of thermal photons per mode at frequency w,, given by Planck’s law:

we can express both x_ and k4 in term of unique cavity rate s:
k— = k(1 4+ ng), K = KNy

Note that, here the dominant phenomenon is the photon loss as we work in low temperature
regime and therefore ng, < 1 (ng, =~ 0.05 for the LKB experiment). We start therefore
by investigating the relaxation caused by the photon loss, which can be modeled through a
measurement operator M., proportional to the photon annihilation operator a. Indeed,
considering 7, the duration of a pulse (time interval between the passage of the two atoms),
this measurement operator Mo can be written as \/k—Tqa so that the probability of losing a
photon during the current pulse is given by (we neglect the possibility of losing many photons
at a same pulse as it admits a very small probability)

Pioss = Tr (MT

loss

M1055p> =k_7, Tr (a%zp) = k-7, Tr (Np).
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This natural expression indicates that the probability of the photon loss is proportional to
the duration of the pulse and to the mean number of photons in the cavity. Here, we assume
moreover that the pulse duration is much smaller than the cavity decay time Teoy = 1/K
(Ta € Teay). For the LKB experimental setup, the pulse duration 7, is about 85¢ — 06
seconds and T¢,y is about 13e — 02 seconds and therefore this assumption is clearly satisfied.

Let us assume now that we dispose of an instrument allowing us to the detect this photon
loss when it happens. As soon as we detect a photon loss, the cavity density matrix p evolves
drastically as follows:

o, = M o6 pMLSS . CLPGT
+ — - 9
Tr (MlosspMIross) Tr (Np)

recalling that this loss happens with a small probability of Tr (N p) (1 + n¢y)7e/Teay- Now, let
us consider the situation where we do not detect any photon loss. A first impression would
be that the density matrix should not change. This is not correct and the fact that we do
not detect any photon, actually, updates our information on the system as it privileges the
probability of having a fewer number of photons in the cavity. In order to have a more clear
idea of the situation, let us assume that, similarly to the photon loss case, we associate a
measurement operator M, 10 to the phenomenon of not detecting a photon loss. Let us
now find this jump operator.
In order to have a well-defined POVM measurement, we need to have
il

loss

Mloss + MT Mno—loss =1. (323)

no-loss

This, in particular, forbids the possibility of having M ,.10s = I. Indeed, a possible solution,
up to the first order in 7,/T¢ay, is given by:

T
Mno-loss =1I- (1 + nth)’i’aﬁcﬁa.

Noting now that, we actually de not dispose of a measurement instrument indicating the
loss of the photons, the evolution of the density matrix is given by the following Kraus
representation:

Ta

P+ = MlOSSpMT + ]\4110-lossp]\4Jr =p+ (1 + nth)

loss no-loss

(apaT — %aTap — %pa%z) )
cav
where we have still neglected the second order terms in 7, /Tcay-

The photon gain phenomenon can be treated exactly in the same way and through the
measurement operator M gain = | /k+Tea! proportional to the photon creation operator. The
total evolution can be therefore written as follows:

Py = ]\41058.01\4Jr + ]\4gainp]\4]L + MnopMilo

loss gain

where the operator M, closed to I and corresponding to no-loss and no-gain has to satisfy

vl

loss

]\4loss‘|’]\4Jr Mgain‘i‘MIloMno =1I.

gain

Up to second order terms versus 7,/Tcay We have

M, ,=1I-(1+ nth)TaLaTa — N4hTa " qal.

2 Tcav 2Tcav
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The associated Kraus map reads then

T, T,

pr=p+(1+nm)— <apaT — %aTap — %paTa) + Mgy (ana - %aan - %paaT> :
Teav Teav

Exploiting the fact that 7, < Tcay (small sampling period 7,) this equation becomes a differ-

ential equation:

LJFT_ & ~ %P = (1 +nwm)k ((IPCET - %aTap — %pa%) + ngp K <ana — %aan — %paaT> .
a

(3.24)
This kind of equation will be investigated in next chapter on continuous-time open quantum

systems.

3.3 Structure of discrete-time open quantum systems

The theory of open quantum systems starts with the contributions of Davies [29]. The goal
of this section is first to present in an elementary way the general structure of the Markov
models describing such systems. Throughout this section, H is an Hilbert space; for each
time-step k € N, p,. denotes the density operator describing the state of the quantum Markov
process; for all k, p; is an trace class operator on #, Hermitian and of trace one.

3.3.1 Markov models

These models generalize the models developed for the photon box (3.22) merging quantum
measurement and probability theory with classical probability through Bayesian estimation.
Take a positive integer m and consider a finite set (M ,)eq1,...m} of operators on H such that

m
I= MM, (3.25)
pn=1
Then each M, € L(H). Take another positive integer m’' and consider a left stochastic
m’ x m-matrix (7,s,): its entries are non-negative and Vu € {1,...,m}, ZZf/:l Ny = 1.
Consider the Markov process of state p and output y € {1,...,m'} (measurement outcome)
defined via the transition rule

Pri1 = ) .y = i with probability p,/(py) (3.26)
I

where p,/(p) = Tr <Zu Ny M pM L) The left stochastic matrix n yields to the decompo-

sition of the Kraus map K into the sum of m’ partial Kraus maps (K1) e, m/}:

K(p) = > Ku(p) withKu(p)=> nuuMupM]},. (3.27)
w=1 K
The Markov chain (3.26) reads:

Ky (Pr)

/ . o1e
Pii1 = — ", Y = p with probability p,/(p;) = Tr (K (pg)) - (3.28)
T (K (o) z (K (i)
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3.3.2 Kraus and unital maps

The Kraus map K corresponds to the master equation of (3.26). It is given by the expectation
value of py,, knowing py:

K(p) £ M,pM}, =E (py11 / py = p) - (3.29)

o
In quantum information [50] such Kraus maps describe quantum channels. They admit many
interesting properties. In particular, they are contractions for many metrics (see [51] for the

characterization, in finite dimension, of metrics for which any Kraus map is a contraction).
We just recall below two such metrics. For any density operators p and p’ we have

D(K(p),K(p')) < D(p,p') and F(K(p).K(p')) > F(p. p') (3.30)

where the trace distance D and fidelity F' are given by
D(p,p') £ Tr (lp—p'|) and F(p,p') £ Tr* ( fpp’ﬁ> : (3.31)

Fidelity is between 0 and 1: F(p, p’) = 1 if and only if, p = p’. Moreover F(p, p') = F(p', p).
If p) = |[¢)(¢| is a pure state (|¢) element of H of length one), F(p,p’) coincides with
the Frobenius product: F(p, |¥)(¥|) = Tr(p|Y)(¥|) = (¥|p|¢). Kraus maps provide the
evolution of open quantum systems from an initial state p, without information coming from
the measurements (see [30, chapter 4: the environment is watching]):

Pri1 =K(py) for E=0,1,...,. (3.32)

This corresponds to the ”Schrodinger description” of the dynamics.
The ”Heisenberg description” is given by the dual map K*. It is characterized by Tr (AK(p)) =
Tr (K*(A)p) and defined for any bounded operator A on H by

K*(A)=> M| AM,.
w

Technical conditions on A are required when H is of infinite dimension, they are not given
here (see, e.g., [29]). The map K* is unital since (3.25) reads K*(I) = I. As K, the dual
map K* admits a lot of interesting properties. It is noticed in [57] that, based on a theorem
due of Birkhoff [11], such unital maps are contractions on the cone of non-negative Hermitian
operators equipped with the Hilbert’s projective metric. In particular, when H is of finite
dimension, we have, for any Hermitian operator A:

)\mzn(A) S )\mzn(K*(A)) § )\max(K* (A)) S )\maz(A)

where A\pin and Mg, correspond to the smallest and largest eigenvalues. As shown in [52],
such contraction properties based on Hilbert’s projective metric have important implications
in quantum information theory.

To emphasize the difference between the ”Schrodinger description” and the 'Heisenberg
description” of the dynamics, let us translate convergence issues from the ”Schrodinger de-
scription” to the ”Heisenberg one”. Assume, for clarity’s sake, that H is of finite dimension.
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Suppose also that K admits the density operator p as unique fixed point and that, for any
initial density operator p,, the density operator at step k, p,, defined by k iterations of K,
converges towards p when k tends to co. Then k +— D(py, p) is decreasing and converges to
0 whereas k — F(py, p) is increasing and converges to 1.

The translation of this convergence in the ”Heisenberg description” is the following: for
any initial operator Ay, its k iterates via K*, Ay, converge towards Tr (Aop) I. Moreover
when Ag is Hermitian, k — Apin(Ax) and k — A\per(Ag) are respectively increasing and
decreasing and both converge to Tr (App).

Notice finally that any bounded operator A that is a fixed point of K*, K*(A) = A, yields
to a constant of motion for p,; = K(py):

Tr (Apy) = Tr (Apy) .

This means that, for any unraveling Markov process of the form (3.27), the stochastic variable
Tr (Apk) is a martingale and is attached to fundamental properties of the dynamics (analogue
of a priori estimates and first integral for (partial) differential equations).

3.3.3 Quantum filtering

Quantum filtering has its origin in Belavkin’s work [13] on continuous-time open quantum

systems (see next chapter). We just give here a discrete-time version. The state p;, of (3.28) is

not directly measured: open quantum systems are governed by hidden-state Markov model.
est est

Quantum filtering provides an estimate pj™* of p, based on an initial guess pg* (possibly
different from p,) and the measurement outcomes y; between 0 and k — 1:

st Kyl(pleSt)
Pt = et 1€ {0,... k- 1} (3.33)
T (Ky (0)

Thus (p, p**) is the state of an extended Markov process governed by the following rule

Ky (Pr) est Ku/(PZSt)
PEL = Ty Kowlp) P T T (K (o)
with transition probability p,/(py) = Tr (K, (py)) depending only on py,.

When # is of finite dimension, it is shown in [59] with an inequality proved in [53]
that such discrete-time quantum filters are always stable in the following sense: the fidelity
between p and its estimate p** is a sub-martingale for any initial condition p, and pg"*:
E (F(pgy1: P550) | (g, p5Y)) = F(py, pi"). This result does not guaranty that pi* converges
to p;, when k tends to infinity. The convergence characterization of p** towards p via check-
able conditions on the partial Kraus maps (K,/) remains in general an open problem [66, 67].
For a recent convergence result under a purification assumption see [0].
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Chapter 4

Continuous-time open systems

4.1 Lindblad master equation

The continuous-time analogue of the master equation (ensemble average dynamics) (3.32)
becomes a differential equation for the time-evolution of the density operator t — p(t):

d .
—p=—ilH,p|+ )  L,pL} — 5(L}L,p+ pL{L,) (4.1)

where

e H is the Hamiltonian that could depend on ¢ (Hermitian operator on the underlying
Hilbert space H)

e the L,’s are operators on H that are not necessarily Hermitian.

The differential equation (4.1) preserves the positivity and the trace: if the initial condi-
tion py is Hermitian of trace one and non-negative, then its solution p(t) for ¢ > 0 is also
Hermitian, non-negative and of trace one. To avoid mathematical technicalities we consider
in the theorem below that H is of finite dimension.

Theorem 1. Assume that H is of finite dimension. Then for any Hermitian operator t —
H(t) and any operators L,(t) that are L' functions of time, the solution of (4.1) with an
initial condition py Hermitian, non-negative and of trace one, is defined for allt > 0, remains
Hermitian, non-negative and of trace one.

Proof. The existence and uniqueness of the solution for ¢ > 0 is consequence of a standard
result on linear ordinary differential systems of finite dimension and with bounded and time-
measurable coeflicients. The Hermiticity and trace conservation directly follows from the fact
that the right-hand side of (4.1) is Hermitian as soon as p is Hermitian, and admits a zero
trace. The positivity conservation is less simple. It can be seen from the following formulation
of (4.1):

%p = Ap+ pA' + XV:L,,pL}L,

with A = —iH — 3, LI L,. Consider the solution of the matrix equation %E = AFE
with Eg = I. Then F is always invertible and defines the following the change of variables

65



66 CHAPTER 4. CONTINUOUS-TIME OPEN SYSTEMS

p = E£ET. We have then
d
= I
&= Z MM},
with M, = E7'L,E~'. The fact that & = p, is Hermitian non-negative and that % is

also Hermitian and non-negative, implies that £ remains non-negative for all £ > 0, and thus
p remains also non-negative. O

The link between the discrete-time formulation (3.32) and the continuous-time one (4.1),
becomes clear if we consider the following identity for € positive and small:

d
P+ Eap = Me,UpMLo + Z Me,l/le’y =+ 0(62)

where 4p is given by (4.1), Mo = I —e(iH + 1Y LIL,) and M., = \/eL,. Since
p(t+e)=p(t)+ e%p(t) + o(€) and MLOMC,O +>, MLVME,,, = I + 0(€?), the continuous-
time evolution (4.1) is attached to a discrete-time evolution similar to (3.32) with the following
infinitesimal Kraus map

pt +dt) = Mayop(t) My, o + > May,p(t) M, , (4.2)
14

up to second order terms versus the time-step dt > 0. Such correspondence can be used to
develop positivity preserving numerical scheme (see, e.g., [12, 51]).

Since any Kraus map is a contraction for the trace-distance, we have the following theorem,
the continuous-time counter part of subsection 3.3.2.

Theorem 2. Consider two solutions of (4.1), p and p', starting form py and pj, two Her-
mitian non negative operators of trace one. Assume that H is of finite dimension and the
Hermitian operator H(t) and the operators L,(t) are bounded and measurable functions of
time. Then for any 0 <t < t9,

Tr (Ip(t2), p'(t2)]) < Tr (Ip(tr), p'(t1)])  and  F(p(tz), p'(t2)) = F(p(tr), p'(t1)).

The proof just consists in exploiting (4.2) with (3.30).

