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Two kinds of feedback



Two kinds of quantum feedback
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Watt regulator: classical analogue of quantum coherent feedback. °

From WikiPedia

The first variations of speed dw
and governor angle 66 obey to

d
—dw =—adb
dt

d? d
—— 380 = —N—3860 — Q?(60—bdw)
dr2 dt

with (a, b,\,Q) positive parame-
ters.

d35 /\d25 029 bQ%6w = 0

@w—l— Ww—l— aw—l—a w=70.
Characteristic polynomial P(s) = s3 + As? + Q2s + abQ? with roots
having negative real parts iff A > ab: governor damping must be
strong enough to ensure asymptotic stability.
Key issues: asymptotic stability and convergence rates.

5J.C. Maxwell: On governors. Proc. of the Royal Society;No.100, 1868.



Reservoir Engineering and coherent feedback (1) ©

dissipation

wb‘"
Him
Reservoir M System

H !Engmee.red H
res interaction

H= Hres+Hint+H

Ifp — pres ® |4) (1| exponentially on a time scale of 7 > 0
—00

8See, e.g., the lectures of H. Mabuchi delivered at the "Ecole de physique
des Houches", July 2011.



Reservoir Engineering and coherent feedback (2)

dissipation

Reservoir | @ | System

H !Enginee.red H
res interaction

H = Hres + Hint + H
------ ptj Pres & I?/_’) <@Z| +dp, if 7y < 1 then [9p| < 1



Convergence issues of open-quantum systems

Continuous-time models: Lindbald master eq. (quantum Fokker-Planck eq.):

d ,-
P =AW 2 —iH o+ Y (LupLL —(LiLp+ pLzLy)/z),

of state p a density operator (Hermitian, non negative, trace-class, trace one)
with H Hermitian operator and L, arbitrary operators (usually unbounded).

When H is of finite dimension, (e*’A),Zo is a contraction semi-group for
many metrics (Tr (|p — o), Tr (/\/po/p), see the work of D. Petz).
Open issues motivated by robust quantum information processing:

characterization of the Q-limit support of p: decoherence free spaces
are affine spaces where the dynamics are of Schrédinger types; they
can be reduced to a point (pointer-state);

Estimation of convergence rate and robustness.

Reservoir engineering: design of realistic H and L, to achieve rapid
convergence towards prescribed affine spaces (protection against
decoherence).

Lecture goal: cat-qubits and autonomous QEC of bit-flips’

R. Lescanne, ..., M. Mirrahimi, M. and Z. Leghtas: Exponential suppression of
bit-flips in a qubit encoded in an oscillator. 2020, Nat. Phys. ,-Vol. 16, p. 509-513.



Damped harmonic oscillator (low-Q mode)
m Classical low-Q mode
m Quantum low-Q mode
m Wigner representation



The driven and damped classical oscillator

Dynamics in the (x’, p') phase plane with w > &, /U2 + u2:

d _ d / / / H
th wp', giP = —wx —sp - 2uy sin(wt) + 2up cos(wt)

Define the frame rotating at w by (x’, p’) — (x, p) with
x' = cos(wt)Xx + sin(wt)p, p' = —sin(wt)x + cos(wt)p.

Removing highly oscillating terms (rotating wave approximation), from

%X = —rsin?(wt)x + 2uy sin®(wt) + (kP — 2Up) sin(wt) cos(wt)

CCIlt'D = —kcos?(wt)p + 2up cos?(wt) + (kX — 2uy) sin(wt) cos(wt)

we get, with a = x +ipand u = uy + iug:
P —za+U.

With X' + ip’ = o/ = e~ ™o, we have Ga’ = —(§ + iw)a’ + ue™"!



Driven and damped quantum oscillator

m The Lindblad master equation (quantum analogue of
%a = —5a+ uwith a = Tr(ap)):

%P =[ua' — u*a,p] + « (apa’ — a'ap — }pa'a).
m Consider p = Dz£D_5 with @ = 2u/x and Dy = €7@ —2°3_ We
get

%E =r(ata' — ja'a¢ — 1¢ata)

since D_zaD5z = a+a.
m Informal convergence proof with the strict Lyapunov function

V(£) = Tr (EN):

CVIE) = —rV(E) = V(WD) = ViEe ™
Since &(t) is Hermitian and non-negative, £(t) tends to |0)(0|

when t — +oco.



