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Introduction
Two-level systems (qubits, spins)
Quantum harmonic oscillators (modes, springs)

The Haroche photon Box



Second quantum revolution: Controlling quantum degrees of freedom

Some applications
m Nuclear Magnetic Resonance (NMR) applications;

m Quantum chemical synthesis;
m High resolution measurement devices (e.g. atomic/optic clocks);

® Quantum communication (BB84, ...);
m Quantum computation and simulation.

Physics Nobel prize 2012

Serge Haroche David J. Wineland

Nobel prize: ground-breaking experimental methods that enable measuring
and manipulation of individual quantum systems.



Outline of the lectures

Nov. 30

Dec. 2

Dec. 7

Dec. 9

Quantum mechanics from scratch: two-level systems (qubits,spins), harmonic
oscillators (modes, springs), the Haroche photon box.

Dynamical models: Markov chains and Kraus maps (discrete time), Lindblad
master equation and stochastic master equations (continuous time). Two key
examples: quantum non demolition measurement of photons (discrete time),
homodyne measurement of a qubit (continuous-time).

Averaging (rotating wave approximation) and singular perturbations (adiabatic
elimination): resonant control of qubits, dispersive and resonant coupling
between qubits and harmonic oscillators, adiabatic elimination of a low-quality
harmonic oscillator.

Stabilization with a quantum controller: cat-qubit and how a low-quality harmonic
oscillator can stabilize via coherent coupling the quantum information stored in a
high-quality harmonic oscillator.
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Cohen-Tannoudji, C.; Diu, B. & Laloé, F.: Mécanique Quantique Hermann, Paris,
1977, 1& |l (quantum physics: a well known and tutorial textbook)
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E. Davies: Quantum Theory of Open Systems. Academic Press, 1976.
(mathematical physics: functional analysis aspects when the Hilbert space is of
infinite dimension )
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the Natural Sciences [3rd ed], Springer, 2004. (tutorial introduction to probability,
Markov processes, stochastic differential equations and Ito calculus. )

M. Nielsen, I. Chuang: Quantum Computation and Quantum Information.
Cambridge University Press, 2000. (tutorial introduction with a computer science
and communication view point ')

(]



Models of open quantum systems are based on three features®

Schrédinger: h = 1, wave funct. |¢)) € H or density op. p ~ [¢){¢|

d . d .
EWO - _IH‘/I:D% ap - _,[Ha p]a H = HO + UH1

Entanglement and tensor product for composite systems (S, M):

m Hilbert space H = Hs ® Hu
m Hamiltonian H = Hs @ Iy + Hint + 1s @ Hy
B observable on sub-system M only: O = Is ® Op.

Randomness and irreversibility induced by the measurement of
observable O with spectral decomp. 3> AP,

B measurement outcome y with proba. P, = (¢|Pu|v) = Tr (pPy.)
depending on |¢), p just before the measurement

B measurement back-action if outcome p = y:
Py|4) — PypPy

[P) = )+ = TP o) PP = T 0P,

5S. Haroche, J.M. Raimond: Exploring the Quantum: Atoms, Cavities and
Photons. Oxford University Press, 2006.



Two-level systems (qubits, spins)



2-level system (spin-1/2)

I — €> The simplest quantum system: a ground state
U |g) of energy wgy; an excited statel le) qf energy
AN we. The quantum state |v) € C? is a linear su-

perposition |¢) = 1g|g) + ¥e|€) and obey to the
Schrédinger equation (¢4 and v depend on t).

Schrédinger equaiion for the uncontrolled 2-level system (A =1, i.e.
energy in frequency unit) :

+ 910} = Hol) = (wele) (el + wolg) ) )

where Hy is the Hamiltonian, a Hermitian operator H(T, = H,.