4.2 Driven and damped quantum harmonic oscillator

4.2.1 Classical ordinary differential equations

Consider the following harmonic oscillator

ax/ = wyp/, %p/ = —wz’ — kp' — 2uq sin(wt) + 2us cos(wt)

where w > k, /u? + u3. Consider the following periodic change of variables (z/,p’) — (z, p):

/

2’ = cos(wt)x + sin(wt)p, p' = —sin(wt)z + cos(wt)p.
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Then, we have

d d
cos(wt)ﬁx + sin(wt)@p =0

d
- sin(wt)ax + cos(wt)@p = —k(—sin(wt)x + cos(wt)p) — 2uy sin(wt) + 2uz cos(wt).
Thus
d . 9 . 9 .
gL = —sin (wt)z + 2uy sin®(wt) + (kp — 2uz) sin(wt) cos(wt)
d
P =k cos? (wt)p + 2us cos®(wt) + (kx — 2uy) sin(wt) cos(wt).

Removing highly oscillating terms (rotating wave approximation), we get:

rT=-—5r+ul, —p=-—5p+u

dt dt

that reads also with the complex variables o = x 4+ ip and u = uy + fus:

d K

This yields to the following approximate model in the original frame (', p'):

d d
ax' = —5a2' + wp + uy cos(wt) + ug sin(wt), $p’ = —wa’ — 5p’ — uy sin(wt) + ug cos(wt)
or with complex variable o/ = 2’ + ip/ = e “la:
i ! __ K - / —iwt
o = —(§ +iw)d +ue (4.4)

dt

4.2.2 Quantum master equation

We consider here the quantum model of the classical oscillator modeled by (4.3) and (4.4).
It admits the infinite dimensional Hilbert-space H with (|n))nen as ortho-normal basis (Fock
states) (see section 1.1). Its Hamiltonian with a resonant coherent drive of complex amplitude
u (Ju| < w) reads

H = <wN + i(ue”“tal — u*ema)) .
Consider as in (3.24), The Lindblad master equation (4.1) with the above H and two operators
Li = /(1 +nw)k a and Ly = /ngnk al corresponding to decoherence via photon losses and

thermal photon gains. We get the following master equation where p’ is the density operator:

d . .
%p’ = —w[N, p'] + [ue”“ta’ — u*e™ta, p') + (1 4 nw)k (ap’aT —Lalap’ - %p’aTa)

+ ngnk (an'a —Laa'p' - %p'aaT) . (4.5)

with parameter £ > 0 and ng, > 0. When ng, = 0, we recover (4.4) with o/ = Tr (p'a).
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—iwtN ith‘ Since ezthae—zth iwt

Consider the change of frame p’ = ¢ pe =e “a, we get:

P = [wa! — u*a, p] + (1 + ne)k (apaT — %aTap - %paTa)

+ nguk (ana — %aan — %paaT) . (4.6)

When ny, = 0, we recover with a = Tr (pa) the classical amplitude equation (4.3).

The above models (4.5) and (4.6) are valid only when w > k. |u|: weak drive amplitude
and high quality factor of the oscillator. With initial conditions p{, and p, being density
operators (Hermitian non-negative trace-class operators on H of trace one, see appendix B),
their solutions give the forward time evolution of p’ and p . In the sequel, we focus on the
dynamics of p, i.e., on the dynamics in the frame rotating at the oscillator pulsation w.

4.2.3 Zero temperature case: ny, = 0

Assume that ng, = 0:

7P = [ua’ — u*a, p] + K (apaT - %aTap - %paTa) .

Set & = %‘ We recover the classical equation for the complex amplitude o = Tr (pa):

%a = —5(a—2u/k) = —5(a—a).

Consider the following change of frame

aaT—a*age—aaTJra*a

p=e
. . . — . _aalLa* Fal —a*
corresponding to a displacement of amplitude —@ of p. Since e~¥@ T@ ageaa’—a’a
“daliat Fal—a* _
and e~ @@ t@agieral—a"a — g | G* we have

=a+a

&= lu(a"+0°)~u*(a+0), €14+ ((a + a)&(a’ +a°) — 3al +a")(a+a)é - be(al +a")(a+ )
=K (aéaT — %aTaE — %EaTa> .

Consider V(§) = Tr (§N) (N = a'a). Since ¢ is a density operator V(&) > 0 and V(§) =0
if, and only if, & = |0)(0| (vacuum state). We have

Lye) = —wv(e).

dt

If the initial energy V(&,) < +oo, £(t) remains of finite energy for all ¢ and moreover,
V(E(t)) = V(&y)e ™. Thus V(£(t)) tends to 0 and thus £(t) converges towards |0)(0]. Since
p is just € up to a coherent displacement @, this proves that p(t) converges towards |a)(al,
the coherent and pure state of amplitude a.

The above arguments with the strict Lyapunov function V' are not presented here above
with all the necessarily mathematical rigour since H is an infinite dimensional Hilbert space.
Nevertheless, they can be made rigorous to prove the following theorem
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Theorem 3. Consider (4.6) with w € C, Kk > 0 and ny, = 0. Denote by |@) the coherent
state of complex amplitude & = 2?“ Assume that the initial state py is a density operator with
finite energy Tr (pgIN) < +o00. Then exists a unique solution to the Cauchy problem (4.6)
initialized with py in the the Banach space K*(H) (see appendiz B). It is defined for all t > 0
with t — p(t) a density operator (Hermitian, non-negative and trace-class) that remains in
the domain of the Lindblad super-operator

p— [uat —u'a, p] + K <apaT — %aTap - %paTa) .

Thus t — p(t) is differentiable in the Banach space K*(H). Moreover p(t) converges for the
trace-norm towards |a)(a| when t tends to +oc.

The following lemma gives the link with the classical damped oscillator.
Lemma 2. Consider (4.6) with u € C, Kk > 0 and ny, = 0.

1. for any initial density operator py with Tr (pyN') < +00, we have La = —5(a — @)

where a = Tr (pa).

2. Assume that py = |Bo)(Bo| where By is some complex amplitude. Then for all t > 0,
p(t) = |B(t))(B(t)| remains a coherent and pure state of amplitude 5(t) solution of the
following equation: %B = —5(B —a) with 3(0) = Bo.

Proof. Statement 1 follows from %a =Tr (a% p) with % p given by (4.6). Statement 2 relies
on the following relationships specific to coherent state:

8B* . . .
alf) = B18), [8)=¢" 2 |0) and %\5) = <—%(5*5 + 88%) —i—BaT) 18).

4.2.4 Wigner function and quantum Fokker-Planck equation

For an harmonic oscillator of space dimension 1, the phase space is the plane (z,p). To
represent this quantum state and its link with classical statistical physics, it is useful to
consider the Wigner function R? 3 (z,p) — W1P}(z, p) € R attached to the density operator
p. For a physical interpretation of W1{P} as a pseudo-probability density see appendix of [36]
where the Wigner function is defined via the Fourier transform

1 .
wiek(z, p) = — //R2 CLPY (A +idg)e 2 @22=PA1) g d),

of the symmetric characteristic function Cip b attached to p (quantum probability):
CoM+ide=ACPO) =Tt (pe)‘“L)‘*a> .
We will use here the following definition,

wiek(z, p) = 2Ty (pDae”ND,a) with o =z + ip, (4.7)
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where D, = eral—a*a ig the displacement of complex amplitude «. Consequently W{r} (z,p)
is real and well defined since D,e™™ D_,, is a bounded, unitary and Hermitian operator (the
dual of K!(#H) is B(#H), see appendix B).

For a coherent state p = |5)(S| with 8 € C we have

WBE} (2, p) = 2 (8| D™ D_,|8) = %e—2|5—0¢\2_

since (B|Dy = (B — o] with D_,|8) = |8 — a) and ¢™N |3 — a) = |a — ). Thus WiAG}
is the usual Gaussian density function centered on S in the phase plane o = x + ip and of
variance 1/2 in all directions.

In the sequel we will consider that p is in K/ (H) (support with a finite number of photons)
and thus that the computations here below can be done without any divergence problem.
Using D, = eaalg=atag—aa’/2 _ —a’agaal gaa™/2 o have two equivalent formulations:

T —a* 1 * _ t ¥ T o5 _ T *
%W{p}(a,a*):Tr <peaa e ozaewrNea a, aa)ZTr <p€ a’a aa emNe aal o a)

Here o and o are seen as independent variables. We have the following correspondence:

o (o0 0 o (o 0
=3 —in =1 +in
da 2\0x Op)’ Oa* 2\0x Op

We have

0 .o . .
g%W{p}((% a*) — Ty ((paT _ an)eaaTe—a aitN o ae—aaT> . ((paT _ aTP)DaemND,a)

Since a'D,e™ D_, = D,e™™ D_,(2a* — a), we have

;W{p}(a,a*) = 20 WP (@, ") — QW{GTP}(a,a*).
a

Thus W{a'P} (a, a*) = a* WPl (a,a*) — %B%W{p}(a, a*).

Similar computations yield to the following correspondence rules:

wieal _ (a _1 0 ) wie), yyrlas) — (a N ;&) —_r!

da*

ieal} _ <a* N ;59&) wie  jplatel (a* _ f’) wiet

oo

With these rules the differential equation (4.6) for p becomes a partial differential equation
for WP} (z, p). We have

aJTaerpaTa
— 3 I

pylapal -

jylalpa—dasetpaay ( o 0, 09 a*) Wi}
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Consequently, the time-varying Wigner function WP} is governed by a partial differential
equation

0 k({0 0 0?
w2 g —a) - — (o — " {p}
BtW 5 <8a(a a)+aa*(a a )+(1+2nth)aaaa*)W

with @ = 2u/k. Set @ = T + ip. Using % and 3%* as linear expressions in a% and ag,
we get finally the following convection diffusion equation also called quantum Fokker Planck
equation:

0 k{0 0 o2wier 92w iet
Twker =2 2 _=ywiet il _m\wiert 1+2n4,
8tW 2 ((‘3x ((x W ) + dp ((p W ) T ( Ox? + Op? ’

9
It can be also written in a more geometric form with V = <‘9§)
dp

%W{p} = v (WIF) 4 V. (svwie))
where F = % (x—w) and o = %'
y—y

The Green function G(z, p, t, o, po) of (4.8), i.e., its solution with initial condition Wo{p} (z,p) =
0(x — x0)d(p — po) where 0 is the Dirac distribution, reads:

(w 7~ (2 —x)e—’?)Q + (p—p— (b0 —p)e—’?)2

(nen + %)(1 —eht)

1
1
m(nen+3)(1—e )

G(w7p7t7$07p0) = exp -

The general solution of (4.8) with an L! initial condition Wép}(x,p) (f[ge ]W(){p}(x,p)\ <
+00), reads for t > 0:

WP (z,p) = /R2 WP (2 p) G, p,t, 2, p') da'dp .

For t large, G(x,p,t,2’,p") converges toward a Gaussian distribution independent of (2, p’).
By application of the dominate convergence theorem we have:

‘ {0} (z—7)°+(p—p)°
Vi,p) RS, lim WP (a,p) = Lo o |
( p) tdoo ¢ ( p) W(”th+%) P (nth + %)

Notice that Wigner functions associated to density operators satisfy [ ng wirt = 1. Thus
the steady state solution of (4.8) is a Gaussian probability density centered on (Z,p) with
variance (ng, + %) in all direction. Moreover any trajectory of (4.8) initialized with W{Po},
po being a density operator, converge to this Gaussian function. When ny, = 0, we recover
the Wigner function of the coherent state @.

Many other properties on Wigner and related functions can be founded in [36] and also
in [23].
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4.3 Adiabatic elimination of a low-(QQ harmonic oscillator

This section is mainly based on [3] relying on coordinate free setting due to Fenichel [33] of
singular perturbations for deterministic dynamical systems. For a summary of such coordinate
free setting see appendix G.

Take a small parameter 0 < ¢ < 1. Consider the following composite system made of
subsystem A with an arbitrary Hilbert space H 4 and subsystem B with the Hilbert space of
a quantum harmonic oscillator Hp = span{|np) | ny € N} (usual called buffer mode b):

d

7P = Lolp) +eLa(p) (4.9)

where

o Lo(p) = Kp (bpr — (b'bp + pb'b)/2) with k, > 0 and b the annihilation operator on
harmonic oscillator B;

e Li(p) = —i[Hi , p| + La(p) with L4 a Lindbladian dynamics of form (4.1) on sub-
system A only, with an interaction Hamiltonian Hin = Y ;' Ay ® By, with A and
B}, Hermitian operators on H 4 and Hp respectively.

The solution pp = |05)(0s| of Lo(p) = 0 corresponds to vacuum in mode b. The slow
manifold is directly connected to p, = Trp (p), the partial trace of p versus sub-system B.
In particular it has the dimension of the space of density operators on sub-system A. We are
looking for a parametrization preserving the fact that p4 remains always a density operator
and including first order terms in € attached to possible entanglement between A and B. We
add thus to the series expansions (G.3) of appendix G

SE= RO+ EFAE) . and p=Ko(6) + i (€) + K(€) + -
the following constrains:
e cF) + €2 F; has to be of Lindblad form, up-to O(e?®) corrections;
o Ko+ €K1 + 2K has to be a Kraus map up-to O(e?®) corrections.
Here £ is an operator on sub-system A parameterizing p, via the Kraus map
& Trp (Ko(€) + eK1(€) + €K2(E) +...) = pa.

It is important to notice here that £ does not coincide in general exactly with Trp (p).
Then (G.4) reads here

(Lo + €eL1) (Ko(€) + K1 (€) + €K2(€) + ..
= (Ko+eKi + Ko +...) (eFi1() + EF() +...) .

