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Structure of dynamical models in discrete time



General structure of Markov model in discrete time

m Any open model of quantum system in discrete time is governed by a
Markov chain of the form

p _ Ky, (p)
T T (K, ()

with the probability Tr (Ky, (p,)) to have the measurement outcome yx
knowing px.

m The structure of the super-operators K, is as follows. Each K, is a
linear completely positive map (a quantum operation, a partial Kraus
map®) and 3°, K,(p) = K(p) is a Kraus map, i.e. K(p) = 3, K.pK],
with 3° KiK., =1

SEach K, admits the expression
Ky(p) = Z My,uPMT,u

where (M, ) are bounded operators on H.



Schrédinger view point of ensemble average dynamics

m Without measurement record, the quantum state px obeys to the master
equation

Pr1 = K(py)-
since E (pr+1 | px) = K(p,) (ensemble average).

m In finite dimension, K is always a contraction (not strict in general ) for
many metrics such as the following ones: for any density operators p
and p’ we have

IK(p) — K(p)ll1 < [lp — p[l1 and F(K(p),K(p")) > F(p,p")

where the trace norm || e || and fidelity F are given by

o= pl T (1o = 1) and Fp.p) 2 Tr (y/Vor' o)



Heisenberg view point of ensemble average dynamics

m The "Heisenberg description" is given by iterates Ax1 = K*(Ax) from
an initial bounded Hermitian operator A, of the dual map K*
characterized as follows: Tr (AK(p)) = Tr (K*(A)p) for any bounded
operator Aon H. Thus

A)fZKTAK when K(p ZK pK'..

K* is an unital map, i.e., K*(I) = I, and the image via K* of any
bounded operator is a bounded operator.

m When # is of finite dimension, we have, for any Hermitian operator A:
)\min(A) S )\min(K* (A)) S )\max(K* (A)) S )\max(A)

where A\pin and Amax correspond to the smallest and largest
eigenvalues.

m If A=K*(A), then Tr (pki) =Tr (pOZ) is a constant of motion of p.



Convergence in Schrédinger and Heisenberg pictures

Take a Kraus map K and its adjoint unital map K*. When # is of finite
dimension, the following two statements are equivalent :

m Global convergence towards the fixed point p = K(p) of p,_; = K(py):

for any initial density operator py, limg 4o px = P-
m Global convergence of Ax1 = K*(Ax): there exists a unique density

operator p such that, for any initial bounded operator Ay,

liMmks 100 Ak = Tr (Aoﬁ) I.



Discrete-time Stochastic Master Equations (SME)

Trace preserving Kraus map K, depending on the classical control input u:

Ku(p) => MyepM . with > M| Myc=I.
€ 3

Take a left stochastic matrix [1y.¢] (ny,e > 0and 35, 7y = 1, ¥¢) and set

Kuy(p) =2 77y7§Mu,§pMZ’E. The associated Markov chain reads:

p _ Koy (Pi)
et Tr (Kuy v (Pi))

Classical input u, hidden state p, measured output y.
Ensemble average given by K, since E (p, 1 | px, Uk) = Ky, (p)-
Markov model useful for:

measurement yx with probability Tr (Ky,,y, (pk)) -

Monte-Carlo simulations of quantum trajectories (decoherence,
measurement back-action).

quantum filtering and parameter estimation: e.g. to get the quantum
state p, from p, and (yo, - . ., yx—1) (Belavkin quantum filter developed
for diffusive models).

feedback design and Monte-Carlo closed-loop simulations
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Classical I/0 dynamics for diffusive Stochastic Master Equation ©
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Continuous-time models: stochastic differential systems (Ito formulation)
density operator p (p' = p, p > 0, Tr(p) = 1) as state (i = 1 here):

. I
dp, = ( — i[Ho + uiHy1,p] + > Lup,L] - E(LZLupt + p,LlLu)) dt

v=d,m

+ V/m (met +pLhy —Tr ((Lm + Ljn)Pr) Pt> dW;
driven by the Wiener process W;, with measurement y;,

ayr = /nm Tr ((L,,, + L) pt) dt + dW; detection efficiencies nm € [0, 1].
Measurement backaction: dp and dy share the same noises dW. Very

different from the Kalman I/O state-space description widely used in control
engineering.