Energy is defined up to a constant: Hy and Hy + w(f)I (w(t) € R
arbitrary) are attached to the same physical system. If |) satisfies
i) = Hol) then [x) = e~ O]y) with 49 = = obeys to

i%|x) = (Ho + w=l)|x). Thus for any ¥, ) and e~?|¢)) represent the
same physical system: The global phase of a quantum system |4)
can be chosen arbitrarily at any time.



The controlled 2-level system

Take origin of energy such that wg (resp. we) becomes —=°5¢
(resp. “*5*) and set weg = we — wg
The solution of ig|¢) = Hohb) = 52 (le)(el — lg){gN)lv) is

—iwegt

()t = tgoe 2 1) + e 2 |€).

With a classical electromagnetic field described by u(t) € R,
the coherent evolution the controlled Hamiltonian

H(t) = “0 X0 0, = 259 16) el 1) 1)+ A 1e) 01+ ) )

The controlled Schrédinger equation i%w) = (Ho + u(t)Hq)|y)
readS'

576 ()
g 2 \0 -1 g 2 1.0/ \Wg/)"
The 3 Pauli Matrices®

ox = |e)(gl+19)(el, oy = —ile)(gl+ilg){el, oz = |e)(e] —|g)(g]

5They correspond, up to multiplication by i, to the 3 imaginary quaternions.




Pauli matrices and some formula

ox = |e)(g| +[9){el, oy = —ile)(g| +i|g)(el, oz = [e)(e| — |g)(d

ox’> =1, oxoy =ioz, [ox,0y]=2igy, circular permutation ...

m Since for any 6 € R, €9 = cos?) + isin foy (idem for oy,
and oz), the solution of i |¢) = 2oz |v) is

—iwegt eql - egl
)t =e" 2 %)y = <cos <w29 > I —isin <wzg) Uz) [P)o

m Foroa,B8=x,y,2z, a # 5 we have

) ) ) -1 ) + )
Ou eleo'ﬁ — 67190'5 Oa, <eleaa) — (6100a> — efIGO'a )
and also

i0 i0 i i
e—%aa Uﬁe%aa _ e—l@aa op = O_Belﬂaa



Density matrix and Bloch Sphere

We start from |¢)) that obeys i%w) = H|y). We consider the orthogonal
projector on |¢), p = |1)(v], called density operator. Then p is an Hermitian
operator > 0, that satisfies Tr (p) = 1, p? = p and obeys to the Liouville
equation:

d .

Ep = _I[H7 P]-
For a two level system |¢) = 14|9) + 1e|€) and

_ I+ xox + yoy + zoz
r= 2

where (x,y,2) = (2R(¢gvs), 23(¢gs), [vel? — [4g]?) € R® represent a
vector M, the Bloch vector, that evolves on the unite sphere of R®, S? called
the the Bloch Sphere since Tr (p?) = x? + y2 + 22 = 1.
The Liouville equation with H = “2 0, + 4ox reads

Ly (U7 + wegk) x M
at o '



Exercise

Consider H = (uox + Voy + woy)/2 with (u, v, w) € R3.
For (u, v, w) constant and non zero, compute the solutions of

d . d . .
o0 = —iHl), LU= —iHU with Uo = I

in term of [¢)o, o0 = (Uox + Voy + woz)/V u? + v2 + w? and

w = VU2 + v2 + w2, Indication: use the fact that o = I.
Assume that, (u, v, w) depends on t according to

(u, v, w)(t) = w(t)(T, v, w) with (&, v, w) € R3/{0} constant of

length 1. Compute the solutions of

d . d . ,
G0 =—iH®W), U =—iH(tU with Uy =1

in term of [¢)o, & = Uox + Voy + Woz and 0(t) = fot

Explain why (u, v, w) colinear to the constant vector (u, v, w) is
crucial, for the computations in previous question.

w.