It is clear that for € = 0, order 0 term L(Kop(§) = 0 implies that

Ko(§) = € @ [0p) (00|

when we impose that £ and Trg (p) coincides when € = 0.
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Since all the maps are linear, identifying terms of order one give an equation satisfied by
Fp and Kq:
Lo(K1(£)) + L1(Ko(€)) = Ko(F1(8))- (4.10)

Since Trp (Lo(p)) = 0 for any operator p on H4 @ Hp,

L1(Ko(8)) = —i [Z Aj ® B, £ @ [06)(0p] | + La(8) @ |05) (0]

k=1

and Ko(F1(€)) = F1(€) ® |0p)(0p], taking the partial trace versus sub-system B gives

F1(§) = —i [Z/BkAk €|+ La(€) with B = (0| Bg|0s) € R.
k

With such F1(§), (4.10) becomes

Lo(K1(§)) = —i [Z A @ (Br, = Br), £ @ |0p) (0] (4.11)

k=1

The equation
Lo(X) = BI0y) (0|
for the unknown operator X on B and the given operator B on ‘Hp operator admits solutions

if, and only if, Tr (B|0p)(0s|) = (05| B|0s) = 0. Then its general solution reads

X = —2(b'b) "' B|0,) (00| + g/05) (04

where (b'b)~! is the Moore-Penrose inverse of b'b and g is any complex number. This comes
from the identity b'b(b'b)~* = (b'b)~1b'b = Iz — |0,)(04|. Similarly by Hermitian conjuga-
tion, the solution of Lo(X) = |05)(0s|B when (0,|B|0) = 0 reads X = |0,)(0,|B(bTb)~! +

9106) (0p)-
Notice that (4.11) reads

m

Lo(K1(§) =D —i A€ ® (B, — Br)[06) (00| + 16 A & |04) (06| (B — Br).
k=1

Since B, = (0p|Bg|0p) for each k, it admits the following general solution
21 “ try—1 tpy—1
K1(§) = G(§) @ [06){0s] + p > A& @ (b1b) T Bil0,)(05] — Ak @ [05) (0] Bi(bb)
k=1

— G(€) ©[0,) (0] +2b

Y A ((bTb)_lBk; + Bk(bTb)_l) , €® |0b><0b’]
s

where G(§) is any operator on H 4, a gauge degree of freedom depending on &, and where we
have used (b'b)~1(0,) = 0 = (0p|(b'd)~'. We have

Ko(€) + eK1(€) = M1 (£ @ |0,)(0p]) e "W + €G(€) ® [04) (0p] + O(€) (4.12)
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where
2 m
Wi=— > A @ ((b'b) ' By + Bi(b'b) ) (4.13)
k=1
is Hermitian.

In the sequel we choose G(£) = 0 in order to have £ = Trp (p) +0(e?) in the corresponding
first order reduced model:

d , .
dt&z—z’e[;ﬁmk,é +eLa(6), p=e (@ (0,)(0p])e ™.

where /W1 is unitary on H 4 ® Hp close to identity.
The second order corrections F» and Ko are solution of

Lo(K2(£)) + L1(K1(£)) = Ko(F2(£)) + K1(F1(8)). (4.14)

Taking the trace versus B, we get Fa(§) = Trp (K1(F1(€)) — L1(K1(£))). We have directly
Trp (Ki(F1(€))) = 0. Since

£1(1C1(€)) = Ijb ZAk ® By, ZA"“‘{ ® (bTb)lek/|0b><Ob’ — AL ® ’0b><0b‘Bk/(bTb)7l
k K

2 _ _
T > La(ApE) @ (b'6) ' Bye|04) (0] — LA(EAR) @ [05)(05| Br (bT0) 1,
k/
the partial trace versus B yields to
K _ _
51’ Tep (L1(K1(£) = Y (04| Bi(bT0) ' By |0y) AxAw& — (04 By (bT6) "' By|0y) ArEAy

kK’

— Z<0b|Bk(bTb)7lBk/‘0b> AklfAk — <Ob’Bk/(bTb)7lBk|0b> fAk/Ak
kK’

With Gram matrix of entries

+00 "
G = (00| B(b10) ' Biol0y) = Y (s (malBilow)) (5 (ol Biel0y)) (4.15)
nbzl

and its Cholesky factorization G = ATA, one gets

% Trp (Ly(Ki(€) = > Npmphwrs (AkAkff + AR Ay — 2Ak/§Ak)
koK K

since Gkk’ = Zk” AZ//kAk”k;’- Set
m
Ly =) ApwAp (4.16)
k=1

Then % Trp (£1(K1(£))) = D% (LZLk§+§LZLk—2Lk§LZ,> . Finally, one obtains with gauge
G(¢&) =0 for K4,

Fa(é) = jb (Z LiLf - %(LLka + sL;Lk)> (4.17)
k
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To conclude, the slow dynamics of p governed by (4.9) can be approximated by the
following trace and positivity preserving reduced model of state £ a density operator on H 4

+eLa(§)

d .
%52 —i€ [ Ek BrArk , €
4e? (gt i 3
o S LeLf - §<LkLk§+kaLk> +O() (4.18)
k

with p = e*W1 (£®|0p) (0p) e~ W14+ O(€?) as completely positive and trace preserving output
map providing the physical quantum state p on H4®@Hp. Here B = (05| By |0p), the Lindblad
operators Ly, are given by (4.16) and the Hermitian operator by (4.13). Notice that £ coincides
with Trp (p) up to second-order correction in e.
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Buffer Cat-Qubit
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Figure 4.1: The super-conducting quantum circuit of [13, figure S3] stabilizes Schrédinger
phase-cats of the high-quality oscillator @ with pulsation w, (in blue) via nonlinear (Josephson
junctions) and oscillatory (pulsation 2w, —wj) Hamiltonian coupling to a low quality oscillator
b of pulsation wy (in red).

4.4 Autonomous stabilization of a cat-qubit

This section details on a slightly simplified Hamiltonian the mathematical methods used to
analyze the super-conducting circuit illustrated on figure 4.1 and stabilizing any quantum
state p of an oscillator with support in the vector space spanned by two coherent states |a)
and |-a) with @ # 0 a complex amplitude. This circuit implements autonomous quantum
error correction and is directly related to bosonic quantum code, a possible and actively
investigated path for building a universal quantum computer (see the seminal paper [19]).

We detail below perturbation techniques, rotating wave approximation (averaging) and
adiabatic elimination (singular perturbation), yielding to reduced dynamical models for the
oscillator supporting these Schrodinger cats, i.e. storing quantum information attached to a
logical qubit (cat-qubit). The time asymptotic behavior of these reduced models are then
analyzed with Lyapunov techniques showing exponential convergence.

4.4.1 The classical analysis

For simplicity sakes, we consider here the following classical Hamiltonian encoding similar
drives and weak nonlinearities as those of the ATS-circuit considered in [13, appendix]:

H(qa, Pas @b Post) = “2(q2 + p2)+“L(q + pi)+2g cos (\/§¢aqa+\/§¢bqb+(2wa—cub)t> (4.19)

where (qq,pa) and (gp, pp) are the canonical phase-space variables attached to oscillators a
et b respectively. Here w, # wp are their pulsations, g the coupling parameter is small, i.e.
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lg| < wq,wp, and the positive parameters ¢q, ¢ < 1. The dynamics read

d ) .
= WaPa; ;Pa = —Wala + 219\/§¢a sin (\/§¢aQa + \/§¢be + (QWCL - Wb)t)

dtde dt
d d . .
;0 = WP Db = —Wels — oD + 2igV/2¢y sin (\@%qa + V20 + (2wq — wb)t)

+ v cos wpt + w sin wpt

where we have added on oscillator b a weak damping rate (0 < k; < wp) and a resonant
input drive with |v], |w| < wp.
With complex variable z, = (¢4 + ipa)/v/2 and z, = (g + ipy)/V/2, one gets

d
—z
dt™
d . * . . * *

— 2y = —iwpzy — 2 (2 — 25) + 2ig¢y sin <¢a(za +25) + dp(z + 2) + (2w, — wb)t>

dt ) 4
+ ue—zwbt o u*ezwbt

= —1WqZq + 21g¢4 Sin (¢a(za + ZZ) + d’b(zb + ZZ?) + (zwa - wb)t>

with (w 4 iv)/2v/2 = u € C.

The time-varying change of variables z, = Z,e —twpt

—wal and 2z, = Zpe yields to

d . . . . .
%Za = 2ig¢aezwat sin (d’a(zae_zwat + 2;€+Zwat) + @Z)b(zbe_lwbt + 2;6+Zwbt) + (2wa - Wb)t>
d

—z = _%(zb _ deszbt) +ou— u*e2zwbt

dt i ) ) ) )
+ 2iggpe™?! sin (qba(éae_“““t + EZeJ”w“t) + gbb(ébe_“"bt + Ege“w”t) + 2wy — wb)t>.

First order averaging based on asymptotic expansion up-to order 3 versus ¢,, ¢, < 1 (weak
. . . . . g¢3¢

non-linearity) gives with go = #g=*

d

_ _2 Kb =
— Zp = U — gz, — 5 Zp-
di 9274 2

Za = 292707, o
This nonlinear system on C? admits 2 stable steady-states (Z,,2,) = (£a,0) with o? = u/go
and an unstable one (0, 2u/kp).

When rp, > |g2|, 2 relaxes rapidly to 2(u — g222)/kp: the slow evolution of z, obeys to

d
L= M52 2 (4.20)

where we have replaced in %Za equation, z, by its value given by the usual quasi-static
approximation 0 = u — g2z2 — %27z, (Tikhonov normal form, see sub-section G.2).
This reduced system on C derives from the potential (Lyapunov function) (see [13,

appendix|)
2 2
Vi(Za55) = S8((2)2 - a?) (22 — (a")?) = 1232 - a??

since the above slow dynamics reads
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It admits three steady states, the three critical points of V: two exponentially stable steady-
states *a where V reaches its minimum, one exponentially unstable steady-state 0 corre-
sponding to a saddle point for V. Since the critical points of V' are non degenerate (Hessian
of V with rank 2), these steady-states are all hyperbolic, either locally exponentially stable or
unstable. Moreover V is infinite at infinity. Thus the solutions of this slow model are defined
for any positive time t. Almost of them converge either to a or -« except those converging to 0
and located on the straight line passing to the origin with direction 7. This line corresponds
to the stable manifold (here a straight line) of the saddle steady-state. It is also the frontier
between the attraction domains of locally exponentially stable steady-states a and -ca.

4.4.2 The quantum analysis

The quantum Hamiltonian corresponding to the classical slightly simplified Hamiltonian (4.19)
is as follows:

H(t) = wea'a + wyb™b + 2g cos (qba(a +a’) + ¢p(b+b") + (2w, — wb)t1> (4.21)

where a = (g, + 8%&) /V/2 and b = (q, + 8@%) /\/2 are the annihilation operators on oscillators

a and b respectively ( [a,al] = I,,, [b,b'] = I,. The density operator p; obeys to the usual
Liouville equation: %pl = —i[H(t), p;].
The change of frame

Py = €xp (iwataTa + iwbtb*b> pP1 eXp (—iwataTa — iwbtb*b)
yields to 4 p, = —i[H2(t), py] with the new Hamiltonian
Hy(t) = ge'P¥ew)t oxp (i(f)a(e*i”“ta + e™alal) 4 iy (e~ ™bb + ei“’bth)) + h.c.
Expansion up-to order 3 versus ¢4, ¢p < 1 of the exponential gives
Hy(t) ~ ge'Pwawn)t

(I + iqba(e_iw“ta + eiwataT) _ %ﬁ(e—iwata + eiwataT)2 _ %(e—iwata + eiwataT)3)

<I + T:st(e_iwbtb + eiwbtb'i') _ %g(e—iwbtb + eiwbtb'i')z _ @(e—iwbtb + eiwbth)3>
+ h.c. (4.22)

Following the multi-frequency averaging of sub-sections 2.1.1 and 2.1.2, one gets at first or-
der only two secular terms (i.e. non-oscillatory): —igoa?b! and its Hermitian conjugate

192 (aT)Qb where go = g¢2¢p/2. This justifies the following first-order time-invariant approxi-
mation where the oscillatory Hs(t) is replaced by its time-invariant averaged Ho (rotating
wave approximation): :

H, = —z'gga2bT + 192 (aT)2b.

Exercice 12. Instead of Hamiltonian given by (4.21), consider

H,(t) = weala+wyb b+2g cos ((Z)a(a +al)+ay(b+ bT)+(2wa—wb)tI> +iue Wt —ju*e™rth
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with u complex amplitude associated to a resonant input drive on mode b. Show that a similar
first-order RWA yields to

Hy =i(u— goa®)b" —i(u* — gy (aT)2)b.

Exercice 13. Use approzimation recipes of (2.15) to compute second-order corrections to
H for oscillatory Hamiltonian Hy(t) given by (4.22)

In the frame rotating at frequencies of oscillators a and b, the density operator p obeys
to the following master equation

d
P = ﬁab(p)

dt
< - [92 (a® — a?)bl — g2((a’)? — (a")?)b, p} + Kyp (bpr — (blbp + prb)/Z) (4.23)

where, for mode b, we have added a damping rate k; > 0 and also a resonant drive of frequency
wp and complex amplitude u (see exercice 12) providing o = u/gs € C.

Exercice 14. Show that Lap(]21)(z2] ® [05)(0s|) = 0 for z1,22 € {a,-a}. Deduce that any
density operator p = p, @ |0p){0p|p is a steady-state as soon the range of p, belongs to

span{|a), [-a) }.

Assume that k;, > g¢o, i.e., that dissipation of mode b to vacuum |0p) is the dominant
dynamics in L,. Following section 4.3, we can eliminated adiabatically mode b to get a
Lindblad master equation only for mode b.

Exercice 15. Consider (4.9). Show that Ly, reads Lo + €Ly with € = g2, L4 =0 and

b—bl
Ay = o’ +(a*)*—(a’+a')?), By = ——, Ay =i(a®—(a*)?—(a’—a')?), B,

_b+bl
2 B '

2

With exercice 15 we have, according to (4.13), W1 =0 and to (4.15)

=100 )=t 06 o)

With A = ((1) _OZ> we get, using (4.16), L1 = a® — a® and Ly = 0. Finally the following
slow evolution of mode a is given by

d 4g2

Zpa =2 ((a* —a)pa(a’ — o)

~((a* —0®)i(a® —a®)p, + pala? — 0®)i(a* —a®))/2) (420

where p = py @ [0,)(0] + O((g2/#1)*) and p,4 = Trg (p).

Exercice 16. Take (4.24)and assume that py is initialized to the coherent state of amplitude
2o Pa(0) = |24)(2z4|. Show that % Tr (apa) at time 0 is given by (4.20).
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It is clear that any density operators p, is a steady-state as soon as the support of p,
belongs to the two dimensional vector space spanned by the quasi-classical wave functions |a)
and |-a) (range(p,) C span{|a),|-a)}). In particular any coherent superposition of |a) and
|-a) is a steady state such as Schrodinger phase cat |a) + |-a). In [9] well-posedness of this
master equation and exponential convergence of p4(t) towards such a p, are proved with
the following Lyapunov function V(p,) = Tr ((a® — ?)"(a® — a*)p4). This results from the
following key identity

d

2 2
SV(pa) = =2 T (a2~ o) (2ala + L)(a? — a?)ps ) < —3EV(py)

exploiting the fact that [(a® — o?), (a® — a?)] = —2(2a'a + I,).