The rigorous underlying convergence result

Theorem
Consider with u € C, x > 0, the following Cauchy problem

%p = [ua' — u*a,p] + « (apa' — La'ap — Jpa'a), p(0)= p,.
Assume that the initial state p, is a density operator with finite energy
Tr(pgN) < +o0. Then exists a unique solution to the Cauchy problem
in the Banach space K'(H), the set of trace class operators on H. It
is defined for all t > 0 with p(t) a density operator (Hermitian,
non-negative and trace-class) that remains in the domain of the
Lindblad super-operator

p— ua' —u*a, p] + r (apa’ — Ja'ap — Lpa'a).

This means that t — p(t) is differentiable in the Banach space K'(H).
Moreover p(t) converges for the trace-norm towards |a)(a| when t
tends to +oco, where |@) is the coherent state of complex amplitude

2

a =<4,
K



Link with the classical oscillator

Lemma

Consider with u € C, k > 0, the following Cauchy problem

d x
GiP= [ua' — u*a,p] + x (apa’ — ;a'ap — jpa'a), p(0) = py.

for any initial density operator p, with Tr (pgN) < +oo, we have
Ga =—%(o—@) where a = Tr(pa) anda = 2,

Assume that p, = | o) (50| where By is some complex amplitude.
Then for allt > 0, p(t) = |8(t))(B(t)| remains a coherent state of
amplitude (t) solution of the following equation:

%3 = —5(B — @) with 3(0) = .

Statement 2 relies on:

al) = plp). B —e 2

e10) 1) = (35 + 8 + fa) 1)



Driven and damped quantum oscillator with thermal photon

Parameters w > «, |u| and ny > 0:

d k
= [ua’ — u*a, p] + (1 + np)k (apaT —1a'ap - %pa*a)
+ Nk (ana —laa'p - %paaT) .

Key issue: lims— 1o p(t) = 7
The passage to another representation via the Wigner function:

m Since D™V D_,, bounded and Hermitian operator (the dual of K" (%)
is B(#)),
W (x,p) = 2 Tr (pnae’"”n_a) with a=x+ipeC,

2
=.

defines a real and bounded function |W{#}(x, p)| <
m For a coherent state p = |3) (8| with g € C:
WB B (x, p) = 2 g 2B~ (P,



The partial differential equation satisfied by the Wigner function (1)2

. T _ * S T *
With D, = e g~ 8g=a"/2 — gma’agad gaa’/2 e haye:
T _a*a *a _qat
%W{P}(a7a*) - Tr (peaa e @ ael'n'Nea ae aa )
where a and o™ are seen as independent variables:

D (0 0\ 0 _y (0 0
da ~ 2\ 0x 8p da*  2\0x ' Op
We have § 2= W) (a,a") = Tr ((pa' — a'p)Da€™"D_..) Since
a'D.e™ "D ., =D.e™D_,(2a* — a'), we get

% W (a,a") = 20" WP (a,a”) — 2W P} (o, a7).

Thus W' #} (a,a*) = a* WP (a,a") — 1 Z WP (a,a"), ie.

t X 0
wia'e} — (a _ 5870() wiet

8See the excellent Wikipedia article:

https://en.wikipedia.org/wiki/Wigner_quasiprobability_distribution



The partial differential equation satisfied by the Wigner function (2)

Similar computations yield to the following correspondence rules:

{pa} _ 1 {r} {ap} _ {p}
W (a1 2w, W~ (as 2w
W{paT} = (o + 1i wiet W{an} . 12 wie}
2 da ’ 2 do '
Thus
d
e =[ua' —u*a,p]+ (1 + nn)x (apaT —la'ap - %paTa)
+ Nk (a*pa ~laa'p - %paaf) .
becomes

