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General structure of Markov model in discrete time

Any open model of quantum system in discrete time is governed by a
Markov chain of the form

ρk+1 =
Kyk (ρk )

Tr (Kyk (ρk ))
,

with the probability Tr (Kyk (ρk )) to have the measurement outcome yk

knowing ρk .

The structure of the super-operators Ky is as follows. Each Ky is a
linear completely positive map (a quantum operation, a partial Kraus
map5) and

∑
y Ky (ρ) = K(ρ) is a Kraus map, i.e. K(ρ) =

∑
µ KµρK †

µ

with
∑

µ K †
µKµ = I .

5Each Ky admits the expression

Ky (ρ) =
∑
ν

My,νρM†
y,ν

where (My,ν) are bounded operators on H.



Schrödinger view point of ensemble average dynamics

Without measurement record, the quantum state ρk obeys to the master
equation

ρk+1 = K(ρk ).

since E (ρk+1 | ρk ) = K(ρk ) (ensemble average).

In finite dimension, K is always a contraction (not strict in general ) for
many metrics such as the following ones: for any density operators ρ
and ρ′ we have

∥K(ρ)−K(ρ′)∥1 ≤ ∥ρ− ρ′∥1 and F (K(ρ),K(ρ′)) ≥ F (ρ,ρ′)

where the trace norm ∥ • ∥1 and fidelity F are given by

∥ρ− ρ′∥1 ≜ Tr
(
|ρ− ρ′|

)
and F (ρ,ρ′) ≜ Tr

(√√
ρρ′√ρ

)
.



Heisenberg view point of ensemble average dynamics

The "Heisenberg description" is given by iterates Ak+1 = K∗(Ak ) from
an initial bounded Hermitian operator A0 of the dual map K∗

characterized as follows: Tr (AK(ρ)) = Tr (K∗(A)ρ) for any bounded
operator A on H. Thus

K∗(A) =
∑
µ

K †
µAKµ when K(ρ) =

∑
µ

KµρK †
µ.

K∗ is an unital map, i.e., K∗(I) = I , and the image via K∗ of any
bounded operator is a bounded operator.

When H is of finite dimension, we have, for any Hermitian operator A:

λmin(A) ≤ λmin(K∗(A)) ≤ λmax(K∗(A)) ≤ λmax(A)

where λmin and λmax correspond to the smallest and largest
eigenvalues.

If A = K∗(A), then Tr
(
ρk A

)
= Tr

(
ρ0A

)
is a constant of motion of ρ.



Convergence in Schrödinger and Heisenberg pictures

Take a Kraus map K and its adjoint unital map K∗. When H is of finite
dimension, the following two statements are equivalent :

Global convergence towards the fixed point ρ = K(ρ) of ρk+1 = K(ρk ):
for any initial density operator ρ0, limk 7→+∞ ρk = ρ.

Global convergence of Ak+1 = K∗(Ak ): there exists a unique density
operator ρ such that, for any initial bounded operator A0,
limk 7→+∞ Ak = Tr (A0ρ) I .



Discrete-time Stochastic Master Equations (SME)

Trace preserving Kraus map K u depending on the classical control input u:

K u(ρ) =
∑
ξ

Mu,ξρM†
u,ξ with

∑
ξ

M†
u,ξMu,ξ = I .

Take a left stochastic matrix
[
ηy,ξ
]

(ηy,ξ ≥ 0 and
∑

y ηy,ξ ≡ 1, ∀ξ) and set
K u,y (ρ) =

∑
ξ ηy,ξMu,ξρM†

u,ξ. The associated Markov chain reads:

ρk+1 =
K uk ,yk (ρk )

Tr (K uk ,yk (ρk ))
measurement yk with probability Tr (K uk ,yk (ρk )) .

Classical input u, hidden state ρ, measured output y .
Ensemble average given by K u since E

(
ρk+1

∣∣ ρk , uk
)
= K uk (ρk ).

Markov model useful for:

1 Monte-Carlo simulations of quantum trajectories (decoherence,
measurement back-action).

2 quantum filtering and parameter estimation: e.g. to get the quantum
state ρk from ρ0 and (y0, . . . , yk−1) (Belavkin quantum filter developed
for diffusive models).