4.5 Stochastic master equations

These models have their origins in the work of Davies [29], are related to quantum trajecto-
ries [22, 28] and to Belavkin quantum filters [13].

4.5.1 Diffusive case

A modern and mathematical exposure of the diffusive models is given in [10]. These models
are interpreted here as continuous-time versions of (3.28). They are based on stochastic differ-
ential equations, also called Stochastic Master Equations (SME). They provide the evolution
of the density operator p, with respect to the time ¢. They are driven by a finite number
of independent Wiener processes indexed by v, (W,;), each of them being associated to a
continuous classical and real signal, y,¢, produced by detector v. These SMEs admit the
following form:

dpy = (—i[H, pi) + ZLuPthT/ - %(LZL,,pt + PthT/LV)> dt
v
> Vi (Lypt + oLl =T (L + Li)p,) pt> AW, (4.25)

where H is the Hamiltonian operator on the underlying Hilbert space H and L, are arbitrary
operators (not necessarily Hermitian) on H. Each measured signal y,; is related to p, and
W+ by the following output relationship:

dy,s = dW, 4 + /n, Tr ((Lu + L:L) Pt) dt

where 7, € [0, 1] is the efficiency of detector v.
For the case of a finite dimensional Hilbert space, it has been proven in [18, 10] that the
above SME admits a unique strong solution in the space of well-defined density matrices

S={plp=p"p>0Tr(p) =1}

When all 1, vanish, (4.25) boils down to a deterministic differential equation usually called
Lindbald master equation (more precisely Gorini-Kossakowski-Sudarshan—-Lindblad equation
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(GKSL)). This linear differential equation governs the ensemble average of p, [38, 10]:

d

P =—ilH.pl+ > Lyp,L} — 3(LlLup, + p, L} Ly). (4.26)

It is the continuous-time analogue of the Kraus map K associated to the Markov pro-
cess (3.29).

In fact (3.26) and (4.25) have the same structure. This becomes obvious if one remarks
that, with standard Ito rules, (4.25) admits the following formulation

Mgy, pr M, dyt +22, (1= 1) Ly p, L dt
Tr (May, pcM, + ¥, (1= 1) Lup Lt

with Mg, = I + ( 1H — = E LTL ) dt+ >, \/vdyu,L,. Moreover the probability associ-
ated to the measurement outcome dy = (dy,), is given by the following density

p <dy e [11. & + dg) / Pt>

dé, —&2
=Tr (MéptMg + Z(l - ny)Lyptlet> \/%6 & /2dt

Piyar =

where ¢ stands for the vector (§,). With such a formulation, it becomes clear that (4.25)
preserves the trace and the non-negativity of p. This formulation provides also directly a
time discretization numerical scheme preserving non-negativity of p.

We recall here the basic rule of Ito differential calculus for the stochastic system of state
X € R"™ and driven by m scalar Wiener independent processes W, ;:

Xipar — Xy = dX; = F(Xp, t)dt + Y G (X, £)dW,,

where F'(X,t) and (G, (X, t)) are smooth functions of X and piece-wise continuous functions of
t. For any C? real function f of X, the computation of df; = f(X;1q;) — f(X¢) is conducted
up to including order one in dt with the following rules: dW,, = O(Vdt), (dW,,)? = dt,
AW, DW= 0 for v # v/ and any other products between the dW,; being zero since of
order greater than (dt)3/2. This means that we have

dft = f(Xerar) — f(Xe) = f(Xi +dXy) — f(Xe)

o 0?
_ o dXt+§ aXfQ

0X | (dXtadXt) +
of
= (ax PXut) +3 Z 5%,

v (X, ),GV(Xt,t))> dt

+ Z (Xp, 1) AW,

Notice that we have removed terms with dtdW, ; since of order dt3/2. For expectation values,
all dW,; are independent of X; and E (dW, +) = 0. Thus we have for any C? function f of X:

B (| %) = (‘” PO+ 5|

(Gu(Xt, t), Gy (X, t))) dt.
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4.5.2 Jump case

This section just adds measurement imperfections to the quantum Monte Carlo trajectories
introduced in [28] and well explained in [36][chapter 4]. More details can be found [54, 1].

Jump stochastic master equations are driven by Poisson processes, i.e. counting processes
(N,(t)), instead of Wiener ones. They admits the following structure:

dp, = (—i[H,pt] +Y Vup Vi = H(VIV,p, + ptVLVM)> dt
"

éupt""z,,u Npw Vo PtVL/ — _ 1
+ Z (9“4—2“/ ﬁu,u/ TY(V;L/PtVL') pt) (dNN(t) (9# + MZ/ np.,p.’ Tr (Vp’ptvu/) ) dt) (427)

“w

where the V,’s are operators on Hilbert space H, where the parameters 5M,ﬁ%u/ > 0 with

Ny = Zu Ny, < 1, describe counting imperfections (slot-noise for 0, detection efficiencies
and classical correlations for ﬁwﬂ). For each p, (5# + Zu’ My Ir (Vu’ ptVL,) ) dt is the

probability to increment by one N, between t and ¢ + dt, i.e. to have dN,(7)(t) equal to ; a
Dirac at time t.
Take the following definition for M

My=1— (z‘H+§ZVLVu> dt
nw

and consider the following partial Kraus map:
Ko(p) = MopM, + > (1 —7,)V.pV}dt.
"

The stochastic model (4.27) is similar to the discrete-time Markov process (3.26) where the
discrete-time outcomes yj, is replaced by the counting increments dN (t) = (dN, “(t))u' More
precisely, the transition from p, to p;, 4 is given by the following transition rules:

1. The transition corresponding to no-jump outcomes, i.e. dN(t) = 0 reads
p _ Ko(p:)
T T (Ko (py))

and is associated to the following probability law:

P (dN(t) =0 / pt> = <1 — (Z%) dt) Tr (Ko(py)).

2. The transition corresponding to outcomes with a single jump of label p, i.e. dN,(t)
being a Dirac at time ¢, reads

Ko(p,)

. ~ g‘upt + ZNI ﬁ%#' V/j'/ptVL/
P = Ty (Ko(py)

Tr (H,Ltpt + Zul My’ V,u’ptV'u’>

and is associated to the following probability law:

P (dN,;(t) = 8,000t / pt) =dt Tr [ Oupp + Y T ViupV5
!
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3. The probability to have at least two jumps, i.e. dN,(t) = dN,/(t) = J; for some p # 1/,
is an O(dt?) and thus negligible.

Notice that
P <dN(t) =0 / pt> +P (dNL(t) = 0y, 0t / pt> =1+ O(dt2).

Standard computations show that such time discretization schemes converge in law to the
continuous-time process (4.27) when dt tends to 0.

4.5.3 Mixed diffusive/jump case
This subsection is mainly based on [54, 4]. Mixed diffusive/jump stochastic master equations

can be considered. Additional Poisson counting processes (N,(t)) are added in parallel to the
Wiener processes (W,1).

dp, = <—i[H7Pt] + Z LuptLi - %(L.II;Lth + PtLILV)> dt
+ Z \/U7<Lupt + PtLl —Tr ((L,, + LDPt) Pt) AW

+ (Z V.oVl —L(ViV.p, + ptvltvﬂ)> dt
I

§#Pt+zu/ ﬁu,u/VN,ptVL/ . _ (7 _ ( T ))

N 2

0 with7,, = Zu My, < 1, describe counting imperfections. For each p, <§“+Zu’ My Tr (V#/ptVL,) ) dt
is the probability to increment by one N, between ¢ and ¢ + dt.
For any vector £ = (&), take the following definition for M

where the V',,’s are operators on Hilbert space H, where the additional parameters gu,

M¢=1- <iH +3Y LD, +1)° VLV#> dt+> /&Ly
v " v
and consider the following partial Kraus map depending on &:

K¢(p) = McpML+> (1 —n)LypLidt + Y (1-7,)V,pV}dt.
v H

The stochastic model (4.28) is similar to the discrete-time Markov process (3.26) where the
discrete-time outcomes yj is replaced by the continuous-time outcomes (dy;, dN(t)). More
precisely, the transition from p, to p;, 4 is given by the following transition rules:

1. The transition corresponding to no-jump outcomes (dy:, dN(t) = 0) reads

p _ Ky, (p:)
CHET T (K gy, (py)
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and is associated to the following probability law:

P (dy e Tl & + deu] and an() =0/ pt>

() 1)

/gTr (Ke(py) 1:[ e e (ﬁu Tr (VuptV ))dt+0(dt2)

Since

we recover the usual no-jump probability, 1 — (Z# gu +mn, Tr (VuptVL)> dt, up to
O(dt?) terms.

2. The transition corresponding to outcomes with a single jump of label u, (dy;, dN(t) =
6t(5u7ul)ul), reads

Kdyt <§upt + ZM/ ﬁ,u,,u’ V,u’ptVL/>
I (Kdyt @“p b+ ﬁu,u’vu’ptvz’))

and is associated to the following probability law:

Ptydt =

P <dy e [Tl & + d&) and AN(t) = (80 /m)

_ _ 2
=dt Tr (Kg (a,upt + ZU,L,;L/V“//%VL) ) (H e/ \/(éill'/dt)

W v

By integration versus &, we recover, up to O(dt?) terms, the probability of jump pu:
(éu + 3 Ty Tt (V/, P, +dtvL,)) dt.

3. The probability to have at least two jumps, i.e. dN,(t) = dN,/(t) = J; for some p # 1/,
is an O(dt?) and thus negligible.

Standard computations show that such time discretization schemes converge in law to the
continuous-time process (4.28) when dt tends to 0. They preserve the fact that p > 0 and
can be used for Monte-Carlo simulations and quantum filtering.

4.6 QND measurement of a qubit and asymptotic behavior

In this section, we consider a continuous measurement protocol for a single qubit. The
considered setup corresponds to the inverse of the photon box experiment. As illustrated in
Figure 4.2, we consider the qubit to be fixed inside the cavity and interacting with the confined
electromagnetic field. The cavity however is assumed to be not ideal and the confined field
can leak out at a rate k. This outgoing field is continuously measured through what is called
a homodyne measurement process, corresponding to the measurement of a certain quadrature
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X = (¢”al + e7"a)/2 as physical observable. Assuming a dispersive coupling between the
qubit and the cavity (see Section 1.3.1) and in the regime where the leakage rate s is much
stronger than the other dynamical time-scales, such as an eventual Rabi oscillation rate for
the qubit, the cavity dynamics can be removed leading to a stochastic master equation for
the qubit [341] (we will skip the details of this model reduction which includes some details
that are out of the scope of these lectures).

Figure 4.2: The cavity field interacts with the qubit and the cavity output gets measured
providing information on the state of the qubit.

For a well-chosen measured quadrature X , this SME of the form (4.25) is given by

VnL'm
2

, L'
dp; = —i[H, p;|dt + T(Uzpto'z — py)dt + (o2p; + pyo= — 2Tr (azp;) py) AW, (4.29)

where H is the qubit’s Hamiltonian, the only Lindblad operator L, is given by v/I',0%/2,
and 7 € [0, 1] represents the detector efficiency. The measured signal dy, is given by

dy; = dWi + /nL'y, Tr (o2 p,) dt. (4.30)

Let us consider here the uncontrolled case where the Hamiltonian H is simply given by
Weg0z /2. Following the arguments of the previous section, the above SME correspond to a
Markov process with the Kraus operators

r vnl v (1 —n)Tdt
Mg, =1 — (iwggcrz + ?mI)dt + 772 "o.dy; and /(1 —n)dtL = (277)maz.
Noting that the above operators commute with o, following the definition of Section 3.1.3, we
have a quantum non-demolition (QND) measurement of the observable o,. Here, we study,
similarly to the Section 3.2.5, the asymptotic behavior of the open-loop system undergoing
the above continuous measurement process.

Theorem 4. Consider the SME (4.29) with H = w0, /2 and n > 0. For any initial density
matriz py, the solution p, converges almost surely as t — oo to one of the states |g)(g| or
le)(e|. Furthermore the probability of convergence to |g){(g| (respectively |e){e|) is given by
pg = Tr (I9)(glpo) (respectively Tr (le)(e|py))-

Proof. We consider the Lyapunov function

V(p) =1/1—Tr(ozp)”.
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Ito computations of dV; £ V(p,,4) — V (p,) is based on a second order expansion of f(z+dz)
around z where z = Tr (0.p),, f(2) = V1 — 2% and dz = Tr (62p), 4 —Tr (0=p),. By linearity,
dz = Tr (o.dp,) with dp, given by (4.29), yields directly to

dz = \/mT (1 — 22)dW;.

: d _ -1 da2f _ -1 :
Since 5> = = and 5 = v the second order expansion of f(z + dz) around z
reads
dz dz?

fz+dz) = f(z) — + O(|d=]?).

VIi—22 2(1—22)y/1- 22
With Tto rules dz? = nl'y, (1 — 22)?dt. Thus

Vi £V (pyar) = V() = =Vl V/1 = 22dW, — Ty /1 — 22,
Thus E (dV; | p,) = —anm\/l — 22dt = —WTthdt By linearity we have

d

ZEW(p) | p) = =T=E(V(py) | po)-

lm
and thus E(V(p,) | po) =€~ 2 "V(p,) converges exponentially to 0 at rate WTm

By Theorem 5 of Appendix F, the limit V(p,) as t — oo exists with probability one (as a
supermartingale bounded from below) and its exponential decay to 0 implies that V(p,) — 0
almost surely. But the only states p satisfying V' (p) = 0 are p = |g)(g| or p = |e){e|.