Summary: 2-level system, i.e. a qubit (spin-half system)

m Hilbert space:
Han = C2 = {4glg) + bele), vg. v € C}.

m Quantum state space:
D={pec L(Hm),p' =p,Tr(p)=1,p>0}.

m Operators and commutations:

0. = |g){e], oy = o' = |e)(g] Y A
ox = 0. + 0, = |g)(e] + [e)(gl; NS Y
oy = lo. — io, = i|g)(e| —ile)(gl; Y

oz = o.o. — o0, = |e)(e] — [9)(gl;
ox® = 1, oxoy = ioy, [ox, 0y] = 2ioy, ...

m Hamiltonian: Hy = wq0z/2 4 Ugox.

m Bloch sphere representation:
D= {%(I—i—xa'x—‘rydy—i-ZO'z) | (x,y.2) €ER3, X2+ y2 + 22 < 1}



Quantum harmonic oscillators (modes, springs)



Harmonic oscillator

Classical Hamiltonian formulation of dtzx = —w?x

d_wpM d o _ W2
d*=P= 90 wP = ox H=30+x).

Electrical oscillator:
Mechanical oscillator

k

|—x
LC oscillator:
- i &2y K
Frictionless spring: X = X d vV d / o?
&= @' ="c (@' = i)

Quantum regime

ks T < hw : typically for the photon box experiment in these lectures,
w=51GHz and T = 0.8K.



Harmonic oscillator’: quantization and correspondence principle

d, _ __ OH dp_ _ __OH _ w(p2 2

Quantization: probability wave function |); ~ (¢(X, t))xer With

[) ~ (., 1) € L2(R, C) obeys to the Schrédinger equation
(A =1 in all the lectures)

d . _g ) 2y _ W o
Sy =Hw), H=SE X =20

where H results from H by replacing x by position operator X
and p by momentum operator P = —ia%. H is a Hermitian
operator on L?(R, C), with its domain to be given.

PDE model: i%¥(x,t) = f%gz%(x, 1)+ 4x2y(x,1), x€R.

"Two references: C. Cohen-Tannoudiji, B. Diu, and F. Lalo&. Mécanique
Quantique, volume 1& Il. Hermann, Paris, 1977.
M. Barnett and P. M. Radmore. Methods in Theoretical Quantum Optics.
Oxford University Press, 2003.



Harmonic oscillator: annihilation and creation operators

Average position (X), = (1/|X|+) and momentum (P>, = (Y| PJy):

+o0
X = [ xwPox, (), =i Ty Wy

Annihilation a and creation operators a’ (domains to be given):

_\[(X+/P) —<x+a) a_ﬁ(X—/P)_ﬁ(x—a

Commutation relationships:
[X,P|=il, [aa]=1 H= %(P2 + X)) =w (a*a+ %) .
Set Xy = if (e"a+ e’a') for any angle ¢:

[x@,xg%] —il.



Harmonic oscillator: spectral decomposition and Fock states

Spectrum of Hamiltonian H = — 8)(2 +4x2

E. — 1 _ 1 1/4 1 _X2/2H ” B N 2 d" 2
r=wtnig) w0 = (1) e 0, () = (1) e

0 2nn!

Spectral decomposition of a'a using [a,a'] = 1:

m If |b) is an eigenstate associated to eigenvalue ), a|v)) and af|¢))
are also eigenstates associatedto A — 1 and A\ + 1.

m a'ais semi-definite positive.

m The ground state |¢) is necessarily associated to eigenvalue 0
and is given by the Gaussian function g(x) = ,,1/4 exp(—x2/2).



Harmonic oscillator: spectral decomposition and Fock states

[a,a’] = 1: spectrum of a'a is non-degenerate and is N.

Fock state with n photons (phonons): the eigenstate of afa associated to the
eigenvalue n (|n) ~ ¥n(x)):

a'aln)=nln), aln)y=+vn|n—1), a'ln)=vn+1|n+1).

The ground state |0) is called 0-photon state or vacuum state.

The operator a (resp. a') is the annihilation (resp. creation) operator since it
transfers |n) to |[n — 1) (resp. |n+ 1)) and thus decreases (resp. increases)
the quantum number n by one unit.