3 feedback design and Monte-Carlo closed-loop simulations
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Classical I/O dynamics for diffusive Stochastic Master Equation 6

QUANTUM WORLD

decoherence
Hilbert space (dissipation) CLASSICAL WORLD

Continuous-time models: stochastic differential systems (Itō formulation)
density operator ρ (ρ† = ρ, ρ ≥ 0, Tr (ρ) = 1) as state (ℏ ≡ 1 here):

dρt =
(
− i[H0 + utH1,ρt ] +

∑
ν=d,m

LνρtL
†
ν − I

2
(L†

νLνρt + ρtL
†
νLν)

)
dt

+
√
ηm

(
Lmρt + ρtL

†
m − Tr

(
(Lm + L†

m)ρt

)
ρt

)
dWt

driven by the Wiener process Wt , with measurement yt ,

dyt =
√
ηm Tr

(
(Lm + L†

m)ρt

)
dt + dWt detection efficiencies ηm ∈ [0, 1].

Measurement backaction: dρ and dy share the same noises dW . Very
different from the Kalman I/O state-space description widely used in control
engineering.

6A. Barchielli, M. Gregoratti (2009): Quantum Trajectories and
Measurements in Continuous Time: the Diffusive Case. Springer Verlag.



Markov process under continuous measurement

yt	

η	

Inverse setup of photon-box: photons read out a qubit.

Two major differences

measurement output taking values from a continuum of possible
outcomes

dyt =
√
ηTr

(
(L + L†)ρt

)
dt + dWt .

Time continuous dynamics.



Stochastic master equation: Markov process under continuous measurement

dρt =

(
−i[H,ρt ] +

∑
ν

LνρtL
†
ν −

1
2
(L†
νLνρt + ρtL

†
νLν)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρtL

†
ν − Tr

(
(Lν + L†

ν)ρt

)
ρt

)
dWν,t ,

where Wν,t are independent Wiener processes, associated to
measured signals with efficiencies ην ∈ [0,1]:

dyν,t = dWν,t +
√
ην Tr

(
(Lν + L†

ν)ρt

)
dt .

Wiener process Wt :

W0 = 0;

t → Wt is almost surely everywhere continuous;

For 0 ≤ s1 < t1 ≤ s2 < t2, Wt1 − Ws1 andWt2 − Ws2 are
independent random variables satisfying Wt − Ws ∼ N(0, t − s).

Average dynamics: Lindblad master equation

dE (ρt) =(
−i[H,E (ρt)] +

∑
ν LνE (ρt)L†

ν − 1
2 (L

†
νLνE (ρt) + E (ρt)L†

νLν)
)

dt .



Ito stochastic calculus
Given a diffusive Stochastic Differential Equation (SDE)

dXt = F (Xt , t)dt +
∑
ν

Gν(Xt , t)dWν,t ,

we have the following chain rule:

Ito’s rule

Defining ft = f (Xt) a C2 function of X , we have

dft =

(
∂f
∂X

∣∣∣
Xt

F (Xt , t) +
1
2

∑
ν

∂2f
∂X 2

∣∣∣
Xt

(Gν(Xt , t),Gν(Xt , t))

)
dt

+
∑
ν

∂f
∂X

∣∣∣
Xt

Gν(Xt , t)dWν,t .

Furthermore

d
dt

E (ft) = E

(
∂f
∂X

∣∣∣
Xt

F (Xt , t) +
1
2

∑
ν

∂2f
∂X 2

∣∣∣
Xt

(Gν(Xt , t),Gν(Xt , t))

)
.



Link to partial Kraus maps (1)

dρt =

(
−i[H,ρt ] +

∑
ν

LνρtL
†
ν −

1
2
(L†
νLνρt + ρtL

†
νLν)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρtL

†
ν − Tr

(
(Lν + L†

ν)ρt

)
ρt

)
dWν,t ,

equivalent to

ρt+dt =
MdytρtM

†
dyt

+
∑
ν(1 − ην)LνρtL

†
νdt

Tr
(

MdytρtM
†
dyt

+
∑
ν(1 − ην)LνρtL

†
νdt
)

with

Mdyt = I +

(
−iH − 1

2

∑
ν

L†
νLν

)
dt +

∑
ν

√
ηνdyν,tLν .

Moreover, defining dyν,t = sν,t
√

dt :

P
( (

sν,t ∈ [sν , sν + dsν ]
)
ν
| ρt

)
= Tr

(
Ms

√
dtρt M

†
s
√

dt
+
∑
ν

(1 − ην)Lνρt L
†
νdt

)∏
ν

e−
s2
ν
2 dsν√
2π

.