We can finish the proof by noting that Tr (o3 p;) is a martingale. Therefore using a similar
argument to Theorem 2 of Section 3.2.5, the probability of convergence to |g)(g| (respectively

le)(e]) is given by pg = Tr (|g)(g|py) (respectively Tr (|e)(e|py))- O

The above theorem implies that the continuous QND measurement can be seen as a
non-deterministic preparation protocol for the states |g)(g| and |e)(e|. Similarly to the Sec-
tion 3.2.6, this preparation can be rendered deterministic by adding an appropriate feedback

control. Indeed, it has been proven in [(5] that, a controlled Hamiltonian
w U
H = 2eg o, + 50-:177

with the feedback law

U(p) =—alr (i[o-w?p]ptag) + /8(1 —Tr (pptag))7 O‘vﬁ >0 and 52 < 8aum,

globally stabilizes the target state py,, = [g)(g] or |e)(e|.
See e.g. [18, 44, 45, 20, 21] for other stabilization scheme attached to similar and more
general QND dispersive measurement cases.



Appendix A

Basic Quantum notions

All the objects, notions and operators described in this section are mathematically well-
defined when the wave functions Hilbert space is of finite dimensions. In the case of infinite
dimensional Hilbert space, one has to be aware that these objects, notions and operators
might also be defined in principle but one needs to explore the mathematical justifications
depending strongly on the specific physical system under study (involving in particular its
spectral decomposition). For clarity sake, we consider here only the finite dimensional case
even if some constructions and objects (such as tensor product) admit a straightforward
extension to infinite dimensional Hilbert spaces.

A.1 Bra, Ket and operators

We just recall here some basic notions of quantum mechanics. We refer to the excellent
course [26] where these notions are explained in details. Bra (e| and Ket |e) are co-vector and
vector. The quantum state is described by the ket |1)) an element of norm one and belonging
to a Hilbert space H. The quantum state is also called (probability amplitude) wave function.
The Hermitian conjugate of a Ket is a Bra: (1| = |)T. The Hermitian product between two
kets (vectors, i.e. elements of H), [¢) and |¢) is denoted by

(W] -1o) = (¥lg) = (dly)" € C

where * stands for complex conjugate. If we consider a Hilbert basis of #, denoted by |n),

n=1,...,dim(H), we have
=2 valn), Y (nl) = v € C
(Wlyp) = er
= Z%In . Vn, (nl¢) =dn€C
(dlg) = Zr¢n|2
(Ylo) = Zcz) én

87
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since for all m,n, (m|n) = dp n.
Any linear operator M from H into H reads, in the orthonormal basis (|n)),

M => Mpa|m)(n|,  My,€cC

m,n

where My, , = (m|M|n) is the Hermitian product between |m) and M|n). The operator M
is Hermitian when M = M, i.e. My n = My, ,,,. The orthogonal projector P on a Hilbert
subspace Hg of H is a Hermitian operator defined by the relation

P =" |6r) (%l
p

where |@k)re(1,... dim(#,)} 18 any orthonormal basis of Ho.
The operator U is unitary when U~ = UT. Any operator U = exp(iH) is unitary as

soon as H is Hermitian. We recall that
k
exp(A4) = ) 4r

for any operator A.
Take a Hermitian operator M and consider its spectral decomposition

M = Z)\VPV

where the \,’s are the eigenvalues of M (), € R) and P, the orthogonal projector on the
eigenspace associated to A,. By construction we have I = ) P, where I is the identity
operator. For any function f : R — R we can define f(M) by

F(M) =" f(\)P..

Thus M and f(M) commute and the image by f of the M-spectrum is the spectrum of f(M).
This definition of f(M) is just a more intrinsic formulation of the usual construction based
M = UAU' with U unitary and A diagonal: f(M) = Uf(A)U' with f(A) the diagonal
matrix obtained by taking the image via f of the scalar elements forming the diagonal matrix
A.

A.2 Schrodinger equation

The dynamics of a the state |¢) of a quantum system living in the Hilbert space H is described
by a Schrodinger equation:

.d
i) = H(b)[) (A1)

where H () is a time-varying Hermitian operator called the Hamiltonian. Here £ is set to 1
and thus H (t) has the dimension of a frequency.

The evolution of |¢)) is unitary: if |[¢)) and |¢) are solutions of the same Schrédinger
equation (A.1) then (¢|¢), is constant and equal to the initial value (v|¢),. This means
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that we can set [¢); = Uy|1)g, for any solution of (A.1) starting form [¢)g, where the time-
dependent unitary operator Uy, also the propagator, is solution of

d
iﬁUt = H(t)Uy,, Ug=1. (A.2)
Whenever the Hamiltonian H is time-invariant, and once we have the spectral decomposition
of H, we have an explicit expression of U;. Indeed, taking

H= ZWVP,,

where for each v, w, is a different eigenvalue and P, is the orthogonal projector onto the
eigenspace associated to w,, we have

Ut — e—th — § :e—zw,,tPV
v

and thus
V) = Ze_zw”tPuWh-

v

Since, for any angle 0, [¢)) and e[1)) represent the same quantum state, the Hamiltonian
H (t) is defined up to an addition of A\I, where X is any real quantity (homogeneous to an
energy). More precisely, take any time varying global phase 6;. Then [¢); and |¢); = ®¢|y));
represent the same quantum system. This means that if the evolution of [¢) is driven by
the Hamiltonian H(t), then the evolution of |¢) is driven by H(t) + 6,I: Hamiltonians
H(t) and H(t) + 6,I are equivalent since they are attached to the same system. Thus, in
specific examples, we can always choose the origin of the energy in order to get the simplest
computation and formulae.

T(H (1)
dim(H)

Exercice 17. Show that if we replace H (t) by H(t) — I we ensure that det(Uy) = 1.

A.3 Composite systems and tensor product

A composite system is made of several sub-systems. It is very important to realize that the
state space (Hilbert space) of a composite system is not the Cartesian product of the state
space of its subsystems, as it is the case for classical systems. It is their tensor product. This
difference is essential.

Take a composite system of Hilbert space H made of two sub-systems with Hilbert spaces
Hy, and Hy. Then H = Hi; ® Ho and dim(H) = dim(H;)dim(Hz). From Hilbert basis
([P1))nieqa,....dimr)y of Hi and ([172))nyequ,... dim(no)) Of Ha, we get a Hilbert basis of H,

(In1,m2)) n1 € {1,...,dim(H1)}
no € {1,...,dim(7—[2)}

where |n1,n2) is used to denote |n1) ® |n2). H = Hi ® Ha contains all the tensor products
|1) ® |1p2) of elements |¢1) € Hy and |1)2) € Ha. But it contains much more elements that
are not tensor products of elements of H; and Ho
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Exercice 18. Prove that
V) =|1,1) +12,2)

cannot be expressed as a tensor product.

Take [1), |¢) € H. Then we have

) = Y Ynpmalna,ne), (1, m2lt)) = Yy my € C

ni,n2
‘Qb) = Z ¢n1,n2’n17n2>7 <nlan2’¢> = ¢n1,n2 S (C
ni,n2
<¢\¢> = Z w;l,ngfbnhn?
ni,n2

Exercice 19. Prove from the above relationships that if [1) = |11) ®|ba) and |¢) = |p1) @ |d2)
with |11),|¢1) € Hy and [1h), |p2) € Ha, then (¥[@) = (h1|1) (Y2|@2) -

Consider M1 a linear operator on Hi and My a linear operator on Hy. The tensor
product M1 ® M defines a linear operator on H via the following relationships:

W> = Z ¢n1,n2|n17n2>7 <"1an2\¢> = ¢n1,n2 eC

ni,n2

M, ®M2W> = Z ¢n1,n2M1‘n1> ®M2]n2>.

ni,n2
Thus when |¢) = |[¢1) ® |[p2), then we have always
M @ Ms|p) = M[p1) @ Ma|is).
There are many operators on H that are not tensor product of operators on H; and Hs.

Exercice 20. Show that the linear operator (I and Iy are the identity operator of Hi and
Ho respectively)
(I +12)(A) @ T2 + Iy © (|1)(2[ + [2)(1])

is not a tensor product My ® My (hint: consider the image of |1,1)).
If U; and U4 are unitary operators on H; and Ho, then U1 ® U is also unitary and
U,oU,) ' =U'oU,' =Ul o Ul = (U, o Uy)'.
For any operators A; and A, on H; and Ha, we have'
exp(A1 ®@ I + It ® Az) = exp(A1) ® exp(As)
This results from the fact that A1 ® Iy and I1; ® Ay commute:
exp(A1 ® In + 11 ® Az) = exp(A; ® I2) exp(I1 ® Aa).
Since exp(A; ® Is) = exp(A;1) ® Iy and exp(l; ® Ag) = I1 ® exp(Aa), we get

exp(A1 ®@ In + It ® Az) = (exp(A1) ® I2)(I1 ® exp(A2)) = exp(A1) ® exp(As).

!Notice that in general exp(A; ® As) # exp(A1) ® exp(As).
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This computation explains the shortcut notations of A1 + Ao instead of A1 ® Io + I1 ® Ao
and the rule
exp(Ai + Az) = exp(A1) exp(Az) = exp(A2) exp(A;)

that is free from ambiguity since operators A; and Ay act on different spaces and necessarily
commute.

Take a composite system living on the tensor product H ® £ where £ is another Hilbert
space (typically the Hilbert space of the environment). The partial trace versus £ is a super-
operator that to any operator M on ‘H ® £ associates an operator on H, denoted by Trg (M).
It is defined as follows. Take any orthonormal basis of H, (|n)),, and of &€, (|v)),. For the
operator M defined by

M = Z M o, 1 o101, V1) (02, 19
ni,vi,n2,r2
its partial trace is given by

TI'g (M) = Z Mnl,y,ng,y

ni,n2,v

n1><n2|.

Exercice 21. Show that this definition is independent of the choice of the orthonormal frames
(In))n in H and (|v)), in .

Partial traces are related to usual traces:
Tr (M) = Try (Tre (M) = Tre (Try (M)) -

We also have Tre (M') = (Tre (M))" and if M = A ® B then Trg (A ® B) = Tr(B) A.
Finally, for any operators M on H x £ and A on H, we have:

Tr (Tre (M)A)=Tr ( M(A®I)).

A.4 Density operator

Such a formulation of quantum state is relevant when the wave function |¥) is defined on a
tensor product H ® & and we do not have access to £ (we are only interested in the subsystem
living on H). The density operator is then defined by a partial trace versus £ of the projector
(W) (Wl:
p =Tre (|U)(¥]).

The density operator is always Hermitian, semi-definite positive and with Tr (p) = 1. When
additionally Tr (p2) =1, p is a projector onto a pure state p = [¢) (1|, one says briefly that
p is a pure state.

Exercice 22. Take |¥V) € H®E and assume that p = Tre (|¥)(V|) is a pure state, p = |¢) (Y|
with |¢) € H. Then prove that |¥) = ) @ [€) with |€) € £.
If the quantum state |¥) admits a time evolution (A.l) with Hamiltonian H ® I, then
the time evolution of the density operator p is given by the Liouville equations
ip=I[H,p|=(Hp—pH)
where H may depend on ¢. Thus, the spectrum of p is invariant since p, and p, are related

by p,U; = U.p, where U, is the propagator defined in (A.2). In particular, for any integer
exponent m, Tr ((p,)™) = Tr ((py)™).
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A.5 Observables and measurement

To each measurement process is attached a Hermitian operator M on H, called also a physical
observable. Take its spectral decomposition

M = Z)\VPV

where \,’s are the eigenvalues of M (), € R) and P, the orthogonal projector on the
eigenspace associated to A,. In this spectral decomposition \,, # \,, as soon as vy # va:
each v corresponds to a different value of the measurement process.

Take now [¢p) € H. Then the measurement process attached to M yields to A, with
probability (¢|P,|1). Indeed, assume that we have, at our disposal, a large number n of
identical systems with the same quantum state [¢)). For each system, we measure M and
obtain the value A, , ..., A,,. Set

ny = F#{\ | A=A

Then for n large and each v, we have " =~ (¢|P,|¢). This is consistent with the fact that,
independently of |¢), we have > n, =n and ), P, = I. Notice also that the arithmetic
mean value of the n measures is approximatively ()| M) since we have, for n large,

Rizih . Zumede o §™ 4P A, = (6 M)

v

Moreover just after the k’th measurement that yields A, , the state |¢) is drastically changed
to WP% |1b). This is the famous ”collapse of the wave packet” associated to any mea-
surement process and on which is based the Copenhagen interpretation of the wave function

[¥)-

Example 1. The measurement of o, = —|g)(g| + |e){e| for the first qubit of a 2-qubit system
corresponds to the operator (observable) M = o, ® I. On the 2-qubit system

|¢> = ¢gg|9>g> + ¢ge|g7 €> + weg|ea g> + ¢ee|ea €>
the measurement of o for the first qubit, gives, in average,
(WIM[) = = (1999 |* + [%gel?) + ([egl? + [theel)

i.e., gives either —1 with a probability [tge|* + [Vge|?, or +1 with a probability [theg|* + [Yee|?.
If, just before the measurement of o, on the first qubit, the quantum state is

[¥) = Ygglg, 9) + gelg, €) + tegle, 9) + Pecle, €),
then, just after the measurement, the quantum state changes to

o cither Loal9:9)t¥gelg.€) _ |\ o [ Yoglg)tdgele)
adl o 19/ [gg P+ [Uge?

"/Jeg \e,g>+¢ee|e,e> _ Qpeg |g>+1/’ee ‘e)
V theg P +[tee|? &) (\/ [theg|>+thee|?

> if the measurement outcome is —1,

® or ) if the measurement outcome is +1
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For systems with quantum states described by a density operator p, the measurement
process attached to the Hermitian operator M with spectral decomposition M =" A, P,
becomes:

e the probability to get \,, as the measurement outcome, is Tr( P,) and just after this
measurement p collapses to 7,5 L P,pP, (notice that Tr (pP,) = Tr (P, pP,) since

) pP.)
P2=P,).

e the average value of a large number of measurements of M on the same quantum state
p is given by Tr (pM).

A.6 Pauli Matrices

The Pauli matrices are 2 X 2 Hermitian matrices:
oz = |e){(gl + |g)(el, oy = —ile){g| +i|g){el, o= = |e)(e] — |g)(g]

where |g) = <(1)> and |e) = (é) is the canonical Hilbert basis of C2, the complex plane.
They satisfy the following relations (I denotes the 2 x 2 identity matrix here):

sz =1 o, =1, o0,° = I, 0,0y = i0,, 0y0, = 10y, 00, = Ii0y.
For any angle § € R we have
¢ — cosOI +isinfos, for o=uz,y,z.

