
ICTS Bengaluru Quantum Trajectories

An introduction to Stochastic Master Equation (SME)
and feedback for open quantum systems

January 2025
Mazyar Mirrahimi 1 and Pierre Rouchon 1

1 Example of the photon-box

This section is devoted to the case study of a photon box consisting of a cavity quantum
electrodynamics setup developed within Laboratoire Kastler-Brossel (LKB) at École Normale
Supérieure.

Figure 1: The LKB photon box; atoms get out box B one by one, undergo then a first Rabi
pulse in Ramsey zone R1, become entangled with electromagnetic field trapped in C, undergo
a second Rabi pulse in Ramsey zone R2 and finally are measured in the detector D.

1.1 Markov chain model

Here S corresponds to a quantized trapped mode inside the cavity. It is described by a wave
function |ψ〉 in the Hilbert space HS (see subsection A.1 of appendix A)

HS =

{ ∞∑
n=0

ψn |n〉 | (ψn)
∞
n=0 ∈ l2(C)

}
,

where |n〉 represents the Fock state associated to exactly n photons inside the cavity and
l2(C) is the space of square summable sequences in C (

∑∞
n=0 |ψn|2 = 1). The meter M is

associated to atoms : HM = C
2, each atom admits two energy levels and is described by a

wave function cg |g〉+ ce |e〉 with |cg|2 + |ce|2 = 1.
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Let us follow an atom leaving B where it is prepared in state |g〉. It is symbolized by
a small horizontal and blue torus in Figure 1. When atom comes out B, the state of the
composite system atom/field is separable and is denoted by |Ψ〉B ∈ HM ⊗HS

|Ψ〉B = |g〉 ⊗ |ψ〉 . (1)

When atom comes out the first Ramsey zone R1 (pink torus between R1 and C), the state
remains separable but has changed to

|Ψ〉R1
= (UR1 ⊗ I) |Ψ〉B = (UR1 |g〉)⊗ |ψ〉 (2)

where the unitary transformation performed in R1 only affects the atom:

UR1 = e−i
θ1
2 (x1σx+y1σy+z1σz) = cos( θ12 )− i sin( θ12 )(x1σx + y1σy + z1σz) (3)

corresponds, in the Bloch sphere representation, to a rotation of angle θ1 around the oriented
axis defined by the unit-length vector x1�ı+ y1�j+ z1�k (x21 + y21 + z21 = 1), see subsection A.2
of appendix A.

When atom leaves the cavity C, the state is not anymore separable: atom and field become
entangled and the state is described by

|Ψ〉C = UC |Ψ〉R1
(4)

where the unitary transformation UC on HM ⊗ HS is associated to a Jaynes-Cummings
Hamiltonian for describing the atom/field interaction:

HC = Δ
2 σz + iΩ2 (σ−a† − σ+a) (5)

is the Jaynes-Cumming Hamiltonian after the rotating wave approximation (Δ = ωeg − ωc

de-tuning between atom and cavity field, Ω the vacuum Rabi pulsation, see section 5.1.4 and
(58) with v = 0, ωr = ωc and Δc = 0 and Δeg = Δ). The precise form of UC is given in next
subsection for resonant and dispersive cases.

When the atom leaves the second Ramsey zone R2, the state becomes

|Ψ〉R2
= (UR2 ⊗ I) |Ψ〉C

where UR2 is similar to UR1 but with different parameters θ2, x2, y2, z2,

UR2 = e−i
θ2
2 (x2σx+y2σy+z2σz) = cos( θ22 )− i sin( θ22 )(x2σx + y2σy + z2σz). (6)

This means that, just before the measurement in D, the state is given by

|Ψ〉R2
= U |g〉 ⊗ |ψ〉 = |g〉 ⊗M g |ψ〉+ |e〉 ⊗M e |ψ〉 (7)

where U = UR2UCUR1 is the total unitary transformation defining the linear measurement
operators M g and M e on HS .

Denote by y ∈ {g, e} the measurement outcome in detector D: with probability py =〈
ψ|M †

yMy|ψ
〉
we get y. Just after the measurement outcome y, the state becomes separable.