Example of Ito calculations
With dyt = Tr

(
(L + L†)ρt

)
dt + dWt

dρt =

(
Lρt L

† −
1
2
(L†Lρt + ρt L

†L)
)

dt +
(

Lρt + ρt L
† − Tr

(
(L + L†)ρt

)
ρt

)
dWt ,

reads

ρt+dt =
Mdyt ρt M

†
dyt

Tr
(

Mdyt ρt M
†
dyt

)
where Mdyt = I − dt

2 L†L + dyt L and where one uses expansion including first order
terms in dt and Ito rules

dρt = ρt+dt − ρt , dWt = O(
√

dt), dW 2
t = dt , dt dWt = 0, . . .



Link to partial Kraus maps (2)

P defines a probability density up to a correction of order dt2:∫
P(st ∈ [s, s + ds] | ρt) = 1 + O(dt2).

Mean value of measured signal∫
sνP(st ∈ [s, s+ds] | ρt) =

√
ην Tr

(
(Lν + L†

ν)ρt

)√
dt+O(dt3/2).

Variance of measured signal∫
s2
ν P(st ∈ [s, s + ds] | ρt) = 1 + O(dt).

Compatible with dyν,t = dWν,t +
√
ην Tr

(
(Lν + L†

ν)ρt

)
dt .



Link to partial Kraus maps (3)

dρt =

(
−i[H,ρt ] +

∑
ν

LνρtL
†
ν −

1
2
(L†
νLνρt + ρtL

†
νLν)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρtL

†
ν − Tr

(
(Lν + L†

ν)ρt

)
ρt

)
dWν,t ,

equivalent to

ρt+dt =
MdytρtM

†
dyt

+
∑
ν(1 − ην)LνρtL

†
νdt

Tr
(

MdytρtM
†
dyt

+
∑
ν(1 − ην)LνρtL

†
νdt
)

Indicates that the solution remains in the space of semi-definite
positive Hermitian matrices;

Provides a time-discretized numerical scheme preserving
non-negativity of ρ.

Theorem

The above master equation admits a unique solution remaining for all
t ≥ 0 in {ρ ∈ CN×N : ρ = ρ†, ρ ≥ 0, Tr (ρ) = 1}.
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Jump SME

With Poisson process N(t), ⟨dN(t)⟩ =
(
θ + ηTr

(
VρtV †) ) dt , and detection

imperfections modeled by θ ≥ 0 (shot-noise rate) and η ∈ [0, 1] (detection
efficiency), the quantum state ρt is usually mixed and obeys to

dρt =

(
−i[H, ρt ] + VρtV † − I

2
(V †Vρt + ρtV †V )

)
dt

+

(
θρt + ηVρtV †

θ + ηTr (VρtV †)
− ρt

)(
dN(t)−

(
θ + ηTr

(
VρtV †

))
dt
)

With proba. 1 −
(
θ + ηTr

(
VρtV †) ) dt , dN(t) = 0 and

ρt+dt =
M0ρtM†

0 + (1 − η)VρtV †dt

Tr
(

M0ρtM†
0 + (1 − η)VρtV †dt

)
with M0 = I −

(
iH + I

2 V †V
)

dt .

With proba.
(
θ + ηTr

(
VρtV †) ) dt , N(t + dt) − N(t) = 1 and

ρt+dt =
M0ρ̃tM†

0 + (1 − η)V ρ̃tV †dt

Tr
(

M0ρ̃tM†
0 + (1 − η)V ρ̃tV †dt

) with ρ̃t =
θρt + ηVρtV †

θ + ηTr (VρtV †)
.
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Diffusive-jump SME

The quantum state ρt is usually mixed and obeys to

dρt =

(
−i[H, ρt ] + LρtL† − I

2
(L†Lρt + ρtL†L) + VρtV † − I

2
(V †Vρt + ρtV †V )

)
dt

+
√
η

(
Lρt + ρtL† − Tr

(
(L + L†)ρt

)
ρt

)
dWt

+

(
θρt + ηVρtV †

θ + ηTr (VρtV †)
− ρt

)(
dN(t)−

(
θ + ηTr

(
VρtV †

))
dt
)

With dyt =
√
ηTr

(
(L + L†) ρt

)
dt + dWt and dN(t) = 0 with proba

1 −
(
θ + ηTr

(
VρtV †) ) dt

ρt+dt =
Mdyt ρtM†

dyt
+ (1 − η)LρtL†dt + (1 − η)VρtV †dt

Tr
(

Mdyt ρtM†
dyt

+ (1 − η)LρtL†dt + (1 − η)VρtV †dt
)

with Mdyt = I −
(
iH + I

2 L†L + I
2 V †V

)
dt +

√
ηdytL.