Thus the solution of the Schrodinger equation (2 € R)

d Q
a\w = §Uz|¢}>

[)y = e%m”z\”@O = <COS (?) —isin <(;t> Uz> %o

For o, 8 = x,y, z, a # [ we have the useful formulas:

is given by

. . . -1 . T .
o_aezeag — 6—7,90';3 Oa, (ezeaa) _ (ezOUQ) — 6—200'.1

and also

8 50 00 100

e 0562""‘—6 og =oge

Take o = aoy, + boy + co, with a,b,c € R such that a?+ b2+ 2 =1. Then 2 = 1. Thus

for any angle 6 € R, we have ‘
%7 — cosOI +isinf o.
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Appendix B

Operator spaces

This summary is strongly inspired from chapter 4 of [62] where detailed justifications can
be found. H denotes a separable Hilbert space. We summarize the basic properties of the
following spaces of linear operators on H: finite rank operators A/ (H), trace-class operators
KC1(H), Hilbert-Schmidt operators K2(H), compact operators K¢(H) and bounded operators
B(H). These operators spaces, K/ (H) ¢ KYH) € K2(H) Cc K¢(H) C B(H), are non-
commutative analogue of the following usual spaces of complex-value series (Ag)r>0:

e K/ (#) mimics series with a finite number of non zero terms.

e K'(H) mimics absolutely converging series, > k>0 |Ak| < +o0; the analogue of the I
norm is the trace-class norm.

o KC?() mimics I* series, Y~ [Ar]> < +00; the analogue of the scalar product on I? is
the Frobenius product.

e K¢(H) mimics series those general term converges to zero: limg, o0 A = 0.

e B(H) mimics [* series, i.e., bounded series; the analogue of the {*° norm becomes the
sup norm on bounded operators.

Elements of H are vectors denoted usually with the Ket notation [¢) € H. The Hermitian
product between two Kets [¢) and |¢) is denoted by (¢|¢) = (1||¢) where (v| = |1)T is the
Bra, the co-vector associated to [1)), element of the dual H* of H, and defining a continuous

linear map: H > |¢) — (¢|¢) € C. The length of |¢) is denote by ||| = /{(¢|).
L(H) denotes the vector space of linear operators from H to H. For A € L(H), At denotes

its Hermitian conjugate, another element of £(H) defined by V|v), |¢) € H, (v|(Al¢))) =

((AT[e))[9).
The set of bounded operators on H is denoted by B(#). The vector space B(H) equipped

with the following sup norm
lAl = Suwp \/(v]|ATAJY)

V) €H
() =1

is a Banach space. Bounded operators of L(H) are continuous operators of L(H). An operator
U of L(H) is called unitary, if it is invertible and if U~! = U. Any unitary operator U
belongs to B(H).

95
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Take two elements of H, |a) and |b): they define a Ket-Bra operator P, € B(H) via the
following correspondence:

V[¥) € H, Pay(1¥) = ((bl9) ) a).
Usual P, is denoted by |a)(b| since P (|¢)) = |a)(b||¢).

Exercice 23. Show that || P, || = —w

Let |¢) be a unitary vector of H ((¢)[¢)) = 1). The orthogonal projector on the line spanned
by 1), {2[¢) | z € C} is the Ket-Bra operator Py, = [¢)(¥|. The orthogonal projector Py,
on a finite dimensional vector space Hy of H reads

N
Py, = |ag)(ax|
k=1

where (|ai),...,|an)) is any ortho-normal basis of H .
An element A of £(H) is said to be finite rank, if and only if, it can be expressed as a
finite sum of length N of Ket-Bra operators:

N
A= far) (bl
k=1

where |ay) and |b;) belong to H. The linear sub-space of £(H) of finite rank operators of H
is noted by KC/(#H). Tt is clear that K/ (H) C B(H). Moreover A € L(H) belongs to K/ (H)
if and only if it range, the sub-vector space of H denoted by R(A) = {Al¢) | [v) € H}, is
finite dimensional. The rank of A is then the dimension of its range R(A).

Exercice 24. Show that for A € Kf(H) with H of infinite dimension, the kernel of A,
ker(A) = {|¢) € H | Al¢) = 0} is of infinite dimension.

An element A of L(H) is said to be compact, if and only if, the image via A of any bounded
sub-set of H admits a compact closure. The set of compact operators is denoted by K¢(H).
Any compact operator is thus bounded, K¢(H) C B(H): it is a sub-vector space of B(#).
The completion of K/(H) with respect to the norm on B(H) is the set of compact operators
K¢(H): by Hilbert theorem, any compact operator is the limit of finite rank operators for
the sup norm on B(H). This implies that K¢(#H) equipped with the sup norm inherited from
B(H) is a Banach space.

Finally, any compact Hermitian operator A admits a discrete real spectrum (A )ken with
limg 100 Ax = 0. To each A\ we can associated a unitary Ket |ex) such that (|ex))ren is an
Hilbert basis of H. Then we have

A= Nler)exl.

k>0

The above series is absolutely convergent in B(H) with the sup norm. In this decomposition,
the A;’s are countered with their possible multiplicities. Another equivalent and more intrinsic
decomposition (unitary invariance) where each A\ are different, is as follows

A= ZAkPk
k
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where P, is the orthogonal projector on the eigen-space associated to the eigenvalue \j.
Consider a non-negative Hermitian compact operator A with eigenvalues (\g)gen counted
with their multiplicities (A = Y, Aklex)(ex]). Then Ay > 0. A is said trace class, if and
only if , Y150 Ak < +oo. It is then simple to prove that > ;<0 A = > ,50 (@n|Ala,) where
(Jan))n>o is any ortho-normal basis of . Consequently, ", A is denote by Tr (A).
More generally a compact operator A is trace class, if and only if, Tr ( ATA> < +o0.

Since A is compact, the non-negative Hermitian operator ATA is also compact. Thus it
admits a spectral decomposition AtA = >k M Pr where A\ > 0. Then V AT A is defined as
>k VAR Py it is another non-negative Hermitian compact operator those square coincides
with ATA.

Exercice 25. Show that A € K¢(H) is trace-class if and only if R(A) = (A + A")/2 and
S(A) = (A — A" /(26) are trace class. Show that for any trace class operator A and for
any ortho-normal basis (|an))n>0, > ,>0 (an|Alan) is an absolute convergent series. Show
that its sum depends only on A(this justifies the notation Tr(A)). When A is Hermitian
and trace class, show that Tr (A) coincides with the sum of its eigenvalues counted with their
multiplicity.

The set of trace class operators A is noted by IC!(H): it is equipped with the trace norm
also called nuclear norm: [|Alj; = Tr ( ATA). A finite rank operator is automatically trace
class: KCf(H) c K'(H). More-over the completion of K/ (#) for the trace-class norm is ' (H):

any element of X! () can be approximated for the trace norm topology by a sequence of finite
rank operators. For any trace-class operators A, B, we have :

o Tr(A) >0 when AT = A > 0.

e Tr(A) real when AT = A.

e Tr (AT) = (Tr (A))" where T =* stands for the conjugation of complex number.
e AB and BA are also trace class and Tr (AB) = Tr (BA).

For any trace class operator A and any bounded operator M, the operators AM is also
trace class: More over | Tr (AM)| < ||M]||||A||l;. Thus for any M € B(H), K}(H) € A —
Tr (AM) € C is a continuous linear operator of the Banach space K!(H) equipped with the
trace norm. Conversely, any linear map from K!(H) to C that is continuous with the trace
norm coincides with K'(H) > A — Tr (AM) for some M € B(H). The dual of K'(H) for
the trace-class norm is B(H).

A compact operator A is an Hilbert-Schmidt operator if, and only if, Tr (ATA) < +00.
The set of Hilbert-Schmidt operators is denoted by K?(#). Equipped with the Frobenius
scalar product Tr (ABT), this space admits an Hilbert-space structure: the Frobenius norm

A is denoted by ||Alls = 1/Tr (ATA). We have K/ (H) C KY(H) C K*(H). More-over, the

closure of K/ (H) with the Frobenius norm coincides with K2(#).
We have the following list of properties:

1. For any A € K}(H) C K2(H):

1All2 < [|AlL, T (A) [ < [|AL, ATl = [|A]L-
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2. if A€ KY(H) and B € B(H), then AB and BA are in K!(#H) and

IAB|1 = [[BAl < [|All1]|B]|

3. if A and B belong to K?(H), then AB belongs to K!(H) and

|AB|: = [[BA[s < [[A]l2]| B2

4. if A € K*(H) and B € B(H), then AB and BA are in K?(H).

An operator p € K!(#H) that is additionally Hermitian, non negative and of trace one is
called a density operator. The set of density operators is a closed convex subset of the Banach
space K!'(#H) equipped with the trace norm.



Appendix C

Linear quantum operations

A linear quantum operation K is a linear superoperator acting on the space of the density
matrices in the system’s Hilbert space S, and satisfying the following properties:

e K is trace-preserving or decreasing. This is, 0 < Tr (K(p)) < 1 for any density matrix
p.

e K is completely positive. That is, not only does K map positive operators to positive
operators in the system’s Hilbert space S, but so does Iy ® K for positive operators in
H ® S. Here H is the Hilbert space of a second arbitrary system and Iy is its identity
operator.

Concerning the last property, it may seem that positivity of a superoperator would be sufficient
to represent a physical process. However, in practice, the considered system can be entangled
to another system before the physical process acts on it. It must still be the case that the
total state of both systems remains a physical state with a positive density operator. This
justifies the last property.

We have the following theorem called the Kraus representation theorem (see [50, page
368] for a proof):

Theorem 3. Any linear quantum operation satisfying the above conditions, can be expressed
in the form

_ t
K(p) = Z Mijj
J
with
_ AL,
Is—> MIM;>0.
J
The above formula is known as the Kraus representation or the operator-sum representation of
the linear quantum operation and the operators M ; are known as the measurement operators.

Moreover, K is trace-preserving (Tr (K(p)) = Tr(p) for any density operator p) if, and only
if, Y, MM = Is.

Linear quantum operations are also called Kraus maps or quantum channels. When not
trace preserving, they are also called partial Kraus maps.
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Exercice 26. Show that the partial trace versus Ho of any density operator on H = H1® Ha,
yields a density operator on Hi. Show also that this map is onto. Show finally that it
is completely positive and thus a Kraus map (quantum channel) from density operators on
Hi @ Ha to density operators on H;.

As soon as we make the additional assumption of a trace-preserving quantum operation,
we can also prove some contraction properties. In this aim, we first define the quantum
fidelity and quantum trace distance between two density matrices:

Definition 1. Consider two well-defined density matrices p and o. The quantum trace
distance D(p, o) and the quantum fidelity F(p, o) are then defined as follows:

D(p,o) = %Tr(!p—al), F(p,o)=Tr <\/p1/2001/2>,

where |A| = VAT A is the positive square root of ATA.

Remark 1. One can prove that (see [50, Chapter 9]) as soon as one of the density matrices
is a projector state o = |1)(¢|, the fidelity between p and o is given by the standard form

F(p,o) = /Tr(po) = \/(¢|pl¢).

We have the following contraction properties for trace-preserving quantum operations:

Theorem 4. Suppose that K is a trace-preserving quantum operation. Let p and o be two
well-defined density operators. Then

D(K(p),K(a)) < D(p,o) and F(K(p),K(o)) = F(p, o).

The proof of this theorem is beyond the scope of these notes and we refer to [50, Chapter
9] for a rigorous proof.



Appendix D

Single-frequency Averaging

We summarize here the basic result and approximations used in these notes for single-

frequency systems. One can consult [55, 35, 7] for much more elaborated results. We empha-

size a particular computational trick that simplifies notably second order calculations. This

trick is a direct extension of a computation explained in [11] and done by the soviet physicist

Kapitza for deriving the average motion of a particle in a highly oscillating force field.
Consider the oscillating system of dimension n;

dx

i ef(x,t,e), xeR"

with f smooth and of period T versus t, where ¢ is a small parameter. For  bounded and |¢|
small enough, there exists a time-periodic change of variables, close to identity, of the form

x=z+ew(z,t¢)

with w smooth function and T-periodic versus ¢, such that, the differential equation in the z
frame reads:

— =ef(z,e)+ X fi1(z,t,€)
with

T
o) =7 /0 F(ort,e) dt

and f; smooth and T-periodic versus t.

Thus we can approximate on interval [0, %] the trajectories of the oscillating system Cfl—f =
ef(x,t,e) by those of the average one % = £f(z,€). More precisely, if 2(0) = z(0) then
z(t) = z(t) + O(Je]) for all ¢ € [0, ]. Since this approximation is valid on intervals of length
T /e, we say that this approximation is of order one. One also speaks of secular approximation.

The function w(z,t,¢) appearing in this change of variables is given by a t-primitive of

f — f. If we replace = by z + cw in %x:z—:f we get

ow\ d ow . - Ow
<Id+5az> (ﬁZ—Sf—Sat—gf_f‘S(f—f—at>

Since for each z, the function fot (f(z, T,6) — f(z, 5)) dr is T-periodic, we set
t
w(z,t,e) = / (f(z,7,8) = f(z,€)) dr + c(z,¢)
0
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where the integration ”constant” ¢(z, ) can be set arbitrarily. We will see that a clever choice
for ¢ corresponds to w with a null time-average. We have

<Id —i—e(z;j(z,t,s)) %z =cef(z,e) +e(f(z + ew(z,t,e),t,e) — f(z,t,¢€))

and thus

ow

—1
P (z,t,a)) ( f(z,e) + f(z + ew(z, t,e),t,e) — f(z,t,€) ).

—z = 1
ﬁz 5<d+5

We obtain the form we were looking for, %z =cf +€2f1, with

-1
fi(z, te) = % ((Id + 627;}(@15,6)) - Id> f(z,¢)

-1
+ <Id + 58“’(2,75’5)) f(z+ ew(z,t,e),t,e) — f(z,t,g)'
0z -
Notice that ) ,
filzrt,e) = Biﬁ(z’t’g)w(z’t’g) - %(zat,ff)f(z,s) + O(e).