It has partially collapsed to

|Ψ〉D = 1√
py

|y〉 ⊗ (My |ψ〉) = |y〉 ⊗ (My |ψ〉)√〈
ψ|M †

yMy|ψ
〉 .
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We have a Markov process: after the complete passage of an atom, the cavity state initially
equal to |ψ〉 undergoes an irreversible and stochastic jump to |ψ〉+ driven by M g and M e

defined via unitary operator U = UR2UCUR1 and (7):

|ψ〉+ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Mg |ψ〉√〈

ψ|M†
gMg |ψ

〉 , with detection y = g of probability pg =
〈
ψ|M †

gM g|ψ
〉
;

Me|ψ〉√〈
ψ|M†

eMe|ψ
〉 , with detction y = e of probability pe =

〈
ψ|M †

eM e|ψ
〉
.

(8)

For the density matrix formulation we have thus

ρ+ =

⎧⎪⎨⎪⎩
Mg(ρ) =

MgρMg

Tr
(
MgρM

†
g

) , with detection y = g of probability pg = Tr
(
M gρM

†
g

)
;

Me(ρ) =
MeρMe

Tr
(
MeρM

†
e

) , with detection y = e of probability pe = Tr
(
M eρM

†
e

)
.

(9)

Exercice 1. Consider M g and M e defined by (7). Show that, for any density matrix ρ the
operator (defining a Kraus map, see appendix B)

M gρM
†
g +M eρM

†
e

does not depend on (θ2, x2, y2, z2), the parameters of the second Ramsey pulse UR2.

1.2 Jaynes-Cummings propagator

In the resonant case, Δ = 0. The atom/cavity propagator UC based on Jaynes-Cummings
Hamiltonian (5) admits the following form (see [34] for the detailed derivations including
Gaussian radial dependence of the quantized mode and atom velocity):

UC = |g〉 〈g| cos
(
Θ
2

√
N

)
+ |e〉 〈e| cos

(
Θ
2

√
N + I

)
+ |g〉 〈e|

(
sin

(
Θ
2

√
N

)
√
N

)
a† − |e〉 〈g|a

(
sin

(
Θ
2

√
N

)
√
N

)
(10)

where N = a†a is the photon number operator, the adjustable parameter Θ being the Rabi
angle with zero photon.

In the dispersive case, |Δ| � |Ω|, UC based on Jaynes-Cummings Hamiltonian (5) admits
the following form (see [34] for the detailed derivations based on adiabatic invariance):

UC = |g〉 〈g| e−iφ(N) + |e〉 〈e| eiφ(N+I) (11)

where the dephasing φ(N) depends on the photon number and can be approximated by a
linear real function: φ(N) = ϑ0 + ϑN , the phases ϑ0 and ϑ being adjustable parameters.

The exercise below can be seen as a simplified derivation of the above formulae for UC .

Exercice 2. Let us assume that the Jaynes-Cummings propagator UC admits the following
form

UC = e
−iτ

⎛
⎝Δ

(
|e〉〈e|−|g〉〈g|

)
2 +i

Ω
(
|g〉〈e|a†−|e〉〈g|a

)
2

⎞
⎠

where τ is an interaction time.

3



1. Show by recurrence on integer k that(
Δ

( |e〉 〈e| − |g〉 〈g| )+ iΩ
( |g〉 〈e|a† − |e〉 〈g|a))2k

=

|e〉 〈e| (Δ2 + (N + 1)Ω2
)k

+ |g〉 〈g| (Δ2 +NΩ2
)k

and that(
Δ

( |e〉 〈e| − |g〉 〈g| )+ iΩ
( |g〉 〈e|a† − |e〉 〈g|a))2k+1

=

|e〉 〈e|Δ (
Δ2 + (N + 1)Ω2

)k − |g〉 〈g|Δ (
Δ2 +NΩ2

)k
+ iΩ

(
|g〉 〈e| (Δ2 +NΩ2

)k
a† − |e〉 〈g|a (

Δ2 +NΩ2
)k )

.