SA. Barchielli, M. Gregoratti (2009): Quantum Trajectories and
Measurements in Continuous Time: the Diffusive Case. Springer-Verlag.



Markov process under continuous measurement

Yt

[ ) ] #
Inverse setup of photon-box: photons read out a qubit.

Two major differences

m measurement output taking values from a continuum of possible
outcomes

dy; = /i Tr ((L + LT)pt) dt + dW,.

m Time continuous dynamics.




Stochastic master equation: Markov process under continuous measurement

. 1
dpy = <_I[Ha pil + Z L,pL} - E(’-l’-uﬂt + Pt’-il—u)> dt

+ Z Vi (Lth + ptL:f, —Tr ((Lu + LDPt) Pt) aw,,

where W, ; are independent Wiener processes, associated to
measured signals with efficiencies 7, € [0, 1]:

At = AW, + /i Tr ((Ly + L)y ) o
Wiener process W;:
m Wy =0;
m t — W; is almost surely everywhere continuous;

mFor0<s <t <8 < b W, — Ws, andW;, — W, are
independent random variables satisfying W; — Ws ~ N(0, t — s).

Average dynamics: Lindblad master equation

dE (p) =
(~1H.E(p)]+ %2, LE(p) L} = H(LILE(py) + E(p) L}L,)) ot.




lto stochastic calculus

Given a diffusive Stochastic Differential Equation (SDE)

aX; = F(X;, ydt + Y G, (X, )aW,.,

we have the following chain rule:

Defining f; = f(X;) a C? function of X, we have

df, — (a—f
Xi

Furthermore

F(X;, 1) + 2 66X2‘ (Gl,(Xt,t),Gl,(Xt,t))> ot

=F Z Xt, dWy fie

226)@\ (Gu (X 1), Gu(X:, ))>.



Link to partial Kraus maps (1)

. 1
dp; = (—I[H, P+ Lopl) — 5(LiLup + ptLlLy)> dt
+ 3V (Lupe+ ookl =T (Lo + L))py) pr) dW,

equivalent to
Moy p MYy, + 30, (1 = n.)Lop L} dt
Tr (MdertMLy, +2,00 - nu)vatLidO

Ptiat =
with
1
- i T
My, =1+ <_/H -3 XU: LVLV> at + XV: Vil dYu,tLy .

Moreover, defining dy, ; = s,.+V/dt:

m‘: o

s
IP( (Su,t €[S, 80 +ds.]), |p,) =Tr <MS drPer\/a +> 0 - n,,)Luptlet> 118 \/27‘:'5“.
v v



Example of Ito calculations

With dy; = Tr ((L + LT)p,) dt + dw,

]
dp; = (Lprl-T - 5(LTLp + pfl-”-)) dt+ (Log + pLT = Tr ((L+LY)py) pr) AW,

reads :
Md}’tprdy,

Tr (Mdy[ptMLy,)

where Mgy, = I — %LTL + dy:L and where one uses expansion including first order

terms in dt and Ito rules

dpt = prrgt — Py AW = O(Vdt), dW? =dt, dtdW;=0,...

Ptidt =



Link to partial Kraus maps (2)

m P defines a probability density up to a correction of order dt?:
/P(s, € [s,5+ds] | pp) = 1 + O(a2).
m Mean value of measured signal
/ S/B(s1 € [5.5+08] | ) = it Tr (L + L)y ) Valt+ O(a2).
m Variance of measured signal

/ 2 P(s: C [, 5+ ds] | py) = 1+ O(d).

Compatible with dy,,. = dW,; + /i, Tr ((Ll, + LL)p,) d.



Link to partial Kraus maps (3)

, 1
dp; = <_I[Ha Pl + Z L,pLf — E(’-l’-upt + p,LiL,,)> dt

+ Z Vi <Lth +pLl, —Tr ((Lu + LDPt) Pt) aw,, +,
equivalent to
May, oMy, +32,(1 — )L p; L} ot
Tr (MdertM:rjy, + Zu(1 - nu)Lthlet)

Ptyat =

m Indicates that the solution remains in the space of semi-definite
positive Hermitian matrices;

m Provides a time-discretized numerical scheme preserving
non-negativity of p.