The second order approximation is then obtained by taking the time-average of fi. Its
justification is still based on a time-periodic change of variables of type z = ¢ + 2w((, t, ¢),
i.e., close to identity but up-to second order in €.

If we adjust ¢(z,€) in order to have w of null time-average, then the time-average of %—12”
is also zero. Thus, up to order one terms in e, the time-average of f; is identical to the time
average of %w. For this particular choice of w, the second order approximation reads

%:c = f + 82g£w

2

where the symbol 7 stands for time-average. In the case that the first-order approximation
e f vanishes, the solutions of the oscillating system %l’ = ¢f and those of the second order
approximation here above remain close on time intervals of length 522

A suggestive manner to compute this second order approximation and very efficient on
physical examples is due to Kapitza [1], page 147]. One decomposes x = T + dz in a
non-oscillating part Z of order 0 in € and an oscillating part dx of order 1 in € and of null

time-average. One has

d_ d _
£x+ %590 =ef(Z + 0x,t,e).

Since dz = O(¢e), we have

f(@+dz,t,e) = f(z,t,e) + ﬁ(a‘c, t,e)ox + O(£2).

Ox

Thus J p o7
L S = (7 9] (= 3
dtx—i— dtéw af(x,t,a)+58x(z,t,s)5x+0(€ )
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Since %:E = ef(,¢) + O(e?), identification of oscillating terms of null time-average and of

first order in € provides
d _

—(02) =e(f(z,t,¢) = [(Z,2))-

This equation can be integrated in time since ¥ is almost constant. The integration constant
is fixed by the constraint on the time-average of dx. Finally,

63::5/0 (f(z,7,¢) = f(z,€)) dr +ec(z,¢)

is a function of (z,t,¢), dx = 0x(Z,t,e), T-periodic versus t and of null time-average (good
choice of ¢(z,¢)). Let us plug this function dz(Z,t, ) into the differential equation for z,

d_ - of - - 3
7= ef(z,e) + €5y (Z,t,e)0x(z,t,e) + O(e?),

And let us take its time-average. We get

P ef(Z,e) + 2 f1(7,¢)
dt
with T
oo 1 of _
efi(z,e) = T, %(a:,t,s)éx(mt,a) dt

We recover then exactly the previous second order approximation.
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Appendix E

Pontryaguin Maximum Principe

This appendix is a summary of the necessary optimality conditions called Pontryaguin Max-
imum Principle (PMP) for finite dimensional systems (for tutorial exposures see [17] or [2]).

Take a control system of the form %x = f(z,u), x € R", u € U C R™ with a cost
to maximize of the form J = fOT c(x,u)dt (T > 0), initial condition z(0) = z* and final
condition z(T) = z°. The functions f € R™ and ¢ € R are assumed to be C! functions of
their arguments. If the couple [0,7] > ¢t — (x(¢),u(t)) € R™ x U is optimal, then there exists
a never vanishing and absolutely continuous function® [0,7] 3 ¢t — p € R™ and a constant
po €] — 00, 0] such that:

(i) with H(:Capa ’LL) = POC(% u) + Z?:l plfl(xv U), r and p are solutions of

dt - 8p 7p7 ? dtp_ ax 7p7 )

(ii) for almost all t € [0, T

H(z(t),p(t),u(t)) = H(z(t),p(t)) where H(z,p) = r;leaécH(x,p,v).

(iii) ﬁ(m(t),p_(t)) is independent of ¢ and its value h, depends on T if the final time is fixed
to T or h =01if T is free (as for minimum time problem with U bounded and ¢ = —1).

Conditions (i), (ii) and (iii) form the Pontryaguin Maximum Principle (PMP). Couples [0,7] >
t — (z(t), u(t)) satisfying these conditions are called extremals: if pg = 0 the extremal is called
abnormal; if pg < 0 the extremal is called normal. Strictly abnormal extremals are abnormal
((x,p) satisfies (i), (ii) and (iii) with pg = 0) and not normal ((z,p) never satisfies (i), (ii)
and (iii) for pg < 0). Abnormal extremals do not depend on the cost ¢(x,u) but only on the
system itself %x = f(z,u): they are strongly related to system controllability (for driftless
systems where f(x,u) is linear versus z, see [17]).

Assume that we have a normal extremal (x,u), i.e. satisfying conditions (i), (ii) and (iii)
with po < 0. Assume also that u — H(z,p,u) is differentiable, a concave, bounded from

! An absolutely continuous function [0,7] 3 t — z € R™ satisfies, by definition, the following condition: for
all € > 0, there exits n > 0 such that, for any ordered sequence 0 < t; < ... < ¢, < T of arbitrary length k
fulfilling Zf;ll [tit1 — t;] < 7, we have Zf;ll |z(tix1) — z(t:)| < e. Such functions are differentiable versus ¢,
for almost all ¢ € [0,T] and, moreover we have z(t) = z(0) + fot z(s)ds.
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above, infinite at infinity and that U = R™. Then condition (ii) is then equivalent to glj = 0.

Replacing p by p/po, PMP conditions (i), (ii) and (iii) coincide with the usual first order
stationary conditions ( T means transpose here):

d . d _ (af\! ac\'  roaf\’ dc\'
%x_fa dtp__(ax> p_<8x> ) <8u> p+<8u> =0 (E.1)

with the boundary condtions x(0) = 22, z(T) = x°. From static equations in (E.1) we can

express generally u as a function of (z,p), denoted here by u = k(z,p). Then H(z,p) =
H(x,p, k(x,p)) and the first order stationary conditions form an Hamiltonian system

d OH (z.p) d OH (z.p)
—rx=—(z —p=——(x
dt Op L P oz P
since % = %ﬂ + %ﬂg—; = %ﬂ because %ﬂ = 0 (idem for %). In general, this Hamiltonian

system is not integrable in the Arnol’d-Liouville sense and numerical methods are then used.

These first order stationary conditions can be obtained directly using standard variation
calculus based on the Lagrange method. The adjoint state p is the Lagrange multipliers
associated to the constraint %x = f(z,u). Assume T given and consider the Lagrangian
L(z,2,p,u) = c(x,u) + >.ry pi( fi(z,u) — ;) associated to

T
max / c(z,u)dt.
0

U, x
flx,u) — %$ =0
2(0) = 2%, 2(T) = 2°

The first variation 0L of £ = fOT L(x, &, p,u)dt should vanish for any variation dz, dp and du
such that dz(0) = dz(T") = 0:

e 0L =0 for any dp yields to %x = f(x,u);

_I.
e 0L =0 for any dx with d2(0) = d0x(T) = 0 yields to %p =— (%) p— (%)T

o 0L =0 for any du yields to 5% + 3, piGl =0

We recover the stationary conditions (E.1).
It is then simple to show that the stationary conditions for

T
max / c(z,u)dt + U(z(T)),
U, T 0
flz,u) — %x =0
z(0) = x®
where the final condition 2(T) = z? is replaced by a final cost [(z(T") (I a C' function), remain
unchanged except for the boundary conditions becoming

w0 =2, o) = (2 .



Appendix F

Markov chains, martingales and
convergence theorems

This Appendix has for aim to give a very brief overview of some definitions and some theorems
in the theory of random processes. The stability Theorems 5, 6 and 7 can be seen as stochastic
analogues of deterministic Lyapunov function techniques.

We start the appendix by defining three types of convergence for random processes:

Definition 2. Consider (X,,) a sequence of random variables defined on the probability space
(Q, F,p) and taking values in a metric space X. The random process X, is said to,

e converge in probability towards the random variable X if for all e > 0,

lim p (| X, — X|>¢)= lim p(we Q| | Xp(w) — X(w)| > €) =0;
n—00 n—00

e converge almost surely towards the random variable X if

p(lim Xn:X> :p<w€Q| nlLr{:OXn(w):X(w)> =1;

n—oo

e converge in mean towards the random variable X if

lim E (|X, — X|) = 0.
n—oo

We can prove that the almost sure convergence and the convergence in mean imply the
convergence in probability. However no such relation can be proved between the convergence
in mean and the almost sure convergence in general.

Let (2, F,p) be a probability space, and let F; C F C --- C F be a nondecreasing family
of sub-c-algebras. We have the following definitions

Definition 3. The sequence (X, Fp)o is called a Markov process with respect to F =

n=1
(Fn)Sey, if for n' > n and any measurable function f(x) with sup, |f(x)| < oo,
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Definition 4. The sequence (X, Fn)52 is called respectively a supermartingale, a sub-
martingale or a martingale, if E (] X,]) < oo forn=1,2,---, and

E(Xy | Fm) < X (p almost surely), n>m,

or
E(X, | Fn) > Xm (p almost surely), n>m,

or finally,
E(X, | Fm) = Xm (p almost surely), n>m.

Remark 2. A time-continuous version of the above definitions can also be considered for
(X, Ft)t>0, where F' = (Fi)t>0, is non decreasing family of sub-o-alegbras of F.

The following theorem characterizes the convergence of bounded martingales:

Theorem 5 (Doob’s first martingale convergence theorem). Let (X, F,)n<oo be a submartin-
gale such that (v is the positive part of )

sup £ (X;) < 0.

Then lim,, X,, (= X&) exists with probability 1, and E (X)) < co.

For a proof we refer to [17, Chapter 2, Page 43].

Here, we recall two results that are often referred as the stochastic versions of the Lyapunov
stability theory and the LaSalle’s invariance principle. For detailed discussions and proofs we
refer to [10, Sections 8.4 and 8.5]. The first theorem is the following:

Theorem 6 (Doob’s Inequality). Let {X,,} be a Markov chain on state space X. Suppose
that there is a non-negative function V(x) satisfying E(V(X1) | Xo =z) — V(z) = —k(x),
where k(z) > 0 on the set {x : V(z) < A} = Qx. Then

p( sup V(X,) > A | Xo =x> < Viz)
co>n>0 A

Corollary 1. Consider the same assumptions as in Theorem 6. Assume moreover that there

exists T € X such that V(z) = 0 and that V(x) # 0 for all x different from T. Then the
Theorem 6 implies that the Markov process X, is stable in probability around ., i.e.

liglp(SllpHXn—xHZdXo:x):0, Ve > 0.

Theorem 7. Let {X,} be a Markov chain on the compact state space S. Suppose that there
exists a non-negative function V(z) satisfying E (V(X,11) | Xp =) — V(x) = —k(z), where
k(x) > 0 is a positive continuous function of x. Then the w-limit set (in the sense of almost
sure convergence) of X, is included in the following set

I={X | k(X) =0}
Trivially, the same result holds true for the case where E (V(Xp41) | Xn )=V (z) = k(x)
)

| =z
(V(Xy) is a submartingale and not a supermartingale), with k(x) > 0 and V (z) bounded from
above.

The proof is just an application of the Theorem 1 in [0, Ch. 8|, which shows that k(X,,)
converges to zero for almost all paths. It is clear that the continuity of k(z) with respect to
x and the compactness of S implies that the w-limit set of X, is necessarily included in the
set 1.



Appendix G

Model reduction and singular
perturbations

This appendix is based on [33], a geometric and coordinates free approach for singularly
perturbed differential equations describing systems with two time-scales: a fast and converging
one and a slow one (converging, diverging, ...). This Appendix is directly inspired from
section 3 of [31] and is related to the following more general issue: what is model reduction ?

G.1 Attractive invariant manifold

For dynamical system, %aj =v(x), x € R™ displayed on figure G.1, reduction is possible with
an attractive invariant manifold 3. A sub-manifold ¥ is invariant versus v, if v is tangent
to X, i.e., if any trajectory starting on ¥ remains on 3. X is called (locally) attractive if
any trajectory starting near 3 tends to ¥ as time increases. Reduction corresponds then to
restriction of the dynamics to . Such restriction is well defined since 3 is invariant.

It seems then natural to approximate trajectories of the complete system & = v(x) by
trajectories on Y. In fact, such an approximation is proved to be valid when, roughly speaking,
the dynamics transverse to ¥ (the dynamics that are neglected) are faster and converge to
>.. The main difficulty is thus to obtain the equations of 3 or, at least, good approximations
of them, from the knowledge of v.

Figure G.1: Model reduction seen as restriction of the dynamics to an invariant attractive
sub-manifold of the state manifold
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Figure G.2: Tikhonov normal form when the vector-field v = (v,,vf) is quasi vertical in the
x = (xs,xf) coordinates.

Efficient approximations can be obtained by asymptotic expansion versus the small param-
eter 0 < ¢ < 1 attached to the time-scale difference ensuring the existence of such invariant
attractive manifold . depending smoothly on €.

G.2 Tikhonov normal form

Assume that modeling coordinates yield to a state those components can be decomposed into
two subsets of components & = (x5, ) with the following form called Tikhonov form

d d
=€ vs(Ts, ¢, €), Pt v(xs, Ty, €) (G.1)
where 0 < ¢ < 1. Very often, such systems are written with the time-scale 7 = &t:
d dx
df—s =vs(xs,2f,6), € d—Tf =vy(xs,xf,€).

The terminology singular perturbations’ comes from the fact that the small parameter €
multiplies the highest derivative (here dxs/dr). More details on this classical standpoint can
be found, e.g., in [6]. In the sequel we always consider the time-scale ¢t and approximations
of trajectories for ¢ € [0,1/¢e] and with € > 0 but close to 0.

Assume that the fast part is hyperbolically stable, i.e., that the sub-system %Zb‘f =
vi(xs,xf,€) with xs fixed, admits (locally) an equilibrium with characteristic exponents

9vs

(eigenvalues of at this equilibrium) having a strictly negative real part. Then the slow

Oz
approximation is obtained by the quasi-steady-state method:
{ %xs = evs(xs,xf,€)
0 = wvp(zs,xp,¢).

The algebraic equations, vy = 0, correspond here to an approximation up to terms of order 1
in €, of ¥ equations. These coordinates (x, x f) where the quasi-steady-state method applies,
and where the vector field v is quasi-vertical (see figure G.2) in the (z4,2f) coordinates are
clearly very specific.
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) CUBY
close to
5, 2o

Figure G.3: Coordinate free setting of dynamical system %x = v(x,e) with two time-scales:
fast asymptotically stable dynamics with slow ones.