2. Deduce that

UC = |g〉 〈g|
⎛⎝cos

(
τ
√
Δ2+NΩ2

2

)
+ i

Δsin
(
τ
√
Δ2+NΩ2

2

)
√
Δ2 +NΩ2

⎞⎠

+ |e〉 〈e|

⎛⎜⎜⎝cos

(
τ
√

Δ2+(N+1)Ω2

2

)
− i

Δsin

(
τ
√

Δ2+(N+1)Ω2

2

)
√

Δ2 + (N + 1)Ω2

⎞⎟⎟⎠
+ |g〉 〈e|

⎛⎝Ωsin
(
τ
√
Δ2+NΩ2

2

)
√
Δ2 +NΩ2

⎞⎠a† − |e〉 〈g|a
⎛⎝Ωsin

(
τ
√
Δ2+NΩ2

2

)
√
Δ2 +NΩ2

⎞⎠ . (12)

3. In the resonant case, Δ = 0, express the vacuum Rabi angle Θ appearing in (10) with
respect to Ω and τ .

4. In the dispersive case, |Δ| � |Ω|, and when the interaction time τ is large, Δτ ∼ (
Δ
Ω

)2
,

show that, up to first order terms in Ω/Δ, we get

e
−iτ

⎛
⎝Δ

(
|e〉〈e|−|g〉〈g|

)
2 +i

Ω
(
|g〉〈e|a†−|e〉〈g|a

)
2

⎞
⎠

= |g〉 〈g| ei
(
Δτ
2 +

Ω2τ
4Δ N

)

+ |e〉 〈e| e−i

(
Δτ
2 +

Ω2τ
4Δ (N+1)

)
.

Express the phases ϑ0 and ϑ appearing in (11) with respect to τ , Δ and Ω.

1.3 Resonant case

Let us detail the operators M g and M e defined in (7) when UC is given by (10), UR1 =

e−i
θ1
2 σy and UR2 = I. Since UR1 = cos

(
θ1
2

)
+ sin

(
θ1
2

) ( |g〉 〈e| − |e〉 〈g| ), |Ψ〉R1
given by (2)

reads:
|Ψ〉R1

=
(
cos

(
θ1
2

)
|g〉 − sin

(
θ1
2

)
|e〉

)
⊗ |ψ〉 .
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Then |Ψ〉C given by (4) becomes

|Ψ〉C = cos
(
θ1
2

)(
|g〉 ⊗ cos

(
Θ
2

√
N

)
|ψ〉 − |e〉 ⊗ a

(
sin

(
Θ
2

√
N

)
√
N

)
|ψ〉

)

− sin
(
θ1
2

)(
|e〉 ⊗ cos

(
Θ
2

√
N + 1

)
|ψ〉+ |g〉 ⊗

(
sin

(
Θ
2

√
N

)
√
N

)
a† |ψ〉

)

= |g〉 ⊗
(
cos

(
θ1
2

)
cos

(
Θ
2

√
N

)
− sin

(
θ1
2

)(
sin

(
Θ
2

√
N

)
√
N

)
a†

)
|ψ〉

− |e〉 ⊗
(
sin

(
θ1
2

)
cos

(
Θ
2

√
N + 1

)
+ cos

(
θ1
2

)
a

(
sin

(
Θ
2

√
N

)
√
N

))
|ψ〉 .

Since UR2 = I, |Ψ〉C = |Ψ〉R2
. The measurement operators are thus given by

M g = cos
(
θ1
2

)
cos

(
Θ
2

√
N

)
− sin

(
θ1
2

)(
sin

(
Θ
2

√
N

)
√
N

)
a†

M e = − sin
(
θ1
2

)
cos

(
Θ
2

√
N + 1

)− cos
(
θ1
2

)
a

(
sin

(
Θ
2

√
N

)
√
N

) (13)

Exercice 3. Verify that the operators (measurement operators) given by (13) satisfy M †
gM g+

M †
eM e = I (hint: use, N = a†a, a f(N) = f(N + 1) a and a†f(N) = f(N − 1) a†).

1.4 Dispersive case

Let us now describe the measurement operators M g and M e defined in (7) when UC is given

by (11), UR1 = e−i
π
4σy and UR2 = e−i

π
4 (− sin ησx+cos ησy) (with angle η chosen below). Since

UR1 = I+|g〉〈e|−|e〉〈g|√
2

, |Ψ〉R1
given by (2) reads:

|Ψ〉R1
=

|g〉 − |e〉√
2

⊗ |ψ〉 .

Then |Ψ〉C given by (4) becomes

|Ψ〉C = 1√
2
|g〉 ⊗ e−iφ(N) |ψ〉 − 1√

2
|e〉 ⊗ eiφ(N+1) |ψ〉 .