Theorem

The above master equation admits a unique solution remaining for all
t>0in{peCVN : p=pl p>0, Tr(p)=1}
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Jump SME

With Poisson process N(t), (dN(t)) = (5 +7Tr (Vo VT) ) dt, and detection

imperfections modeled by 6 > 0 (shot-noise rate) and 77 € [0, 1] (detection
efficiency), the quantum state p; is usually mixed and obeys to

, |
dor = (~ilH. 0+ ViV = JV Vor +pV'V) )

* (9?:);;:7(\\//2,‘\//2) - p’) (aN) — (F+7Tr (Vo) ) o)

With proba. 1 — (§+ﬁTr (Vo V) ) dt, dN(t) = 0 and

MopeMj + (1 —7) Vo Vidt
Tr (Mop,/vlg (1 =7V VTdt)

Pt+at =

with Mo = 1 — (iH+ 3 VTV) dt.
With proba. (9+7Tr (VpcV') ) dt, N(t + di) — N(t) = 1.and

~ AT _ =\ T Vil i T
MOPIMO + (1 7]) Vp[V at with b= ep; + ’I7thV

Pttdt = = —— )
Tr (Mo + (1 =) Vi Viat) G477 (VpeVh)



Structure of dynamical models in discrete time

Structure of dynamical models in continuous time
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Quantum Non Demolition (QND) measurement of photons

Homodyne measurement of a qubit



Diffusive-jump SME

The quantum state p; is usually mixed and obeys to
. | |
dp; = (—I[H, pt] + LptLT — E(ULp, +plTL) 4+ Vp VT — 5(vT Vot + pe V1 V)> at

n \/ﬁ(Lp, oLt = Tr ((L + LT)p,) pt) dw,

( Opt + Vo V1

0+7Tr(Vp V1) _p’> (dN(t) B (EJ“WT' (V”’VT) ) dt)

With dy: = /7 Tr (L + L") pt) dt + dW; and dN(t) = 0 with proba
1- (§+ﬁTr(thVT))dt

May,oiM}y,, + (1 = )LpiLtdt + (1 =)V Vit
Tr (Mdy,pth,y' +(1—n)lpltdt+ (1 — 7)Vpr VTdt)

Pt+dt =

with May, = I — (iH + SLTL+ Y ViV) dt + /rdy;L.
For N(t + dt) — N(t) = 1 of proba. (§+ﬁTr (VpeVT) ) dt we have

May, 5tMy, + (1 = m)LpeLTdt + (1 = )V vFr

Tr (Mdytﬁ,M;yt + (1= n)lplLtdt+ (1 —7) v,atvwr)

_ Op¢ +7Vp VT
N O+7Tr (Vpe V1)

with ¢

Pt+dt =



General diffusive-jump SME

The quantum state p; is usually mixed and obeys to

dpy = (—f[H, ol + > Lupill, — LWLy pr+ ol L) + VoV = 2V Vipr + 1 V)] ))

I
v

#32 v (Lo orkl = T (L + Lo oo ) W
2

Ot + 3, Ty Vu’p’VZ’ , (
t

_ —t - dN,, () — (6,L DL AL (vu,ptvl,) ) dt>
o\ O+ 2Ty T (VM””V;/) n!

where n,, € [0, 1], @UHN ! > 0 with Myt = Eu My, < 1 are parameters modelling measurements
imperfections.

When YV, dN,,(t) = 0, we have

May, peMYy, + 50, (1 = nu)Lupelldt + 52, (1 = 7,)Vupe Vi ot

Pt+dt =
Tr (May, peMly, + 5, (1 = )Ly prll dt + 5, (1 = 7,) Viupr Vi)

with Mgy, = 1 — (//—/ iz, iy, vi vu) dt + 3, /Ao dy,iL, and where
Yt = 7w Tr (Lo +LE) pr) dt+ dW,,

If, for some w, Ny, (t + dt) — N, (t) = 1, we have a similar transition rule

Mdy,ﬁtM;y' +3,(0 = m) Lyl dt + Y= ﬁ“/)V“/ﬁtVl/df with 5 — OpupttS M, Vu/PrVT
= .
T (Mdy'ﬁtM;y‘ + 2,00 = )l Ll + 2,1 — ﬁul)Vulﬁ,VZ,dt) O+ Tyt Tr(V}L/p,VIZ/)