Hilbert space of quantum system: % = {3, ¢a|n) | (¢n) € P(C)} ~ L%(R,C).
Domain of aand a': {3°, ¢a|n) | (¢a) € h'(C)}.
Domain of H ot a'a: {3, ca|n) | (¢n) € P?(C)}.

H(C)={(c)) € () | D_nMleaf < o0},  k=1,2.



Harmonic oscillator: displacement operator

Quantization of d—z —w?x — wV2u, (H = £(p* + x%) + V2ux)

H=w (aTa—s- 1> +u(a+a').

N

The associated controlled PDE

81[) o w 821/) w L2
IW(X7t)__§W(X7t)+(EX +\/§UX) ’IZJ(X,t)
Glauber displacement operator D, (unitary) with o € C:

D. — eaata*a _ e\/éisaxﬂ/émap
From Baker-Campbell Hausdorf formula, for all operators A and B,
e"Be " = B+ [A, B + ;[A [A B]l + (A [A,[A B +
we get the Glauber formula® when [A, [A, B]] = [B, [A, B]] = 0:

.
MB _ oA B o 2lABl

2
S
8Take s derivative of e5At8) and of %4 ¢%8 e~ 2 48],



Harmonic oscillator: identities resulting from Glauber formula

With A = aa' and B = —a*a, Glauber formula gives:

—L ozawL —a*a +M —a*a aaT
D,.=¢ 2 e =e 2 e e

D_.aD,=a+al and D_.a'D, =a'+a"l

With A = V2iSaX ~ ivV23ax and B = —vV21RaP ~ —v2Ra 2., Glauber
formula gives®:

D. — efi%aga ei\[\rax 7\[%04
—

(Da|¢>)x,, _ e—iéRa%a ei\/éi}ax,(p(x o \/E%Oz,t)
Exercise: Prove that, for any «, 3, ¢ € C, we have

o fap*
D..g=¢€ 2 D.Dg

DosDoo = (14252 ) [+ ca' — 'a+ O(|e)

(20.) 0.0 (=855 1 (L) o - (So)

®Remember that €%/ (f(x)) = f(x + r).




Harmonic oscillator: lack of controllability

Take |¢) solution of the controlled Schrédinger equation

i%ly) = (w(a'a+ }) + u(a+a"))|y). Set (a) = (¥|a|y). Then
d
dt

From a = X5 we have (a) = X221 where (X) = (y|X|¢) € R and

(P) = (y|PJy) € R. Consequently:

(a) = —iw (a) — iu.

d d
E(X):w(P), a<Al>>z—w<x>—x/§u.

Consider the change of frame [1) = e 1D 4, |x) with

t
0 :/ (wl (@) > + u§R((a))) , Dy, = p@a—(@ia
0
Then |x) obeys to autonomous Schrédinger equation
. d _ : )
g =w (a a-t 2) ).

The dynamics of |¢) can be decomposed into two parts:
m a controllable part of dimension two for (a)
m an uncontrollable part of infinite dimension for |x).



Harmonic oscillator: coherent states as reachable ones from |0)

Coherent states

8

\a|2 + N

o) = D.|0) =€ 2 °—|n), acC

3

>
Il
(=}

are the states reachable from vacuum set. They are also the eigenstate of a:
ala) = o|a).

A widely known result in quantum optics'®: classical currents and sources
(generalizing the role played by u) only generate classical light
(quasi-classical states of the quantized field generalizing the coherent state
introduced here)

We just propose here a control theoretic interpretation in terms of reachable
set from vacuum.

1°See complement By, page 217 of C. Cohen-Tannoudji, J. Dupont-Roc,
and G. Grynberg. Photons and Atoms: Introduction to Quantum
Electrodynamics. Wiley, 1989.