Since UR2 = 1√
2

(
I + eiη |g〉 〈e| − e−iη |e〉 〈g|), we have

2 |Ψ〉R2
=

( |g〉 − e−iη |e〉 )⊗ e−iφ(N) |ψ〉 − (
eiη |g〉+ |e〉 )⊗ eiφ(N+1) |ψ〉

= |g〉 ⊗
(
e−iφ(N) − ei(η+φ(N+1))

)
|ψ〉 − |e〉 ⊗

(
e−i(η+φ(N)) + eiφ(N+1)

)
|ψ〉

where φ(N) = ϑ0 +Nϑ. Take ϕ0 an arbitrary phase and set η = 2(ϕ0 − ϑ0)− ϑ− π. Then
the measurement operators are given by the simple formulae

M g = cos(ϕ0 +Nϑ), M e = sin(ϕ0 +Nϑ) (14)

where we have removed the irrelevant global phase factors ei(ϕ0−ϑ0) for M g and ei(ϑ0−ϕ0+π/2)

for M e. In the Fock basis {|n〉}∞0 ), the operator M g (resp. M e) is diagonal with diagonal
elements cos(nϑ+ϕ0) (resp. sin(nϑ+ϕ0). We note in particular that M †

gM g+M †
eM e = I.
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Exercice 4. Take M g and M e defined by (7) with UC given by (11) with φ an arbitrary
real value function.

1. Show that any Fock state |n〉 is an eigenvector of M g and M e, whatever UR1 and UR2

are.

2. Deduce from preceding question that, for any density operator ρ, any integer n and any
Ramsey pulses UR1 and UR2, we have〈

n|M gρM
†
g|n

〉
+

〈
n|M eρM

†
e|n

〉
= 〈n|ρ|n〉 .

3. What does-it mean for the Markov chain associated to such M g and M e and defined
by (9).

1.5 QND measurements: open-loop asymptotic behavior

Through this subsection, we consider the measurement associated to the dispersive coupling
regime between the system (cavity) and the meter (atoms). As discussed through the previ-
ous subsection, the measurement operators M g and M e are given by (14). These operators
being diagonal in the basis {|n〉}∞n=0 of photon number states, they commute with the physical
observable N = a†a (photon number operator). Indeed, following the definition of Subsec-
tion D.3, they define a quantum non-demolition (QND) measurement of the photon number
observable N . Here, we study the asymptotic behavior of the Markov chain associated to a
repetitive application of such QND measurements. The cavity state after the k’th measure-
ment is represented by ρk and follows the Markov chain dynamics

ρk+1 = Myk(ρk),

where yk takes the value g (resp. e) with probability pg,k = Tr
(
M gρkM

†
g

)
(resp. with

probability pe,k = Tr
(
M eρkM

†
e

)
). We have the following theorem:

Theorem 1. Consider the Markov process defined above with an initial density matrix ρ0

defined on the subspace span{|n〉 | n = 0, 1, · · · , nmax}. Also, assume the non-degeneracy
assumption

cos2(ϕm) 	= cos2(ϕn) ∀n 	= m ∈ {0, 1, · · · , nmax},
where ϕn = ϕ0 + nϑ. Then

� for any n ∈ {0, . . . , nmax}, Tr (ρk |n〉 〈n|) = 〈n|ρk |n〉 is a martingale

� ρk converges with probability 1 to one of the nmax + 1 Fock state |n〉 〈n| with n ∈
{0, . . . , nmax}.

� the probability to converge towards the Fock state |n〉 〈n| is given by Tr (ρ0 |n〉 〈n|) =
〈n|ρ0 |n〉.

Proof. First, we note that, the measurement operatorsM g andM e being diagonal in the basis
of photon number states, and ρ0 being defined on the subspace span{|n〉 | n = 0, 1, · · · , nmax},
the state ρk remains in this subspace for all k ≥ 0. We can therefore restrict the proof to this
finite dimensional Hilbert space.
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Let us prove that Tr (ρk |n〉 〈n|) is a martingale. Set ξ = |n〉 〈n|. We have

E
(
Tr

(
ξρk+1

) | ρk

)
= pg,k Tr

(
ξ
MgρkM

†
g

pg,k

)
+ pe,k Tr

(
ξMeρkM

†
e

pe,k

)
= Tr

(
ξM gρkM

†
g

)
+Tr

(
ξM eρkM

†
e

)
= Tr

(
ρk(M

†
gξM g +M †

eξM e)
)
.

