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Single-frequency averaging and Kapitza’s pendulum



Time-periodic non-linear systems

We consider a non-linear ODE of the form:

gtx:ef(x,t), x € R", O<ex 1,

where 7 is T-periodic in t and depends smoothly on x.

We will see how its solution is well-approximated by the
solution of the time-independent system, the averaged system:

d _
FZ= ef(2)

where 7(z) = 1 [T f(z, t)at.



The Averaging Theorem

Consider 2x = ef(x,t)withx e UCR",0< e < 1, and
f:R" x R — R" smooth and period T > 0 in . Also assume U to be
bounded.

m If z is the solution of 4z = ¢f(z) with the initial condition z,, and
assuming |xo — Zo| = O(¢), we have |x(t) — z(t)| = O(¢) on a

time-scale f ~ 1/e.

m If Z is a hyperbolic fixed point of the averaged system then there
exists eg > 0 such that, for all 0 < € < ¢y, the main system
possesses a unique hyperbolic periodic orbit v.(f) = Z + O(e) of
the same stability type as z.

J. Guckenheimer and P. Holmes, Nonlinear oscillations, Dynamical systems
and Bifurcation of Vector Fields, Springer, 1983.



Theory of Kapitza’s pendulum

Fixed suspension point:

a? g .
@9—75”19

g: free fall acceleration, /: pendulum’s length, 8: angle to the vertical;
0 = 7 stable and 6 = 0 unstable equilibrium.

Suspension point in vertical oscillation:

Dynamics of the suspension point: z = & cos(Q2t) (a=v/Q >0
amplitude and Q frequency).



Pendulum’s dynamics: replace acceleration g by
g+2z=g— vQcos(Qt),

20 =w, guJ — g vaicostil) Va2 cos(§21) sin 6.

dt at /

Replacing the velocity w by the momentum py = w + Y5200 i ¢:

%9 = pp — Vsinl(Qt) sin 0,
gtpg (g — % cos 9) sinf + %(m)pg cos f.

For large enough Q, we can average these time-periodic dynamics
over [t —w/Q, t+ 7/Q]:

d d 2 .
EO =Po. Po= (% - % cosﬁ) sin 6.

Around 6 = 0 the approximation of small angles gives g,ze = ",2/2'0.

If v2/2] > g then the system becomes stable around 6, =
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Bilinear Schrédinger equation

Un-measured quantum system — Bilinear Schrédinger equation
. d
i) = (Ho + u(t)Hy)lw),

m |¢) € H the system’s wavefunction with H|w)HH =1;

m the free Hamiltonian, Hy, is a Hermitian operator defined on #;
m the control Hamiltonian, Hy, is a Hermitian operator defined on #;
m the control u(t) : R™ — R is a scalar control.

Formal computations dim(#) arbitrary. Mathematical proofs dim () finite

Two key examples:

m Qubit: Ho + u(t)Hs = 2o, + oy

m Quantum harmonic oscillator:
Ho + u(t)Hy = we(a'a+ 1) + u(t)(a+ a).



Almost periodic control

We consider the controls of the form

.
u(t) = (Z uie“i' + uj e’“f’)

=

m ¢ > 0is a small parameter;

m eu; is the constant complex amplitude associated to the pulsation
wj > 0;

m r stands for the number of independent frequencies (w; # wx for j # k).

We are interested in approximations, for e tending to 0", of trajectories
t— |1/)€>t of

p
%|w€> — (AO + € (Z ujeiwjf + ufe_""/t) A1> |w€>

=1

where Ay = —iHy and Ay = —iH; are skew-Hermitian.



Rotating frame

Consider the following change of variables

[Ye)t = eA0t|¢e>t-

The resulting system is said to be in the “interaction frame”

d
Gil6) = eB(t)[o:)
where B(t) is a skew-Hermitian operator whose time-dependence is almost

periodic:

.
B(t) _ Z uje/w/feonfA‘] erf + u/f‘fef/wl'feonlA1 erI.
j=1
Main idea
We can write

B(t) = B+ SB(1),

where B is a constant skew-Hermitian matrix and §(t) is a bounded almost
periodic skew-Hermitian matrix.



Multi-frequency averaging: first order

Consider the two systems
d = dg
Glod =< (B+ GB) 1o

and
(18t

d, st = ’
a‘os >7€B‘QE >a

initialized at the same state |¢lst>o = |de)o.