Summary for the quantum harmonic oscillator

m Hilbert space:
H={ S taln), (n)nzo € P(C)} = L3(R,C)

m Quantum state space:
D={peL(H),p' =p,Tr(p)=1,p>0}.

m Operators and commutations:
aln) = +/n|n-1),af|n) = v/n+1in+1);
N = a'a, N|n) = n|n);
[a,a'] =1, af(N) = f(N + Da;
D, = gea'—ata co

X+iP
a— \_;é :%(X—F%)’[X’P]:Zl-
m Hamiltonian: H/h = wca'a+ uc(a+ a’). @,

(assomated classical dynamics:

% = wep, dt = —WeX — \@Uc)-

)

2)

)

10)

m Quasi-classical pure state = coherent state |«)
a€C: |a) = Ypso (e jo?/2 a” )\n> la) = —zeV2xag=t
ala) = ala), Da|0) = |a).

x—V2ZRa)?
2



The Haroche photon Box



The first experimental realization of a quantum state feedback

The photon box of the Laboratoire Kastler-Brossel (LKB):
group of S.Haroche (Nobel Prize 2012), J.M.Raimond and M. Brune.
11

Stabilization of a quantum state with exactly n =0,1,2, 3, ... photon(s).
Experiment: C. Sayrin et. al., Nature 477, 73-77, September 2011.
Theory: I. Dotsenko et al., Physical Review A, 80: 013805-013813, 2009.
R. Somaraju et al., Rev. Math. Phys., 25, 1350001, 2013.

H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.

" Courtesy of Igor Dotsenko. Sampling period At = 80-us.



Composite system built with an harmonic oscillator and a qubit.

m System S corresponds to a quantized harmonic oscillator:

HS = HC = {i Cn’n>

n=0

(Cn)no € /Z(C)} ,

where |n) represents the Fock state associated to exactly n
photons inside the cavity

m Meter M is a qu-bit, a 2-level system (idem 1/2 spin
system) : Hy = Ha = C?, each atom admits two energy
levels and is described by a wave function ¢g|g) + ce|€)
with |cg|? + |ce|? = 1; atoms leaving B are all in state |g)

m State of the full system |V) € Hs @ Hpy = He @ Ha:

“+00
V) = Z Cng’”) ® |g) + Cneln) @ |€), Cre, Cng € C.

n=0

Ortho-normal basis: (|n) ® |g),|n) ® |€))nen-



The Markov model (1)

C
R
R2
W =

m When atom comes out B, |W)g of the full system is separable
W) = [¥) ®19).

m Just before the measurement in D, the state is in general
entangled (not separable):

V)R, = Usm(|v) ®19)) = (Mg|t)) @ |g) + (Melv))) ® |€)

where Ugy is a unitary transformation (Schrédinger propagator)
defining the linear measurement operators My and M on Hs.

Since Usgy is unitary, MMy + MM = I.



The Markov model (2)

Just before D, the field/atom state is entangled:

My|y) @ |g) + Me|i) © |e)

Denote by 1 € {g, e} the measurement outcome in detector D: with
probability P, = <1/z\MLM,L|z/;> we get p. Just after the measurement
outcome p = y, the state becomes separable:

|W>D:ﬁ(”’}’|w>)®‘y (\/W > ®‘y>

Markov process: [1x) = [)i—kar, k € N, At sampling period,

Mot with y, = g, probability Py = (i | MEM, |y ):
_ (x| M Mg| ) Ye= 9P Y% <wk| 9 g|¢k>’
o) =0 " gy

, B . B :
(o My Mo ) with yx = e, probability Pe = <1/’k|MeMe|¢k>.



Markov process with detection inefficiency

m With pure state p = |¢){(¢|, we have

po =) (W] = M,.pM',

Tr (MupML)
when the atom collapses in 1 = g, e with proba. Tr (MHPML>'

m Detection efficiency: the probability to detect the atom is
n € [0, 1]. Three possible outcomes for y: y = g if detection in g,
y = e if detection in e and y = 0 if no detection.

The only possible update is based on p: expectation p, of ¢, ) (1|
knowing p and the outcome y € {g, e, 0}.