Since ξ commutes withM g andM e andM †
gM g+M †

eM e = I, we have E
(
Tr

(
ξρk+1

) | ρk

)
=

Tr (ξρk). This implies that Tr (ρk |n〉 〈n|) is a martingale.
Now, we consider the function

V (ρ) =
∑
n �=m

√
〈n | ρ | n〉 〈m | ρ | m〉. (15)

Simple calculations show that V (ρk) is a strict super-martingale:

E
(
V (ρk+1) | ρk

)
=

∑
n �=m

(| cosϕn cosϕm|+ | sinϕn sinϕm|)
√

〈n | ρ | n〉 〈m | ρ | m〉 ≤ rV (ρk)

with r = maxn �=m(| cosϕn cosϕm|+ | sinϕn sinϕm|) < 1. Therefore

E (V (ρk)) ≤ rkV (ρ0),

which implies the convergence in mean of V (ρk) to zero. We now argue that this also implies
the almost sure convergence of V (ρk) to zero. This can be done by combining the Markov’s
inequality and the Borel-Cantelli lemma, both reminded in Appendix E. Indeed, for any ε > 0,
using the Markov’s inequality, we have

P [V (ρk) ≥ ε] ≤ E (V (ρk)))

ε
≤ rk

V (ρ0)

ε
.

Therefore, we have ∑
k≥0

P [V (ρk) ≥ ε] ≤ 1

1− r

V (ρ0)

ε
< ∞.

The Borel-Cantelli lemma implies then that

P

[
lim sup

k
V (ρk) ≥ ε

]
= 0,

which leads to

P

[
lim
k

V (ρk) → 0

]
= 1.

Now, for any such trajectory (meaning any ω ∈ Ω, the sample space, such that V (ρk(ω)) → 0),
we note that ρk(ω) lives in a compact set and therefore, from any subsequence we can extract
another converging subsequence ρkn(ω) → ρ̄(ω). By continuity of V , we now that V (ρ(ω)) =
0. Furthermore, we note that V (ρ̄) = 0 implies that ρ̄ = |n〉 〈n| for some n ∈ {0, · · · , nmax}
(we leave the details of this reasoning to be proven by the interested reader). This closes the
proof of the second assertion, meaning the almost sure convergence of ρk to the set of Fock
states {|n〉}nmax

n=0 .
We have shown that the probability measure associated to the random variable ρk con-

verges to
∑nmax

n=0 pnδ|n〉〈n|, where δ|n〉〈n| denotes the Dirac measure at |n〉 〈n| and pn is the prob-
ability of convergence towards |n〉 〈n|. In particular, we have E (Tr (ρk |n〉 〈n|)) → pn. But
Tr (ρk |n〉 〈n|) is a martingale, thus E (Tr (ρk |n〉 〈n|)) = E (Tr (ρ0 |0〉 〈0|)) and consequently
pn = 〈n|ρ0|n〉.
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1.6 Measurement uncertainties and Bayesian inference

This subsection is directly inspired from [27, 60]. Let us consider now the situation where
the atom passes through the cavity but we do not detect it after the second Ramsey zone.
To describe the cavity state we have to use mixed states and thus density matrix ρ and the
operator Mg and Me defined in (77). Having no knowledge on whether the atom ends up in
the state |g〉 or |e〉, the best we can say about the cavity state (our knowledge of the system)
after the passage of the atom is its expectation value:

ρ+ = pgMg(ρ) + peMe(ρ) = M gρM
†
g +M eρM

†
e. (16)

The above map, sending ρ to ρ+, defines the Kraus representation for a linear quantum
operation (see Appendix B for a definition and properties of linear quantum operations).

Now consider the case where we realize the atom detection but we are uncertain about
its result. Indeed, in practice, the detection process is not perfect and we need to take into
account at least three kinds of uncertainties:

� the atom preparation process is itself a random process following a Poisson law; indeed
the samples carrying the atoms that pass through the setup might be empty of atoms;
we note the occupancy rate of the atom slot by ηa ∈]0, 1] (ηa is about 0.4 for the LKB
experimental setup);

� the atom detector is imperfect and can miss a certain percentage of the atoms; we
denote the detector’s efficiency by ηd ∈]0, 1] (ηd is about 0.8 for the LKB experimental
setup);

� the atom detector is not fault-free and the result of the measurement (atom in the
state |g〉 or |e〉) can be interchanged; we denote the fault rates by P [y = g|Atom = e] �
ηe ∈ [0, 1/2) (resp. P [y = e|Atom = g] � ηg ∈ [0, 1/2)) the probability that the detector
outcome is g (resp. e) knowing that the atom collapses in e (resp. g). Typically
(ηg ≈ ηe ∼ 1/10 for the LKB experimental setup).