0 {p}
do* > W

Opytey _ 5 (9 3 S
i 2(8( L@ —a) + (14 2m) 5



Solutions of the quantum Fokker-Planck equation

Since the Green function of

%W{p} - g((%((x ~R)we) 4 a%((p ~pw)

o 12m o2 wiel n Pwiet )
4 ox? op?

is the following time-varying Gaussian function

Kkt 2 Kkt 2
(x—f—(m—f)e‘?) +<p—ﬁ—(po—ﬁ)e‘?>

exp | —
(it 3)(1—e—rt)

G(x,p, t, Xo, =
(x, P, t, X0, Po) (T (1 — e

we can compute W,'*? from W *? for all t > 0:

WP (x, p) = / WP (X )G, X ) o
R



Asymptotics of the Fokker-Planck equation

Combining
m W (x,p) = [ WP (X', P))G(x, P, t, X', p') dX'dp'.
m G uniformly bounded and
limis o0 GX, P, 8, X', p') = —— exp <7M)

1
m(Mp+3) (Mh+73)

m WP in LM with [, WP =1
m dominate convergence theorem

shows that all the solutions converge to a unique steady-state Gaussian
density function, centered in (x, p) with variance 3 + n:

(x=%2+(p-p)?
(Nn + 3) '

e <t W~

.
m(Nh+3)



Diffusion along x and p of Wigner function W?(x, p)

With correspondence rules:

wieah _ (a_ %i> Wit plaed _ <a+1 0 > wie}
da* ’

wiea't _ < r3 ) wieh wia'e) _ (a* _ 1ﬁ> wie)
the super-operator
p—(a+a)pa+a) - %((a +a'Y’p+pla+a)?)
becomes in Wigner representation®
wirt o =t (%,%) W (a, 0 )_Eaapzw{p}(x D).
Similarly, the super-operator

1
prr(a-ap(a-a)-;((@a-a)Yp+pa-ay)
becomes in Wigner representation
R 9 9 {0}
w (8 ) W) (o

_|_

Jda
9Use the fact that 2 71(@ 9 :1(@+ii)anda:x+ip
(& -if), Z%=1(2+i2 .

o) =tos " W (xp).




Wigner function'® of |a) + |-a) ("Schrédinger cat" with o = 5)
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OFor ¢ € L3(R,C): W(q,p) = + [T 4" (q— L) (q+ 4)e=2Puau.



Wigner function W? for different values of the density operator p

WP Cse—2Tr ((Dsef””ng) p) e [-2/7,2/7]

Fock state [n=0> Fock state [n=3> Coherent state |o=1.8>
| |

fffff e | @) o
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Dynamical model reduction and adiabatic elimination
m Model reduction and geometric singular perturbations
m Adiabatic elimination for bipartite quantum systems



What is a dynamical reduced model for $x = v(x) ?

A possible answer:
restriction to an attractive invariant manifold X.



Slow/fast systems (coordinate free setting)

]
ol

Geometric definition independent of coordinates due to Fenichel'":
B X — v(x) close to x — V(x).

m V(x) = 0 define a manifold ¥ of dimension ns < n = dim(x) of
steady-states for v(x).

B N = n— ng eigenvalues of % - are stable (negative real parts).

""N. Fenichel: Geometric singular perturbation theory for ordinary
differential equations. J. Diff. Equations, 1979, 31, 53-98.



Tikhonov normal form 2 and model reduction

Any slow/fast system, can be put, after a
Ty suitable change of coordinates, in to a
quasi-vertical vector field v:

d -
v(l‘)‘/_.\X] EXS = VS(XS,Xf) = 6‘/S()(vafa 6)

a
. ot
with 0 < e < 1.

X¢ = Vi(Xs, X¢)

The reduced system %xs = Vs(Xs, X¢) With 0 = v¢(Xs, X¢) is correct if
%gf = v¢(Xs, &) hyperbolically stable for any fixed xs.

In general, modeling variables x are not Tikhonov variables.