G.3 Coordinate free setting

Since we are interested in developing a reduction method that do not assume such special
Tikhonov coordinates (zs,2f), a coordinate free point of view is required. A first geometric
definition of singularly perturbed systems due to Fenichel [33] is as follows.

Consider the dynamical system

t=v(z,e), zeR", 0<ex1. (G.2)

This system is said to have two time-scales, a fast and asymptotically stable one and a slow
one, if, and only if, the following two assumptions are satisfied

A1l for e = 0, (G.2) admits an equilibrium manifold of dimension ngs, 0 < ns; < n, denoted
by Zo.

ov
A2 for all zg € Xy, the Jacobian matrix, — admits ny = n — ny eigenvalues with a

Ox
(CCO?O)
strictly negative real part (the eigenvalues are counted with their multiplicities).

This definition is illustrated in figure G.3. Assumption A1 implies that the velocity v(z, €)
is large everywhere excepted for x in a neighborhood of ¥y where v is small and of order 1 in

E.
ov

oz

($070)
coincides with the tangent space of ¥y at xg. The linear space Ej(xo) corresponding to the
eigenvalues with real negative part satisfies:

A1l and A2 imply that, for g € ¥, the kernel, Ef(zg), of the linear operator

E(z0) & ES(zo) = R™.

The trajectories of the perturbed system are captured by a trapping region around >y and
enter with a direction nearly parallel to E§(zo).

Fenichel [33][ part of theorem 9.1] proves the following result. It asserts, for € small enough,
the existence of a slow invariant attractive manifold ¥, for the perturbed system (G.2).

Theorem 8 (Fenichel, 1979). Consider (G.2) satisfying A1 and A2. Then, for every open
and bounded subset Qo of Xq, there exists an open neighborhood Vi of €y in R™, such that,
for € positive and small enough, the perturbed system (G.2) admits an attractive invariant
sub-manifold Y. contained in Vy and close to .
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We are interested in approximations, up to terms of order 1 in &, of slow trajectories for
t € [0,1/¢]. Thus we need an approximation up to terms of order 2 for the slow dynamics:
errors like €2 integrated over ¢ € [, 1/¢] will produce for t = 1/¢, distortions of magnitude less
than or equal to € (¢2 x (1/¢) = €). This means that an approximation, up to terms of order
2 in €, of 3. equations is needed.

G.4 Approximation based on center manifold techniques

This section generalizes [31] where, in local coordinates x, a subset of ns, components of z,
say xg, are used as local coordinates on .. As in [31] we exploit center manifold techniques
used in bifurcation theory [24, 35].

Set

v(x,€) = vo(x) + vy (x) + 2va(x) + . ..

Under assumptions A1 and A2, assume that z € R™ parameterizes . This means that
we have a smooth function hgy : R™s — R"™ such that the image of hy belongs to X.. Thus
vo(ho(z)) = 0 for all z. Moreover the rank of D,hg is maximum and equal to ns. Consequently
Dyvo(ho(z))D.ho(z) = 0 and the range of D,ho(z) corresponds to the kernel of D,vg(ho(2)),
i.e. the eigenspace with 0 eigenvalue. Since the other eigenvalues of D,vo(ho(z)) have a
strictly negative real part, exists Py(z) an invertible n x n matrix such that D,vg(ho(z)) =
Py(2)Ao(2) Pyt (2) where A(z) is a block matrix

0 0
An(z) = NsyMNs N, f >
0( ) <Onf,ns Anf,nf

and A is a ny X ny matrix with eigen-values of strictly negative real parts.

ng,ny
We are looking for the following description of the slow dynamics on X.:

d

P wo(2) 4+ ew (2) + 2w (2) + ... with 2 = ho(2) + ehi(2) + %ha(2) +....  (G.3)

This means that if z(¢) is a solution of the above differential equation of size ng, then x(t)
obtained with the above static mapping is automatically a solution of the initial system
staying on .. This implies the following invariance condition

v (h,o(z) +ehy(2) + e2ha(2) + ... ) +en (ho(z) +ehy(2) + e2ha(2) + ... )
+ ey (ho(z) +ehy(2) +e%ha(z) + .. ) +...=
D.ho(2) (wo(z) + ewy (2) + e2wa(2) + .. ) +eDhi(2) (wo(z) +ews (2) + 2wa(2) + ... )+
+ 2D, (2) (wg(z) +ewy (2) + e2wa(2) + .. ) o (G

based on the time derivative of 2 = ho(2) + ehq(z) + ... with Lo = vo(z) + evi(z) + . . ..
Carr approximation lemma [24] of the center manifold ¢ says that if one fulfills (G.4) up
to ordre k in € then we have an approximation of ¥ and of its dynamics in z up to order k
in €.
For approximations up to order 2, we have to find wg, w; and hy such that the zero order
and first order terms in (G.4) cancels. Thus wy(z) = 0 and (wy, hy) are given by

Dzvo(ho(z))hl + Ul(ho(z)) = Dzho(z)wl.
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Multiplying on the left by D,vo(ho(2)) = Po(2)Ao(2)Py *(2) yields

(Davohol=))) 7 = ~Dyvo(ho(=))on (ho(2))

that reads
Ongns  Ong _ 0 0 _
(oo N Y Pute i == (g 1 ) ) un )
ng,ns ng,ny nf,Ms nf,Nf
Since Ap; n, is invertible, it admits many solutions h; unique up to an arbitrary element in

the kernel D,uvg(ho(z)), a gauge degree of freedom. With such hq, Dyvo(ho(z))h1 + vi(ho(z))
is unique, does not depends on such gauge degrees of freedom and belongs automatically to
kernel of Dgvo(ho(2)), i.e. to the range of D,ho(z) which is of maximum dimension ns. Thus

1
it admits a unique left inverse <Dzh0(z)> yielding to
t

wi() = (Doho=))  (Davolho(2)ha +va(ho(2))

left

When = = (x4, 2¢) and %x = v(z, ) reads

d
P Vs(Ts, T, €), Pt vi(xs, xf,€)
with g%’;(m, 0) is invertible at point z such that when v(x,0) = 0, one recovers the formulae
given in [31]. They correspond to the following differential algebraic system:
d dus (Ovp\ 2our)
v v v
" (1 “o: (50)) aé) g, 8), vylanage) =0,
(xsvxfﬁg)
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Appendix H

Quantum Markovian feedback

The special class of Markovian feedback, introduced by H. Wiseman [70, 69, 71] for quantum
systems, is a static output feedback. Thus such feedback schemes do not require the estimation
in real-time of quantum state and are thus simpler to implement in practice. Another crucial
property comes from the fact that the closed-loop dynamics of the ensemble average for the
density operator remains linear. Thus closed-loop convergence analysis boils down to a linear
question despite the open-loop and closed-loop statistical nonlinearities.

H.1 Discrete-time systems

Add to the Markov chain given by (3.26) a unitary control depending on a classical input wuy
just after measurement at step k: the control input u parameterizes a unitary evolution U,
corresponding to the actuator process. Then (3.26) becomes

_ UukKyk (pk)UTIk
Pr+1 =
Tr (Ky, (p1))

. with probability py, (p;) = Tr (UukKyk (pk)ng) (H.1)

where u; and gy are respectively the input and measurement output at step k.

A static output feedback is just setting uy = f(yr) where the function f defines the output
feedback law. The closed-loop dynamics reads

p - Uf(yk)Kyk (Pk)U}(yk)
fH Tr (Ky, (px))

. with probability py, (p;) = Tr (Uf(yk)Kyk (pk)U}(yk)) .

Since Tr (UuKy(p)U;[) = Tr (Ky(p)) for any u, the ensemble average evolution of the density

operator p reads

Pr+1 = Z Uf(y)Ky(ﬁk)U}(y) Po = Po
Y

where p;, = E (p; | py). The closed-loop Kraus map K(:) = >y Uf(y)Ky()U}r(y) is a priori
different from the open-loop one K = Zy K.
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H.2 Continuous-time diffusive systems

H.2.1 Single-Input/Single-Output case (SISO)

Take a single input u; and single output y; system governed by the general stochastic master
equation

dpr = —i[Ho + uHy, pt]dt + (LpLT —1rTrp - %pLTL) dt
+ \/ﬁ<LPt +p LT —Tr ((L + LT)Pt) Pt)th (H.2)

with detection efficiency 7 € [0, 1] and gdt = /' Tr ((L + LT),Ot) dt + dW;. Consider a simple
proportional controller of gain g
u=1u-+ gy (H.3)

where @ is some constant. During the infinitesimal time [t,¢ + dt] we measure first y; and
then apply this feedback law. We neglect the delay. Due to the singular nature of g, (it
is not a bounded time function), the closed-loop equation is not obtained by just plugging
udt = udt + g/nTr (L + LY)p) dt + gdW; in (H.2). The correct closed-loop equation has
been derived in [70] and recalled in [68]. It admits the following form (Wiseman-Milburn
stochastic master equation)

dp; = —i [Ho +uH, + @(HlL + LTHl),pt} dt+

™ (LopLl = SLiLep = SpLILL)dt + /i (Lapu + piL = Te (Lo + Lo ) p)dWy (H.4)
s=1,2

with two Lindblad operators Ly = L — ig\/nH; and Ly = —ig\/1 —nH;, with efficiencies,
m =n and 12 = 1 — 7, but with a single Wiener process W;! = W2 = W;. We see a constant
shift in the closed-loop Hamiltonian, %(H L+ LTH 1), appearing when writing the closed-
loop equation this way. It could be possibly pre-compensated by an initial modification of
Hj through additional constant control inputs.

Thus the evolution of the ensemble average of p, i.e. p(t) = E (pt | po) obeys to the
following deterministic closed-loop Lindblad master equation

d_ ] i _ o
Zp= =i |Ho+uty + B (L + L)), p| + Y (LopLl = 3LILp— 4pLIL,)  (H.5)
s=1,2

with initial condition p(0) = po.

The above closed-loop equation (H.4)comes from the following direct computations ex-
ploiting the Ito rules. In closed-loop the correct value of dp; is given by the following formula
coding the fact that the control u at time ¢ is applied just after the measurement outcome
and corresponds to the unitary operation e "4 with udt = adt + gy/n'Tr ((L + LT)Pt) dt +
gthI

dp; = e~ iudtH {pt — i[Ho, py)dt + (LpLT — 1Ly - %pLTL> dt

+ \/77<Lpt + p LT —Tr ((L + LT)pt> pt> th}ei“dtHl — pt-
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Via the Baker-Campbell-Hausdorff formula,
"B~ = B+ [A, Bl + [A,[A, Bll/2 + O(| A||*),

we get, with A = —i(ﬂdt +gy/nTr ((L + LT)pt) dt + gth)Hl and
B = py—i[Hy, pi]dt+ (LpLT — 10Ty - %pLTL> dt++/n <Lpt—|—ptLT —Tr ((L + LT)pt) pt> dW;,

the following computations up to O(dt?/?)

(4, B] = i [(u oVt ((L+ Lo ), ,ot} dt — ig [H , pt} aw,
—igy/n [Hl , Lpt + pe L — Tr ((L + LT)Pt) ,Ot] dt + O(dt*/?)
= —iu[Hy , p¢|dt —igy/m[H1 , Lps + PtLT]dt —ig[Hy , pe]dW; + O(dt*/?)

Remember that according to Ito rules, dW; = O(Vdt), dW}? = dt and dtdW; = O(dt>/?).
Similarly we get

[A,[A, Bl| = —¢*[Hy, [Hy, pe] ] dt + O(dt?/?).
Since || A|®> = O(dt?/?), we have, neglecting O(dt?/?) terms according to Ito rules,
dpy = —i[Ho + aHy, pidt + (LpLT —1LTLp— 1oLt L) dt

—igy/m[Hy, Lot + pe LV dt — £ [Hy, [Hy, pr]] dt

+ \ﬁ7<Lpt + p,gLJr —Tr ((L + LT)pt> ,Ot)th —ig [Hl, pt] dW;
— —i[Ho + uHy + 22 (LH, + H LY, pJdt + L <L —igy/mHi, pt> dt
+ \/ﬁ<(L —igy/nH)ps + po(LT + igy/nHy) — Tr ((L + L%) pt) W,

+ £< - imgH1,Pt>dt —ig(1 —n)[Hy, pe]dW;

where £(L, p) = LpL" — $LTLp — $pLTL. We recover (H.4) with the two Lindbladian terms
associated to L1 and Lo.

H.2.2 Multi-Input/Multi-Output case (MIMO)

The above computations based on Ito rules and Baker-Campbell-Hausdorff formula provide
directly the multi-input/multi-output extension of such static output feedback scheme (see [25]
for a more elaborate derivation). Consider the m inputs (u,) and the p outputs (y,) of the
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system governed by

m
dpy = —i |Ho+ > wuH, , pil dt
pn=1

p
+ 3 (Boptd — §ELLop— doLlL, )at
v=1
I (A Y (R P L

where 7, > 0, 1, € [0,1] and (W}) are p independent Wiener processes and

grdt = /iy T ((L,, n Li)pt) dt + dWy.

Consider the static output feedback

p
Uy = Uy + Zguuyéj

v=1

with a m x p proportional gain matrix (g, ). Then the closed-loop stochastic master equation
reads

m p
dpy = —i |Ho+ >, H, + 5> /i (H,Ly, + LVH,), py| di+
p=1 v=1
p

5% (Luaptl— bEbuLuap = boLl Lo )
v=1s=1,2

+ VM,s <Lu,spt + ptLj/,s —Tr ((LMS + L:L,s)pt) Pt) dwy  (H.7)
with H, = Y0 g Hy, Loy = Ly — i/ Yy guHy and Lyg = —in/T—10, Y0 g Hy,

with efficiencies, 7,1 =n, and 7,2 =1 —n,.
The ensemble average dynamics for p(t) = E (p; | po) reads then:

d . % ; Sy
P =i |Ho+ > uuH,+ 3 Vi (HL, + LLH,), p| +
,LL:1 v=1
p
S % (Boaplhs — SEhoLuwp -~ boLl ). (HS)
v=1s=1,2

The first experimental realization of such a multi-input multi-output Markovian feedback
on a super-conducting qubit has been done in [18].
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