Pt+dt =




Quantum Non Demolition (QND) measurement of photons
m Monte Carlo simulations and experiments
m Martingales and convergence of Markov chains
m QND martingales for photons



LKB photon box : open-loop dynamics ideal model

Markov process: |1k) = |[¥)i=kat, kK € N, At sampling period,

__Mlv _ \ith y, = g, probability Py = { x| Ml M|tk );
Wpt) = (x| M Mg | ) Yek=0,pP y g <1/Jk| g g|wk>,
k1l = M| v)

T ity B — (o MM
L) with yx = e, probability Pe <¢k| A e|¢k>,

with
Mgy = cos(po + NI¥), Mg = sin(po + N©).



QND measurement of photons

Markov process: density operator px = |1k)(1k| as state.

MngM;
Tr(MgpkM;)

Pk+1 =
+ _ MepMi with yx = e, probability Pg = Tr (MepkMTe>,

with yx = g, probability P, = Tr (MgpkM;);

with
Mg = cos(ypg + NY), Mg = sin(pg + NY).

Quantum Monte Carlo simulations (2 Matlab scripts):
IdealONDphoton.m RealisticONDphoton.m
Experimental data

Quantum Non-Demolition (QND) measurement

The measurement operators My . commute with the photon-number
observable N: photon-number states |n)(n| are fixed points of the
measurement process. We say that the measurement is QND for the
observable N.



Asymptotic behavior: numerical simulations

100 Monte-Carlo simulations of Tr (p,|3)(3|) versus k

Fidelity between pPK and the Fock state &3
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Some deﬁnitions (see e.g. C.W. Gardiner: Handbook of stochastic methods ...[3rd ed], Springer, 2004)

Convergence of a random process

Consider (Xx) a sequence of random variables defined on the probability space
(92, F,P) and taking values in a metric space X’. The random process Xj is said to,

converge in probability towards the random variable X if for all e > 0,

Jim (X = X| > ¢) = lim P(we Q| X(w) = X(w)| > ) =0;
converge almost surely towards the random variable X if
IP’( lim Xk:X) =P<w€Q| lim Xk(w):X(w)> = 1l
k— o0 k— o0

converge in mean towards the random variable X if limy_, o E (| Xx — X|) = 0.



Some definitions

The sequence (Xx)z2+ is called a Markov process, if for all k and ¢ satisfying
k > ¢ and any measurable function f(x) with sup, |f(x)| < oo,

E(f(X) | X1, ..., Xe) = E(F(X) | Xe).

Martingales

The sequence (Xx)i2; is called respectively a supermartingale, a
submartingale or a martingale, if E (| Xk|) < oo fork =1,2,---, and

E(Xk | Xi,...,X) < X, (P almost surely), k>¢

or
E(Xk | X1,...,Xe) > Xe (P almost surely), k>¢,

or finally,

E(Xc | X1,...,Xe) = Xe (P almost surely), k>



Martingales asymptotic behavior

H.J. Kushner invariance Theorem

Let { Xk} be a Markov chain on the compact state space S. Suppose that
there exists a non-negative function V(x) satisfying

E (V(Xkt+1) | Xk = x) — V(x) = —o(x), where o(x) > 0 is a positive
continuous function of x. Then the w-limit set (in the sense of almost sure
convergence) of X is included in the following set

I={X|o(X)=0}.

Trivially, the same result holds true for the case where
E (V(Xkt+1) | Xk = x) — V(x) = o(x) with o(x) > 0 and V(x) bounded from
above (V(Xk) is a submartingale),.

Stochastic version of Lasalle invariance principle for Lyapunov function of
deterministic dynamics.



Asymptotic behavior

Consider for My = cos(yo + Nv¥) and M, = sin(ypo + Nv)

MyPkM]\ 0 _ . B A\

Prss — T(T,,Mi;) with yx = g, probability Py = Tr (Mg i Mg>,
Me Me . _ . .

m with y,x = e, probability Pe = Tr (MePkML>,

with an initial density matrix p, defined on the subspace

span{|n) | n=0,1,--- ,n™>}. Also, assume the non-degeneracy
assumption Vn# m € {0,1,--- ,n™>}, cos?(pm) # cos?(pn) Where
on = o + NY.