Theorem: first order approximation (Rotating Wave Approximation)

Consider the functions |¢.) and |¢18t) initialized at the same state and
following the above dynamics. Then, there exist M > 0 and n > 0 such that
for all € €]0, n[ we have

181

)‘¢e>t — |oe >tH < Me

max
o



Multi-frequency averaging: first order

Proof’s idea
Almost periodic change of variables:

Ixe) = (1 = eB(1))¢e)

well-defined for e > 0 sufficiently small.
The dynamics can be written as

%|X€> = (€B+ €2F(€a t))|X€>

where F(e, t) is uniformly bounded in time.



Multi-frequency averaging: second order

More precisely, the dynamics of |x.) is given by
d = 2I1p R 2 d = 3
gilxe) = (B +€[B,B(0)] — € B(1) ;B(1) + €'E(e, 1) ) Ixe)
m E(e, ) is still almost periodic but its entries are no more linear

combinations of time-exponentials;

| §(t)%§(t) is an almost periodic operator whose entries are linear
combinations of oscillating time-exponentials.

We can write

B(1) = %&(r) and §(t)%§(t) — Db+ %b(t)

where C(t) and D(t) are almost periodic. We have
d (B _2n.29 (B AP 3
G = (B - @D+ 2 & (1B.C(O) - B(Y) + CE()) o

where the skew-Hermitian operators B and D are constants and the other
ones C, D, and E are almost periodic.



Multi-frequency averaging: second order

Consider the two systems

d = dx

Gioo =< (B+ GBO) o),
and d ; ]

Gl ) = (B D)ol ),

both initialized at |¢.)o.

Theorem: second order approximation

Consider |¢.); and |¢§"d>, solutions of the above dynamics. Then,
there exist M > 0 and n > 0 such that for all € €]0, ] we have

max (8 — (1+ BO)I6F" || < Me2
tE[O,%

) 190 =162)|| < Me
te |0,z



Multi-frequency averaging: second order

Proof’s idea
Another almost periodic change of variables

&) = (1= & (1B, €] - B(1))) Ixo)-
The dynamics can be written as
%I&) = (B- D+ EF(e, 1)) I60)

where eB — €D is skew Hermitian and F is almost periodic and therefore
uniformly bounded in time.



The Rotating Wave Approximation (RWA) recipes

Schrodinger dynamics i4 [) = H(t)|), with
m r . .
H(t) = Hy + Z uk(t)H, u(t) = Z uk,,'e"“/’ + u;i,,-e_"“/’.
k=1 j=1
The Hamiltonian in interaction frame

Hi(t) = Z (uk,jeiwjf n u;’je—iwjt) Mot i, = Hot
k.j

We define the first order Hamiltonian
48t
Hye = Hlntf |Im ?/ H.m t)df
and the second order Hamiltonian
d t . . -
Hr2wna - H:via - I<Hint - Hint> </(Hint - Hint)>
Jt

Choose the amplitudes uy; and the frequencies w; such that the propagators

of Hﬂwa or H2, wa ¢ admit simple explicit forms that are used to find t — u(t)
steering |¢)) from one location to another one.




Resonant control of a qubit



RWA and resonant control

In
i) = (e o) o)

take a resonant control u(t) = ue™e’ + u*e~'“=s' with u slowly varying
complex amplitude \dtu| < weg|U]. Set Hy = “2 o, and eH; = Zox and

consider |¢) = e~ 3 "Z|¢> to eliminate the drift Hy and to get the
Hamiltonian in the interaction frame:

d iwegl _ fwegt
iglo)="e " ot *|g) = Hul)

ov=|e) (gl a=|g) (e
ox + 1oy ox — loy
with Hiy = 40 giwegt Ox T 10y 1 YD) giegt T — 10y

2
The RWA con3|sts in neglecting the oscillating terms at frequency 2weg when

|U| < weg:
2iwegt * * A—2iwegl
ueTe" +u ut+ue 9
Hint = (f) ot (f) >

Thus

u*o, + Uo-

Hint = 2



Second order approximation and Bloch-Siegert shift

The decomposition of Hint,

Riwegt

—2iwegt
Hlnt— 20'++20'+ue

+ue o,

Hint Hint—Hint

provides the first order approximation (RWA)

Hlvsv; = Hiyi = limr_o0 + fOT H;+(t)dt, and also the second order
1st

approximation H,Wa =H\o — i(Him —ﬁ) (f,(Him - %)). Since

uelivegt 2iwegt

JiHot — Hig = %20, — 2" o, we have

4lweg 4iweg

(H,m — Hlnt (/(Hmt - HInt)) 8":)‘; oz

(use ;2 =2 =0and oy = o300 — o:03).
The second order approximation reads:

Hznd_ 1st+ luf? n n \UI
wa — Mwa Buweg oz =4 0'+ 20’ O3.