For N(t + dt) − N(t) = 1 of proba.
(
θ + ηTr

(
VρtV †) ) dt we have

ρt+dt =
Mdyt ρ̃t M

†
dyt

+ (1 − η)Lρ̃t L
†dt + (1 − η)V ρ̃t V

†dt

Tr
(

Mdyt ρ̃t M
†
dyt

+ (1 − η)Lρ̃t L†dt + (1 − η)V ρ̃t V†dt
) with ρ̃t =

θρt + ηVρt V
†

θ + η Tr
(
Vρt V†)



General diffusive-jump SME

The quantum state ρt is usually mixed and obeys to

dρt =

(
−i[H, ρt ] +

∑
ν

Lνρt L
†
ν − 1

2 (L
†
νLνρt + ρt L

†
νLν ) + Vµρt V

†
µ − 1

2 (V
†
µVµρt + ρt V

†
µVµ)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρt L

†
ν − Tr

(
(Lν + L†ν )ρt

)
ρt

)
dWν,t

+
∑
µ

 θµρt +
∑

µ′ ηµ,µ′Vµ′ρt V
†
µ′

θµ +
∑

µ′ ηµ,µ′ Tr
(

Vµ′ρt V
†
µ′
) − ρt


dNµ(t) −

(
θµ +

∑
µ′

ηµ,µ′ Tr
(

Vµ′ρt V
†
µ′
) )

dt


where ην ∈ [0, 1], θµ, ηµ,µ′ ≥ 0 with ηµ′ =

∑
µ ηµ,µ′ ≤ 1 are parameters modelling measurements

imperfections.
When ∀µ, dNµ(t) = 0, we have

ρt+dt =
Mdyt ρt M

†
dyt

+
∑

ν (1 − ην )Lνρt L
†
νdt +

∑
µ(1 − ηµ)Vµρt V

†
µdt

Tr
(

Mdyt ρt M
†
dyt

+
∑

ν (1 − ην )Lνρt L
†
νdt +

∑
µ(1 − ηµ)Vµρt V

†
µdt
)

with Mdyt = I −
(

iH + 1
2
∑

ν L†νLν + 1
2
∑

µ V†
µVµ

)
dt +

∑
ν
√
ηνdyνt Lν and where

dyν,t =
√
ην Tr

(
(Lν + L†ν ) ρt

)
dt + dWν,t .

If, for some µ, Nµ(t + dt) − Nµ(t) = 1, we have a similar transition rule

ρt+dt =
Mdyt ρ̃t M

†
dyt

+
∑

ν (1 − ην )Lν ρ̃t L
†
νdt +

∑
µ′ (1 − ηµ′ )Vµ′ ρ̃t V

†
µ′dt

Tr
(

Mdyt ρ̃t M
†
dyt

+
∑

ν (1 − ην )Lν ρ̃t L
†
νdt +

∑
µ′ (1 − ηµ′ )Vµ′ ρ̃t V

†
µ′dt

) with ρ̃t =
θµρt+

∑
µ′ η

µ,µ′ V
µ′ρt V†

µ′

θµ+
∑

µ′ η
µ,µ′ Tr

(
V
µ′ρt V†

µ′

) .
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LKB photon box : open-loop dynamics ideal model

C

B

D

R 1
R 2

B R 2

Markov process: |ψk ⟩ ≡ |ψ⟩t=k∆t , k ∈ N, ∆t sampling period,

|ψk+1⟩ =


Mg |ψk ⟩√

⟨ψk |M†
g Mg |ψk⟩

with yk = g, probability Pg =
〈
ψk |M†

gMg |ψk

〉
;

Me|ψk ⟩√
⟨ψk |M†

e Me|ψk⟩
with yk = e, probability Pe =

〈
ψk |M†

eMe|ψk

〉
,

with
Mg = cos(φ0 + Nϑ), Me = sin(φ0 + Nϑ).



QND measurement of photons

Markov process: density operator ρk = |ψk ⟩⟨ψk | as state.

ρk+1 =


Mgρk M†

g

Tr(Mgρk M†
g)

with yk = g, probability Pg = Tr
(

Mgρk M†
g

)
;

Meρk M†
e

Tr(Meρk M†
e)

with yk = e, probability Pe = Tr
(

Meρk M†
e

)
,

with
Mg = cos(φ0 + Nϑ), Me = sin(φ0 + Nϑ).