MgPMZ . -
W if y = g, probability n Tr (MgpMy)
= MepMi .
P+ W if y = e, probability n Tr (MepMeg)

MgpM;, + McpM}, ity = 0, probability 1 —

Forn=0:p, = MgpM; + MopM., = K(p) = E (py | p) defines a
Kraus map.



LKB photon-box: Markov process with detection errors (1)
m With pure state p = |¢) (|, we have

Py =) (Ws] = MuPML

Tr (M,.oM})

when the atom collapses in . = g, e with proba. Tr (MﬂpML).

m Detection error rates: P(y = e/u = g) = ng € [0, 1] the
probability of erroneous assignation to e when the atom
collapses in g; P(y = g/ = e) = ne € [0, 1] (given by the
contrast of the Ramsey fringes).

Bayesian law: expectation p, of 1) (14| knowing p and the
imperfect detection y.

(1 _ng)MgPM;"FﬂeMePMz
Tr((1—ng)MgpMj+neMepM} )
ngMgpMJ+(1—ne)MepM]
Tr(ngMgpM}+(1—ne)MepM} )

if y = g, prob. Tr ((1 — 1g)MgpM}, + neMepML);
pL =

if y = e, prob. Tr (ngMgpML +(1- ne)MepML).

p.. does not remain pure: the quantum state p, becomes a mixed
state; |¢;.) becomes physically irrelevant.



LKB photon-box: Markov process with detection errors (2)

We get
@ _WQ)MQPM; +neMopM],
Tr((1—ng)MgpMj+neMopM} ) °

UgMgPM£+(1 —ne)MepM
Tr(ngMgPM;+(1 _ne)MePMz\)

with prob. Tr ((1 — ng)MgpM}, + neMepM‘;);
P+ =

with prob. Tr (ngMgpM; (- ne)MepML).
Key point:
Tr ((1 — ng)MgpM; + neMepMTe> and Tr (ngMgpM; +(1- ne)MepML>

are the probabilities to detect y = g and e, knowing p.
Generalization by merging a Kraus map K(p) = >, MupML where

=, MI,M,, = I with a left stochastic matrix (1, ,.):

Zu ny,uMupML

pr = . when we detect y = 1.
Tr (Z# ny’uMMpM#>

The probability to detect y = 1/ knowing p is Tr (ZM nMMupML).



Photon-box full model: 6 x 21 left stochastic matrix (1, ,,)

— 1 i
Ph+t = Tr(Zu ﬂyk,uMquM;rL) (E” nyk’uMupkMM> where

m we have a total of m = 3 x 7 = 21 Kraus operators M,,. The
"jumps" are labeled by p = (¢, 1) with
u? € {no,g,e,qgg,ge, eg, ee} labeling atom related jumps and
u® € {o,+, —} cavity decoherence jumps.

m we have only m’ = 6 real detection possibilities
y = €{no,g,e,qgg,ge, ee} corresponding respectively to no
detection, a single detection in g, a single detection in e, a
double detection both in g, a double detection one in g and the
other in e, and a double detection both in e.

’ w'\ p ‘ (no, p1°) ‘ (g9, K1) ‘ (e, 1°) ‘ (99, 1°) ‘ (ee, 1°) ‘ (ge, p1°) (eg, p°) ‘
no 1 1— €y 11— €y (1 — € (1 — €q)? 1 — €)
g 0 €q(1 — mg) €4Me 2€4(1 — €4)(1 — my) 2€4(1 — €9)M0 €q(1 — €9)(1 — Mg + Me)
e 0 €qMg €q(1 — m.) 2e4(1 — €4)Myg 2e4(1 — €4)(1 — m.) €q(1 — €9)(1 — Me + Myg)
99 0 0 0 €21 — my)? en? €2n.(1 — ny)
ge 0 0 0 2€57,(1 — ny) 2€5m.(1 — 7.) €5((1 = Me)(1 = 1) + 1yM.)
ee 0 0 0 e;n: e —mn) en,(1 — n,)
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