2See, e.g., F. Verhulst: Methods and Applications of Singular
Perturbations: Boundary Layers and Multiple Timescale Dynamics. Springer,
2005



Model reduction with modeling variables

”({)///4 x Example with the heuristic method:
zf
- (’/ EXS = 2(Xf — Xs) + €X¢ axf = Xs — Xf
by
1- compute x¢ versus Xs from 1 =0;

Ve (Xs, Xg,€) =0
2- plug x; = x5 into 4 siXsto obtaln

d
T i Xs = €Xs (wrong slow model !)

The reduced model of Zxs = Vs(Xs, X¢, €), Fx¢ = Vi(Xs, X¢, €) is™®

1
d avs [Ovi\ 2 dv,
dtxsz<1+3xj<f)x:> 8x> Va(xe. 30, ) +O(E). - V(xe,31.) = 0.

Same example with the correct method' with a"s =2, M —1=_9

Y OXs X’
we get the correct slow model , dt Xs = eXs/3

13, Carr: Application of Center Manifold Theory. Springer, 1981.
P. Duchéne, P.R. : Kinetic scheme reduction via geometric singular
perturbation techniques. Chem. Eng. Science, 1996, 51, 4661-4672.



Slow/fast composite quantum systems

Take 0 < € < 1 and composite system made of subsystem A with Hilbert
space H4 and subsystem B with Hilbert space #z:

d

P = Ls(p) + 6( — i[Hint, p] + ‘CA(p))

where

m Lg(p) is a Lindbladian dynamics on #g converging towards a unique
steady-state density operator pg on #p.

m La(p) is a Lindbladian dynamics on H 4

m AB-interaction Hamiltonian Hine = Y";_, Ax ® By, with A, and By
Hermitian operators on H4 and # g respectively.

When e = 0, for all initial state p, on Ha ® g, the solution of %p = Ls(p)
converges towards the separable steady-state Trg (p,y) ® pg-
For 0 < € <« 1, the attractive steady-state manifold

¥ = {pA ® Pg | pa density operator on ”HA}
becomes X, an attractive invariant manifold where the evolution is slow.
¥ can be parameterized via density operators £ on 14 with a slow evolution.
Approximation of such parametrization and slow evolution can be done via
asymptotic expansion in e. Is-it always possible to preserve positivity of p ?
Always OK for second order expansion.



Geometric singular perturbations for bipartite open quantum systems'#

A = L4(p) — ieHhne ] + Lalp)

‘($ dt SIOWGVOIutioﬂ
K(&o) —_lp(tz)jc(g(t
Vil ,_;‘ Ha ® Hp

slow invariant /  attractive / sub-manifold

() = Ko(€) + oK1 (€) + Kca(€) +
----/ H B B E B B B EEEEEEN

/ I Ha
) T L= RO+ RO+

o

Lindbladian slow dynamics on a density operator € on Ha,

d
Eé =eFi1(€) + EFa(E) + ...
with a Kraus map giving density operator p on Ha ® Hpg from &:
p=K(€) = Ko(€) + elC1(€) + €2Ka(€) + ...

14Azouit, R. / Chittaro, F. / Sarlette, A. / PR: Towards generic adiabatic elimination for
bipartite open quantum systems 2017, Quantum Science and Technology , Vol. 2, p.
044011




An iterative procedure based on center manifold approximation

Plug

p=K(&) = £2pg+ek1(€)+..., and %g = F(&) = eF1(&)+EFa(E)+. ..

into invariance condition

Lo(K(€)) — ci[Him, K(€)] + eLa(K(€)) = & p = K(F(€))

and identify terms of same orders:

order 1: L(K1(€)) — i[Hint, Ko(&)] + La(Ko(€)) = Ko(F1(£))
order 2: Lp(K2(£)) — i [Hint, K1(€)] + La(K1(£)) = Ko(F2(£)) + K1(F1(£))

At each order
take the trace versus B to get the correction to 7

compute the correction to K via —£3 ', a super operator for zero-trace
operators W on Ha

g (W) = /O+°o &5 (W)dt

that coincides with the restriction to zero-trace operators of a
completely positive (CP) map.