Whenever realizing the atom detection, we can achieve three results: etection y = g, detection
y = e, no detection y = ∅.
Example 1 (Monty Hall game). The situation is quite similar to this game of chance between
a player named here Bob, and the game master named here Alice. Initially Bob faces three
closed doors labeled 1, 2 and 3. Only a single door hides a treasure. Bob’s goal is to guess
behind which door is this treasure. Without any information Bob estimates a prior uniform
probability P [T = 1] = P [T = 2] = P [T = 3] = 1/3, where P [T = s] is the probability that the
treasure T is behind door s. Here the vector

Pinitial =
(
P [T = 1] ,P [T = 2] ,P [T = 3]

)
=

(
1

3
,
1

3
,
1

3

)
play the role of ρ before the measurement, i.e. before obtaining a new information. Bob gets
a new information in two steps. First Bob starts by betting that the treasure is behind one of
the doors labeled by b. Second Alice proposes then to help Bob. She knows of course where
the treasure is. She opens empty door a 	= b excluding the door chosen by Bob. Bob knows
now that there is no treasure behind door a opened by Alice. Then Bob faces two remaining
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closed doors, doors b and c 	= a. Alice asks to Bob if he wants to change his initial guess b
to c. Assume for example that b = 2, a = 1 and c = 3. With the knowledge gained during
these two steps, Bob has to change his initial probability distribution Pinitial = (1/3, 1/3, 1/3)
by the new probability distribution Pnew corresponding to Bayesian inference

Pnew =
(
P
[
T = 1

∣∣(a, b) = (1, 2)
]

, P
[
T = 2

∣∣(a, b) = (1, 2)
]

, P
[
T = 3

∣∣ (a, b) = (1, 2)
] )

.

By Bayes rules we have

p1,2 P
[
T = 1

∣∣(a, b) = (1, 2)
]

= P [T = 1] P
[
(a, b) = (1, 2)

∣∣T = 1
]
=

P
[
(a, b) = (1, 2)

∣∣T = 1
]

3

p1,2 P
[
T = 2

∣∣(a, b) = (1, 2)
]

= P [T = 2] P
[
(a, b) = (1, 2)

∣∣T = 2
]
=

P
[
(a, b) = (1, 2)

∣∣T = 2
]

3

p1,2 P
[
T = 3

∣∣(a, b) = (1, 2)
]

= P [T = 3] P
[
(a, b) = (1, 2)

∣∣T = 3
]
=

P
[
(a, b) = (1, 2)

∣∣T = 3
]

3

where p1,2 stands for P [(a, b) = (1, 2)]. Of course P
[
(a, b) = (1, 2)

∣∣T = 1
]
= 0 since Alice

cannot open treasure door 1. We have P
[
(a, b) = (1, 2)

∣∣T = 2
]
= 1/2: the treasure is behind

door 2, Bob has chosen door 2 and Alice could open either the empty door number 1 or 3.
We have P

[
(a, b) = (1, 2)

∣∣T = 3
]
= 1: the treasure is behind door 3, Bob has chosen door 2

and Alice can only open the empty door 1. This means that

p1,2 P
[
T = 1

∣∣(a, b) = (1, 2)
]
= 0

p1,2 P
[
T = 2

∣∣(a, b) = (1, 2)
]
=

1

6

p1,2 P
[
T = 3

∣∣(a, b) = (1, 2)
]
=

1

3

Since by construction
∑s=3

s=1 P
[
T = s

∣∣(a, b) = (1, 2)
] ≡ 1, we get

Pnew = (0, 1/3, 2/3) .

and p1,2 = 1/2. Conclusion: Bob has always interest to change his initial guess: he doubles
thus his chance to discover the treasure.