Quantum Monte Carlo simulations (2 Matlab scripts):
IdealQNDphoton.m RealisticQNDphoton.m

Experimental data

Quantum Non-Demolition (QND) measurement

The measurement operators Mg,e commute with the photon-number
observable N : photon-number states |n⟩⟨n| are fixed points of the
measurement process. We say that the measurement is QND for the
observable N .



Asymptotic behavior: numerical simulations

100 Monte-Carlo simulations of Tr (ρk |3⟩⟨3|) versus k
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Some definitions (see e.g. C.W. Gardiner: Handbook of stochastic methods . . . [3rd ed], Springer, 2004)

Convergence of a random process

Consider (Xk ) a sequence of random variables defined on the probability space
(Ω,F ,P) and taking values in a metric space X . The random process Xk is said to,

1 converge in probability towards the random variable X if for all ϵ > 0,

lim
k→∞

P (|Xk − X | > ϵ) = lim
n→∞

P (ω ∈ Ω | |Xk (ω)− X(ω)| > ϵ) = 0;

2 converge almost surely towards the random variable X if

P
(

lim
k→∞

Xk = X
)

= P
(
ω ∈ Ω | lim

k→∞
Xk (ω) = X(ω)

)
= 1;

3 converge in mean towards the random variable X if limk→∞ E (|Xk − X |) = 0.



Some definitions

Markov process

The sequence (Xk )
∞
k=1 is called a Markov process, if for all k and ℓ satisfying

k > ℓ and any measurable function f (x) with supx |f (x)| < ∞,

E (f (Xk ) | X1, . . . ,Xℓ) = E (f (Xk ) | Xℓ) .

Martingales

The sequence (Xk )
∞
k=1 is called respectively a supermartingale, a

submartingale or a martingale, if E (|Xk |) < ∞ for k = 1, 2, · · · , and

E (Xk | X1, . . . ,Xℓ) ≤ Xℓ (P almost surely), k ≥ ℓ

or
E (Xk | X1, . . . ,Xℓ) ≥ Xℓ (P almost surely), k ≥ ℓ,

or finally,

E (Xk | X1, . . . ,Xℓ) = Xℓ (P almost surely), k ≥ ℓ.



Martingales asymptotic behavior

H.J. Kushner invariance Theorem

Let {Xk} be a Markov chain on the compact state space S. Suppose that
there exists a non-negative function V (x) satisfying
E (V (Xk+1) | Xk = x)− V (x) = −σ(x), where σ(x) ≥ 0 is a positive
continuous function of x . Then the ω-limit set (in the sense of almost sure
convergence) of Xk is included in the following set

I = {X | σ(X ) = 0}.

Trivially, the same result holds true for the case where
E (V (Xk+1) | Xk = x)− V (x) = σ(x) with σ(x) ≥ 0 and V (x) bounded from
above (V (Xk ) is a submartingale),.

Stochastic version of Lasalle invariance principle for Lyapunov function of
deterministic dynamics.



Asymptotic behavior

Theorem

Consider for Mg = cos(φ0 + Nϑ) and Me = sin(φ0 + Nϑ)

ρk+1 =


Mgρk M†

g

Tr(Mgρk M†
g)

with yk = g, probability Pg = Tr
(

Mgρk M†
g

)
;

Meρk M†
e

Tr(Meρk M†
e)

with yk = e, probability Pe = Tr
(

Meρk M†
e

)
,

with an initial density matrix ρ0 defined on the subspace
span{|n⟩ | n = 0,1, · · · ,nmax}. Also, assume the non-degeneracy
assumption ∀n ̸= m ∈ {0,1, · · · ,nmax}, cos2(φm) ̸= cos2(φn) where
φn = φ0 + nϑ.
Then

for any n ∈ {0, . . . ,nmax}, Tr (ρk |n⟩⟨n|) = ⟨n|ρk |n⟩ is a martingale

ρk converges with probability 1 to one of the nmax + 1 Fock state
|n⟩⟨n| with n ∈ {0, . . . ,nmax}.

the probability to converge towards the Fock state |n⟩⟨n| is given
by Tr (ρ0|n⟩⟨n|) = ⟨n|ρ0|n⟩.



Proof based on QND super-martingales

For any function f , Vf (ρ) = Tr (f (N)ρ) is a martingale:
E (Vf (ρk+1) | ρk ) = Vf (ρk ).