The 2nd order correction '”' (0'2/2) is called the Bloch-Siegert shift.



Exercise: controllability of the 2-level systems and Rabi oscillation

Take the first order approximation

(ur 0++U0) (ule)(g| + ulg){el)

4) = A 9)

() /*|¢>

with control u € C.

Take constant control u(t) = Q,e" for t € [0, T], T > 0. Show
that Idt|¢> cosea;—t-sm foy) ‘¢>

Set©, = & T. Show that the solution at T of the propagator
U; € SU(2 ) ig Uy = leosborisinfoy) iy Yy, — I is given by

Ut = cos©,l — isin ©, (cos oy + sinfoy),

Take a wave function |). Show that exist 2, and 6 such that
Urlg) = €'*|¢), where « is some global phase.

Prove that for any given two wave functions |¢,) and |¢p) exists a
piece-wise constant control [0,2T] > t — u(t) € C such that the
solution of (X) with |¢)o = |¢) satisfies |¢)o7 = €/%|¢p) for some
global phase g.



Averaging and control of spin/spring system
m The spin/spring model

m Law-Eberly control of a single trapped ion



The spin/spring model

The Schrédinger system
P91y = (“50y 4+, (atat 1) + i2oy(al
at - Oz T We 2 2 Ox ) |¢>

corresponds to two coupled scalar PDE’s:

2
iawe+“egwe+<x —a)we L2,

ot 2 X2 N
.awg o (.Ueg We 2 82 Q a
ot T2 et \ X gk ) Ve GaxY

since a = \if (x + 2) and [1) corresponds to (Ye(X, 1), Yg(X, 1))
where (., 1), vg(., 1) € L*(R,C) and [|yse||* + [[g]1 = 1.



Resonant case: passage to the interaction frame

In

2

take weg = we + A with |Q|,|A] < we. Then H = Hy + eHq where e is
a small parameter and

w | .
H= 20, +uwc (aTa+ ) +ifox(a’ — a)

|
Hy = S0z +we (aTa+ 2)
EH‘] = %Uz + i%ax(a-‘— - a).

—ijwet

H,, is obtained by setting |¢) = e‘iWCt(aTa’“%)eT”ﬂ(/)) in
igl¥) = Hlv) to get i g|¢) = Hilo) with

Hiw = 50z +i%(e o + o) (e'a’ — e~ a)
where we used

6 _io i i i Il 1 —i Il 1 i
6% e 5% — e g 4 &', gif(a'ary) g g—if(a'aty) _ g-ifg



Resonant case: first order (Jaynes-Cummings Hamiltonian)

The secular terms in Hin are given by (RWA, first order approximation)

1st .
Hy. = %0'2 + I%(o:aT — o:,a).

atarl) tuely,,

Since quantum state |¢) = gtiwet( t)e™s |1) obeys approximatively to
%|¢) = HJ;;|¢), the original quantum state |v) is governed by

W}> (cher.z + we (aTa—|— %) —+ I% (C"-a'r — 0'+a)) |’¢>

The Jaynes-Cummings Hamiltonian (weg = we + A with |A[, |Q] < we) reads:

| ,
Hyc = ¥t oy + we (a*a+ —) + /%(cr.aT - o.a)

2
The corresponding PDE is (case A = 0) :
awe _ we + A

P
"ot ax2 )we (X - 5) Vg

awg UJC_'_A 82 . Q 8
=t =~ 1?9‘*‘*( ﬁ)fﬁg‘“m X+ o5 ) Ve

¢e+—(



Dispersive case: passage to the interaction frame

For we > |A] > |Q], the dominant term in
HJ‘,SVL = %O’z + i% (o:aT — a:,a)

is an isolated qubit. To make the interaction dominant, we go to the
interaction frame with (weg = we + A)
Hy = 20y + we (aTa+ ) , eHy = i%ax(aT —a.