Second order approximation when B is a low-Q mode

For L(p) = kb (bpbT — S(b'bp + prb)> one gets using 55 = |05) (05,
Ge=—ie [ S Bihe, €] +eLa(®) + 2 (S, LieL] — 5 (LfLké + €L{LK) ) + O()
with
p =" (€2 00)(0s) M + O()
and where
B Sk = (0p|Bk|Op),

m L =37 _, Ak A based on Cholesky factorization ATA = G of the
following Gram matrix

+o0

Goe == > (55 (11Be105) )" (Sh (mel Bur[00)) -

np=1

E W, = Hib S Ac® ((b'b) "Bk + Bk(b'b) ") using
(b'b)™" =32, o1 ;M) (Mo



Super-conducting circuit stabilizing a cat-qubit
m First order RWA
m Adiabatic elimination of the low-Q mode
m Numerical simulations



Super-conducting circuit stabilizing a cat-qubit °

Buffer Cat-Qubit
| il )
EC‘C
Ei1NY Eub Ecp .2 Ei.a b Eca
\ ——
Pext, 1 Pext, 2

Figure S3. Equivalent circuit diagram. The cat-qubit (blue), a linear resonator, is capacitively coupled to the buffer (red). One
recovers the circuit of Fig. 2 by replacing the buffer inductance with a 5-junction array and by setting @5, = (@ext,1 + Pext,2) /2

and @, = (@ext,1 — Pext,2)/2. Not shown here: the buffer is capacitively coupled to a transmission line, the cat-qubit resonator
is coupled to a transmon qubit

5R. Lescanne, ..., M. Mirrahimi, M. and Z. Leghtas: Exponential suppression of
bit-flips in a qubit encoded in an oscillator. 2020, Nat. Phys. , Vol. 16, p. 509-513.
See also the patent underlying the startup Alice&Bob.



Quantum analysis of the circuit stabilizing a cat-qubit (1)

Quantum Hamiltonian: two commuting annihilation operators a = (qa + 0%&)/\@ and
b= (ap+ 52;)/V2 with [a,a] = I, [b,bT] =1

Hi(t) = waa'a + wpb'b 4 2g cos ((ba(a +a') + ¢p(b + bT) + (2wa — wb)tl)
Change of frame for %m = —i[H1(t), p1]: new density operator
P> = exp (iwataTa + iwbthb) p1exp (—iwataTa — jwptb’ b)
is governed by 2 p, = —i[H>(t), p,] with
Hy(t) = gelPwa=wn)l exp (i¢>a(e*"°”a’a + ewalal) 4 jp, (e blb + e’“’b'bT)) + hec.
Expansion up-to order 3 versus ¢a, ¢p < 1:

. . . 2 . . i3 . .
Ha(t) ~ gel(2ma—wb)t(’+i¢a(e—luala+eluataf)_% (e—lmaia+elwatat)2_% (e—rwataJrelwa[aT)ﬁ) o

. . 2 . . i3 . .
(I +igp (e bl + eblpT) — % (e "blb + eb!pT)? — % (e~™b'b + e“"btbf)s) +h.c.



Quantum analysis of the circuit stabilizing a cat-qubit (2)

Hy(t) ~ ge/Pwa—wnlt |
(,+/¢a(efiwata+ eivalat) %g(efiwata_'_eiwataT)Z _ %(efiwata+eiwataf)3)
<I+ I’(ﬁb(eilwbtb-f— elwbth) _ %(eflwbtb_"_ elwabT)2 _ %(eflwbtb_’_ elwbtb’i')3)

+ h.c.

When wa/wp irrational only two secular terms (i.e. non-oscillatory):
—ig:a?b' and its Hermitian conjugate gz (a')?b where g» = g¢2¢s/2 (order
exceeding 3 in ¢4, ¢p < 1 are neglected).

Justify the following approximate time-invariant Hamiltonian for H, (rotating
wave approximation): :
Ha(t) ~ —igea®b' + igo(a")®b.

Finer approximations via high-order averaging techniques.