Let us go back to ρ. For each situation we may have various possibilities:

No detection y = ∅: Either the pulse has been empty (this happens with a probability pna
to be determined) or there has been an atom which has not been detected by the detector
(this happens with the probability 1−pna). Indeed, the conditional probability of having
an empty pulse while no atom has been detected by the detector can be computed
through the Bayes rule as follows:

P
[
Atom = ∅∣∣y = ∅]P [y = ∅] = P

[
y = ∅∣∣Atom = ∅]P [Atom = ∅]

P
[
Atom = g, e

∣∣y = ∅]P [y = ∅] = P
[
y = ∅∣∣Atom = g, e

]
P [Atom = g, e]

where

P
[
Atom = ∅∣∣y = ∅] = pna, P

[
Atom = g, e

∣∣y = ∅] = 1− pna, P
[
y = ∅∣∣Atom = ∅] = 1

P
[
y = ∅∣∣Atom = g, e

]
= 1− ηd, P [Atom = g, e] = ηa, P [Atom = ∅] = 1− ηa.

9



Thus
pna P [y = ∅] = 1− ηa, (1− pna) P [y = ∅] = (1− ηd)ηa

and we get

P [y = ∅] = 1− ηaηd, P
[
Atom = ∅∣∣y = ∅] = pna =

1− ηa
1− ηaηd

.

Finally, the conditional evolution of the density matrix (conditioned on the result of the
measurement indicating no detected atoms) is given as follows:

ρ+ = P
[
Atom = ∅∣∣y = ∅] ρ+ P

[
Atom = g, e

∣∣y = ∅] (M gρM
†
g +M eρM

†
e)

=
1− ηa
1− ηaηd

ρ+
ηa(1− ηd)

1− ηaηd
(M gρM

†
g +M eρM

†
e)

=
(1− ηa)ρ+ ηa(1− ηd)

(
M gρM

†
g +M eρM

†
e

)
Tr

(
(1− ηa)ρ+ ηa(1− ηd)

(
M gρM

†
g +M eρM

†
e

))
where p∅ = P

[
y = ∅∣∣ρ] = Tr

(
(1− ηa)ρ+ ηa(1− ηd)

(
M gρM

†
g +M eρM

†
e

))
.

Detection y = g: Either the atom is actually in the state |e〉 and the detector has made a
mistake by detecting y = g which happens with conditional probability peg = P

[
Atom = e

∣∣y = g
]

to be determined; or the atom is really in the state |g〉 which happens with conditional
probability 1− peg = P

[
Atom = g

∣∣y = g
]
. Indeed, the probability pg = P [y = g] and the

conditional probability peg may be computed through the Bayesian formula

pegpg = P
[
Atom = e

∣∣y = g
]
P [y = g] = P

[
y = g

∣∣Atom = e
]
P [Atom = e]

(1− peg)pg = P
[
Atom = g

∣∣y = g
]
P [y = g] = P

[
y = g

∣∣Atom = g
]
P [Atom = g]

where

P
[
y = g

∣∣Atom = e
]
= ηdηe, P [Atom = e] = ηaTr

(
M eρM

†
e

)
P
[
y = g

∣∣Atom = g
]
= ηd(1− ηg), P [Atom = g] = ηaTr

(
M gρM

†
g

)
.

This means that

pegpg = ηdηaηeTr
(
M eρM

†
e

)
, (1− peg)pg = ηdηa(1− ηg) Tr

(
M gρM

†
g

)
and thus

pg = ηdηaηeTr
(
M eρM

†
e

)
+ ηdηa(1− ηg) Tr

(
M gρM

†
g

)
peg =

ηeTr
(
M eρM

†
e

)
ηeTr

(
M eρM

†
e

)
+ (1− ηg) Tr

(
M gρM

†
g

) .
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Also, the conditional evolution of the density matrix (as our knowledge on the cavity
state conditioned on the measurement result y = g) is given as follows:

ρ+ = pegMe(ρ) + (1− peg)Mg(ρ)

=
ηe

ηepe + (1− ηg)pg
M eρM

†
e +

1− ηg
ηepe + (1− ηg)pg

M gρM
†
g

=
ηeM eρM

†
e + (1− ηg)M gρM

†
g

Tr
(
ηeM eρM

†
e + (1− ηg)M gρM

†
g

)
=

ηdηaηeM eρM
†
e + ηdηa(1− ηg)M gρM

†
g

Tr
(
ηdηaηeM eρM

†
e + ηdηa(1− ηg)M gρM

†
g

)
where pg = P

[
y = g

∣∣ρ] = Tr
(
ηdηaηeM eρM

†
e + ηdηa(1− ηg)M gρM

†
g

)
is the probabil-

ity to detect y = g knowing ρ.