By seting [+) = &~ (/)05 ) wo got. i816) = Hnl6) with

Hint _ I'% (e—iwegta__ + eiwegto_+) (eiuctaT _ e—lwcta)

=2 (e*"A’zf.aJr e®a,a+ eCetNig gt e*’(z‘“C*A)’a.a)

st _—
Thus H}.a = Hit = 0: no secular term. We have to compute
ond

Hz = Him — i(Hint - m) ( (i — m)) where [,(Hin. — Hir) corresponds
to

_q [e—int t gi(Rwetn)t + e—i(Rwc+A)t
T( a"'* w8 — 2wet+A wa - 2wet+A -



Dispersive spin/spring Hamiltonian and associated PDE

. nd
The secular terms in H?,, are

42 (0’0’+3Ta o,o.aa ) + ﬁﬁi)(amaﬂ — o;o:aTa)

Since Q| < |A| < weg, we, We have m < 42

d
H?Sam%(az(N%Hé)-

Since quantum state |¢) = gtivet(N+3) g™ "’|¢> obeys approximatively to

a|¢’> = H?Wa |¢), the original quantum state |w) is governed by
&) = (Haso+ & ) 1) with

Hdlsp— gO’z+wc(N+ ) >2<UZ(N+é) andX_—zig2
The corresponding PDE is :
3% weg Xy/,2 872
8t we +35 (UJc 2 )(X - 8)(2 )¢e
81/’9 _ Weg X _ 872
81‘ - wg—'— (wc+ 2)( axg )’(wbg



Exercise: resonant spin-spring system with controls

Consider the resonant spin-spring model with Q < |w|:
H= %0 tw (aTa—&- %) + i%ax(aT —a)+ u(a+ ah)
with a real control input u(t) € R:

Show that with the resonant control u(t) = ue="“! 4 u*e'“! with complex
amplitude u such that |u| < w, the first order RWA approximation yields the
following dynamics in the interaction frame:

igl) = (i%(ca — ova) + ua' + ua) [v)

Set v € C solution of %v = —ju and consider the following change of frame
|¢) = D_y|v) with the displacement operator D_y = e~va'+v*a_ gShow that, up
to a global phase change, we have, with &1 = i%v,

i419) = (£ (cal - na) + (iion + i )) |9)

Take the orthonormal basis {|g, n), |e, n)} with n € N being the photon number
and where for instance |g, n) stands for the tensor product |g) ® |n). Set
|#) = X", dg,nlg, N) + de,nle, n) with ¢g,n, pe,n € C depending on t and
> 169,02 + |pe,nl? = 1. Show that, for n > 0

1G9 ni1 = IGVNF Tpen+ U doni1, IGden=—iFVN+ 1dgni1 + Udgn
and "%%,o = a*¢e70.

Assume that |¢)o = |g, 0). Construct an open-loop control [0, T] > t — @(t)
such that |¢) T = |g, 1) (hint: use an impulse for t € [0, €] followed by 0 on [e, T]
with e < T and well chosen T).

Generalize the above open-loop control when the goal state |¢) 1 is |g, n) with
any arbitrary photon number n.



A single trapped ion

1D ion trap, picture borrowed from S. Haroche course at CDF.

TR -1

A classical cartoon of spin-spring system.



A single trapped ion

A composite system:
internal degree of freedom+vibration inside the 1D trap

Hilbert space:
C? ® L3(R,C)

Hamiltonian:

H=uw, <aTa + ;) +%Uz+(ule/(w/f*m(a+af)) + u;"e*/(w/t*m(aJraT))) oy

Parameters:

wm: harmonic oscillator of the trap,

weg: Optical transition of the internal state,
wy: lasers frequency,

n; = wy/c: Lamb-Dicke parameter.
Scales:

|Wlfweg|<<wegy wm K Weg, ‘UI|<<Weg, <<Weg|ul|-

9.
at”



PDE formulation

The Schrédinger equation i &|v) = H|), with

H=wn (aTa + ;) +%0’z+ (u/e"(“"‘"'("”at)) +uy e"'(w”‘"’("’“w) ox

can be written in the form

6'¢g Wm 2 82 Weg i(wit—v/2 —i(wit—V2
IW:? XﬁW @pgf?q/,ng( el(wr "]/X)+ue’(l 71/)())1)/}67

e _wm [ o P Weg Gilwrt—v2nx) i(wrt—v/Znx)
’at—z<xaxe vet rvet (ue tue ) v

m This system is approximately controllable in (L2(R, C))?:
S. Ervedoza and J.-P. Puel, Annales de I'IHP (c), 26(6): 2111-2136, 2009.