Analysis of the circuit stabilizing a cat-qubit (1)

Cat-qubit stored in oscillator a, controller based on a damped oscillator b
stabilizing against one decoherence channel (bit-fip):

GP=" [ea®b'—gs(a')?b, p]|+[ub'—u’b, p]—mb(bpbf—(bT bp+pb'b) /2)

= [g2 (@ —a®)b' —go((a")? — (a)’)b, p] +kb (bpbf—(bpr+pr b)/z)

with o« € C such that o® = u/g, the drive amplitude u € C applied to mode b
and 1/kp > 0 the short life-time of photon in mode b.

Any density operator p = p, ® |0)(0|, is a steady-state as soon as the
support of 5, belongs to the two dimensional vector space spanned by
the coherent states |o) and |-) (range(pa) C span{|a), |-a)})
(Schrédinger phase-cat).



Analysis of the circuit stabilizing a cat-qubit (2)

Cat-qubit stored in oscillator a, controller based low-Q mode b:

GiP== [92 (a® — o®)b'—gs((a")? - (0)?)b, p} +rb (bpr—(bTbPerbTb)/?)

with « € C and kp > go.

m Any density operators p = pa ® |0) (0|, is a steady-state as soon as the
support of 5, belongs to the two dimensional vector space spanned by the
quasi-classical wave functions |«) and |-«) (range(pa) C span{|a), |-a)})
(Schrédinger cat-qubit).

m Usually kp > |go|, mode b relaxes rapidly to vaccuum |0)(0|p, can be eliminated

adiabatically (singular perturbations, second order corrections) to provides the

slow evolution of mode a:
d 419,12
JiPa= 120 ((@-0?)py(8—0?) L (8 —0?) (& —0?)pytpo(d —o?) (8 —0?)) ).

Exponential convergence toward the code space span{|a), |-a)} based on the
following exponential Lyapunov function'®

V(pa) =Tr (&~ 0?) ' (&~ 0?)pa), 4V <92

m Photon-number parity Tr (e’""’*%) is invariant since [a2, €7@ 4] = 0.

16For a mathematical proof of convergence analysis in an adapted Banach space, see : R. Azouit, A. Sarlette,

PR: Well-posedness and convergence of the Lindblad master equation for a quantum harmonic oscillator with
multi-photon drive and damping. 2016, ESAIM: COCV , Vol. 22, No. 4, p. 1353 -1369.



Numerical simulation and exponentially protection against bit-flips

Take |a| > 1 (with |a| > 3 one has (a|-a) < e~ '8) and the following logical
state
0)~le),  [Ne=|a)

Even and odd cats read
)= 50+ 1)) and [=)r= J5(|0)r —[1)o).

Dynamic governed by the following Lindblad master equation
d
4P = Duo(p) + k1Dwi (p)

t
with D, (p) 2 LpLT — %(LTLp 4Lt L) , two-photon pumping Lo = & — o?
and the main error channel L; = a corresponding to photon losses.
Matlab script CatQubit .m:

m o®=25/2, ki =1/10.
B truncation to Nmax =~ a2 + 15« of the Fock basis
m discretization time dt = 107%/a?

m numerical integration between t = 0 to t = 10/a? starting from vacuum,
|4+). and |0),.



Wigner function of a GKP grid-state

=
2

-2 0 2 4
q/VT
Magic logical-qubit state endoded in a GKP grid-state with finite energy:
ok
¥(q) e <Ek cos(g)e” o=z —I—sin(%)e_(

—@ke)VER
e >W|th0<e<<1.

[m]

=



Conclusion of these lectures



Conclusion of these lectures

Topics partially covered:

m Models of open quantum systems based on density operators, Kraus
maps and Stochastic Master Equation (SME).

m Positivity preserving numerical schemes for simulation with classical
computers.

m Two key quantum systems: qubit (two-level system) and harmonic
oscillator (cavity mode).

m Two approximation methods, averaging (RWA) and singular
perturbations (adiabatic elimination), for open-loop control and
closed-loop stabilization with a quantum controller.

m Convergence analysis based on Lyapunov techniques and
super-martingales.

Absent topics;

m Open-loop control: adiabatic control, optimal control, ensemble control
and parametric robustness

m Stabilisation with a classical controller: measurement based feedback,
guantum error correction.

m State and parameter estimation: quantum filtering and tomography.
...
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