V (ρ) =
∑

n ̸=m

√
⟨n|ρ|n⟩ ⟨m|ρ|m⟩ is a strict super-martingale:

E (V (ρk+1) | ρk )

=
∑
n ̸=m

(
| cosϕn cosϕm|+ | sinϕn sinϕm|

)√
⟨n|ρ|n⟩ ⟨m|ρ|m⟩

≤ rV (ρk )

with r = maxn ̸=m
(
| cosϕn cosϕm|+ | sinϕn sinϕm|

)
and r < 1.

V (ρ) ≥ 0 and V (ρ) = 0 means that exists n such that ρ = |n⟩⟨n|.

Interpretation: for large k , V (ρk ) is very close to 0, thus very close to |n⟩⟨n|
(“pure state” = maximal information state) for an a priori random n.
Information extracted by measurement makes state “less uncertain” a
posteriori but not more predictable a priori.



Exercice
Consider the Markov chain ρk+1 = Myk (ρk )M

†
yk
/Tr

(
Myk (ρk )M

†
yk

)
where

yk = g (resp. yk = e) with probability pg,k = Tr
(

Mgρk M†
g

)
(resp.

pe,k = Tr
(

Meρk M†
e

)
). The Kraus operators are given by

Mg = cos
(

θ1
2

)
cos
(

Θ
2

√
N
)
− sin

(
θ1
2

)( sin

(
Θ
2
√

N
)

√
N

)
a†

Me = − sin
(

θ1
2

)
cos
(
Θ
2

√
N + 1

)
− cos

(
θ1
2

)
a

(
sin

(
Θ
2
√

N
)

√
N

)
with θ1 = 0. Assume the initial state to be defined on the subspace {|n⟩}nmax

n=0
and that the cavity state at step k is described by the density operator ρk .

1 Show that

E
(
Tr
(
Nρk+1

)
| ρk

)
= Tr (Nρk )− Tr

(
sin2

(
Θ
2

√
N
)
ρk

)
.

2 Assume that for any integer n, Θ
√

n/π is irrational. Then prove that
almost surely ρk tends to the vacuum state |0⟩⟨0| whatever its initial
condition is.

3 When Θ
√

n/π is rational for some integer n, describe the possible
ω-limit sets for ρk .
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Dispersive measurement of a qubit

|g〉

|e〉 κ

1

Inverse setup of photon-box: photons read out a qubit.

Approximate model

Cavity’s dynamics are removed (singular perturbation techniques) to
achieve a qubit SME:

dρt = −i[H,ρt ]dt +
Γm

4
(σzρtσz − ρt)dt

+

√
ηΓm

2
(σzρt + ρtσz − 2Tr (σzρt)ρt)dWt ,

dyt = dWt +
√
ηΓm Tr (σzρt)dt .



Quantum Non-Demolition measurement

dρt = −i[H,ρt ]dt +
Γm

4
(σzρtσz − ρt)dt

+

√
ηΓm

2
(σzρt + ρtσz − 2Tr (σzρt)ρt)dWt ,

dyt = dWt +
√
ηΓm Tr (σzρt)dt .

Uncontrolled case: H = ωegσz/2.

Interpretation as a Markov process with Kraus operators

Mdyt = I −
(

i
ωeg

2
σz +

Γm

8
I
)

dt +
√
ηΓm

2
σzdyt ,

√
(1 − η)dtL =

√
(1 − η)Γmdt

2
σz .

QND measurement

Kraus operators Mdyt and
√
(1 − η)dtL commute with observable σz :

qubit states |g⟩⟨g| and |e⟩⟨e| are fixed points of the measurement
process. The measurement is QND for the observable σz .



QND measurement: asymptotic behavior

Theorem

Consider the SME

dρt = −i[H,ρt ]dt +
Γm

4
(σzρtσz − ρt)dt

+

√
ηΓm

2
(σzρt + ρtσz − 2Tr (σzρt)ρt)dWt ,

with H =
ωeg

2 σz and η > 0.

For any initial state ρ0, the solution ρt converges almost surely as
t → ∞ to one of the states |g⟩⟨g| or |e⟩⟨e|.
The probability of convergence to |g⟩⟨g| (respectively |e⟩⟨e|) is given by
pg = Tr (|g⟩⟨g|ρ0) (respectively Tr (|e⟩⟨e|ρ0)).

The convergence rate is given by ηΓM/2.

Proof based on the Lyapunov function V (ρ) =
√

1 − Tr2 (σzρ) with

d
dt

E (V (ρ)) = −ηΓM

2
E (V (ρ))

Monte Carlo simulations: IdealQNDqubit.m RealisticQNDqubit.m
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