Law-Eberly method

Control is superposition of 3 mono-chromatic plane waves with:
frequency weg (ion transition frequency) and amplitude u;

frequency weg — wm (red shift by a vibration quantum) and
amplitude u;;

frequency weg + wm (blue shift by a vibration quantum) and
amplitude up;

Control Hamiltonian:

H =wm (aTa + ;) M %Uz + (Ue"(“%"”(a*af)) +u* e"'(“egt_"maf))) ox
n (Ubei((weg+wm)t—nb(a+aT)) 4 UZ;e—i((weg+wm)t—nb(a+aT))) oy
+ (Ure’((weg*wm)f*m(ﬂa“‘)) +ur e*/((weg7wm)t777,(a+a*))> Ox.
Lamb-Dicke parameters:

n="eg =1 =np <1



Law-Eberly method: rotating frame

Rotating frame: |¢) = giwmt(a'at;) o= Gz\qs)

Hi, = eiwmf(aTa) (Ueiwegte*in(a+af) +u* eiiwégtem(ajLaT))

gent(a'a) (elunt|g)(g| + &~ w!|g) (e])
1 glwnt(a'a) <Ube"(“’eg+w’")’e*”7"(a+aT) + Up eii(weﬁwm)teinb(a“f))

g iwnt(a'a) (e='le)(g| + e "=|g)(e])

+ eiwmt(a?a) (Ure/(weg*wm)fe*mr(airaf) +ur eii(wegiwm)temr(aJraT))

gieni(a'a) (glent|g)(g] + &~ | g) (e])



Law-Eberly method: RWA

Commutation of exponentials in (a + a') and (a'a) is non-trivial.
m Approximation e(@+a") ~ 1 + je(a + a') for € = £, np, 1,

Then averaging: neglecting highly oscillating terms of frequencies
2Weg, 2weg + wWm, 2(weg £ wm) and twm, as

d
lul, |upl, |ur| <€ wm, < wmlul, < wmlupl, au, < wm|Uy.

Ly 9.
dt dt

First order approximation:
H.. = ulg) (el + u*|e)(g| + Ubalg) (e| + Upa'|e)(g]
+U-a'|g)(e| + Urale)(g|

where
Up = —i77bUb and U = —in,u,



PDE form



Hilbert basis: {|g, n), |e,n)},_,

Dynamics:
.d _ _
la%,n = U¢e,n + Urﬁée.n—1 + UpVn—+ 1¢e,n+1
. d * — % — %
/E(Zse,n =u ¢g,n +uvn+ 1ff)g,n+1 + ubﬁ¢g,n—1

Physical interpretation:




Law-Eberly method: spectral controllability

Truncation to n-phonon space:
Hn =span{|g,0),|e,0),...,|g,n),|en}
We consider |¢)o, |¢) T € Hp and we look for u, U, and iy, s.t.

for |¢)(t = 0) = [¢)o we have |¢)(t = T) = [¢)T.

m If u', U} and &} bring [¢)o to |g, 0) at time T/2,
m and u?, U2 and U2 bring |¢) 7 to |g, 0) at time T/2,

then
u=u", u=ul, u=u fortel0,T/2],
u=-u?  up=-u3, U =-—u? forte[T/2,T],

bring |¢)o to |¢) 7 at time T.



Law-Eberly method: iterative reduction from 4, to H,_1

Take |¢g) € Hpand T > O:
m For t € [0, L], Ur(t) = Up(t) = 0, and

de,n(0) ‘ e/ are(¢g,n(0)0¢,(0))
ég,n(0)

implies ¢e.n(T/2) = 0;
m Fort € [, T], Up(t) = O(t) = 0, and

eiafg (¢g,n(%)¢z,nf1 (%))

implies that ¢e n(T) = 0 and that ¢g.,(T) = 0.

The two pulses & and U, lead to some |¢)(T) € H,_1.



Law-Eberly method

Repeating n times, we have
|¢>(I7T) € HO = Span{‘Q? 0)? <ev 0‘}
m for ¢ € [nT,(n+ })T], the control

Ur(t) = Up(t) =0,

= 2i be.o(nT) | Liarg(ego(nT)g}o(nT)
u(t) = < arctan o o(nT) (9.0 o)
. . o i9
implies ‘¢>(n+%)7 =¢e"g,0).
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