Then

m forany ne€ {0,...,n">}, Tr(p,|n)(n|) = (n|pk|n) is a martingale

m p, converges with probability 1 to one of the n™® + 1 Fock state
[n)(n| with n € {0, ..., nm}.

m the probability to converge towards the Fock state |n)(n| is given
by Tr (po|n)(nl) = (nlpo|n).




Proof based on QND super-martingales

m For any function f, Vi(p) = Tr (f(N)p) is a martingale:
E (Vi(pki1) | o) = Vi(px).

B V(p) =>_,.m V(nlpln) {m[p|m) is a strict super-martingale:

E (V(px+1) | px)

= Z (| cos ¢n cos dm| + | sin gnsin @m|) v/ (Nl p|n) (M| p|m)

n#m
< rV(px)

with r = maxpzm (| €OS P €OS Pm| + | sin Ppsin ¢m|) and r < 1.
m V(p) > 0and V(p) = 0 means that exists n such that p = |n)(n|.

Interpretation: for large k, V(pk) is very close to 0, thus very close to [n)(n|
(“pure state” = maximal information state) for an a priori random n.
Information extracted by measurement makes state “less uncertain” a
posteriori but not more predictable a priori.



Exercice

Consider the Markov chain p,,; = My, (p, )M, / Tr (Myk(pk)M}k) where
Yk = g (resp. yx = €) with probability py x = Tr (MgpkMT) (resp.
Pex = Tr (MepkM )) The Kraus operators are given by

M=o () o (18) - on () (157 )

VN
in( VN
M, = —sin (9 )cos (%\/W) —cos(e‘)a<(%\F))

with 6; = 0. Assume the initial state to be defined on the subspace {|n)}"¢
and that the cavity state at step k is described by the density operator p,.

Show that
E (Tr (Npii1) | px) = Tr(Npy) — Tr (sin2 (%W) pk) .

Assume that for any integer n, ©+/n/x is irrational. Then prove that
almost surely p, tends to the vacuum state |0)(0| whatever its initial
condition is.

When ©+/n/x is rational for some integer n, describe the possible
w-limit sets for p,.



Homodyne measurement of a qubit



Dispersive measurement of a qubit

=]

Inverse setup of photon-box: photons read out a qubit.

Approximate model

Cavity’s dynamics are removed (singular perturbation techniques) to
achieve a qubit SME:

_ r
dp; = —i[H, p;]dt + Tm(o'zpto'z — py)at

Vil m
2
dy; = dW: + /0l i Tr (0zp;) dt.

+

(0201 + p10z — 27Tt (02p1) pr) AW,




Quantum Non-Demolition measurement

r
dp, = —i[H, p]dt + —~ 2 v (920,07 — py)clt
vl
+ %(Uzpt + pioz — 27Tr (azp;) pr) AW,

dyt aw; + +/ N m TI’ UZpt) at.

Uncontrolled case: H = weqoz/2.

Interpretation as a Markov process with Kraus operators

-
My, =1 — ( “’299 + —I) dt + “72 P
(A —n)diL = W"Z'

QND measurement

Kraus operators Mgy, and /(1 — n)dtL commute with observable oy:
qubit states |g)(g| and |e)(e| are fixed points of the measurement
process. The measurement is QND for the observable o.



QND measurement: asymptotic behavior

Consider the SME

r
dp, = —i[H, p]dt + —~ (Uzpzo'z p;)at
NG
+ %(Uzm + poz — 2Tt (0zp) p)dW:,
with H = %20z and 7 > 0.

m For any initial state p,, the solution p, converges almost surely as
t — oo to one of the states |g)(g| or |e)(e|.

m The probability of convergence to |g)(g| (respectively |e)(e|) is given by
Py = Tr(19)(9lpo) (respectively Tr (|€)(e|py))-

m The convergence rate is given by nl'y/2.
Proof based on the Lyapunov function V(p) = 1/1 — Tr? (azp) with

TR V(o)) = - TME (V(p)

Monte Carlo simulations: 1dealQONDgubit.m RealisticQNDqubit.m
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