Detection y = e: Exactly in the same way, the conditional evolution of the density matrix
is given as follows:

ρ+ =
ηdηaηgM gρM

†
g + ηdηa(1− ηe)M eρM

†
e

Tr
(
ηdηaηgM gρM

†
g + ηdηa(1− ηe)M eρM

†
e

)
where pe = P

[
y = e

∣∣ρ] = Tr
(
ηdηaηgM gρM

†
g + ηdηa(1− ηe)M eρM

†
e

)
is the probabil-

ity to detect y = e knowing ρ.

With the following quantum operations:

Kg(ρ) = ηaηd

(
(1− ηg)M gρM

†
g + ηeM eρM

†
e

)
Ke(ρ) = ηaηd

(
ηgM gρM

†
g + (1− ηe)M eρM

†
e

)
K∅(ρ) = (1− ηa)ρ+ ηa(1− ηd)

(
M gρM

†
g +M eρM

†
e

)
the above computations define the following Markov chain describing the imperfect measure-
ment process with three possible outcomes, detection y = g, detection y = e and no detection
with y = ∅:

ρ+ =

⎧⎪⎪⎨⎪⎪⎩
Kg(ρ)

Tr(Kg(ρ))
, with y = g of probability pg = Tr (Kg(ρ));

Ke(ρ)
Tr(Ke(ρ))

, with y = e of probability pe = Tr (Ke(ρ));
K∅(ρ)

Tr(K∅(ρ))
, with y = ∅ of probability p∅ = Tr (K∅(ρ)).

(17)

Notice that Kg +Ke +K∅ is a quantum channel, since Kg(ρ) +Ke(ρ) +K∅(ρ) = (1− ηa)ρ+

ηa

(
M gρM

†
g +M eρM

†
e

)
and M †

gM g +M †
eM e = I. Thus pg + pe + p∅ = 1.

These transition rules provide simple update rules of ρk+1 depending on ρk and the
detection outcomes at step k belonging to {g, e, ∅}. The resulting quantum state ρk depends
thus on the initial state ρ0 and the measurement outcomes yt between t = 0 and t = k−1. In
other words, the quantum state obeys to a filtering process of state ρ with the measurement
outcomes yt as input, also called quantum filter.

11



1.7 Relaxation as an unread measurement

Additionally to the above uncertainties in the measurement process, one needs to consider
the relaxation of the system due to its coupling to the environment to obtain a complete
model for the open system. Two main sources of relaxation can be considered here. A first
source concerns the photon loss phenomenon caused by their absorption by the environment
(the mirrors in particular). The second source concerns the photon gain phenomenon due to
the coupling of the field with a reservoir of non-zero temperature (T ≈ 0.8K). Denoting by
κ− and by κ+, respectively the photon loss and the photon gain rate, and assuming that the
environment is in thermal equilibrium at temperature T , we have (kb denoting the Boltzmann
constant and ωc the cavity’s resonance frequency),

κ+ = κ−e
− �ωc

kbT .

We refer to [34, Chapter 4, Page 187] for more details. By defining nth as the average number
of thermal photons per mode at frequency ωc, given by Planck’s law:

nth =
1

e
�ωc
kbT − 1

,

we can express both κ− and κ+ in term of unique cavity rate κ:

κ− = κ(1 + nth), κ+ = κnth.

Note that, here the dominant phenomenon is the photon loss as we work in low temperature
regime and therefore nth � 1 (nth ≈ 0.05 for the LKB experiment). We start therefore
by investigating the relaxation caused by the photon loss, which can be modeled through a
measurement operator M loss, proportional to the photon annihilation operator a. Indeed,
considering τa the duration of a pulse (time interval between the passage of the two atoms),
this measurement operator M loss can be written as

M loss =
√
κ−τaa

so that the probability of losing a photon during the current pulse is given by (we neglect the
possibility of losing many photons at a same pulse as it admits a very small probability)

Ploss = Tr
(
M †

lossM lossρ
)
= κ−τaTr

(
a†aρ

)
= κ−τaTr (Nρ) .

This natural expression indicates that the probability of the photon loss is proportional to
the duration of the pulse and to the mean number of photons in the cavity. Here, we assume
moreover that the pulse duration is much smaller than the cavity decay time Tcav = 1/κ
(τa � Tcav). For the LKB experimental setup, the pulse duration τa is about 85.10−6 s and
Tcav is about 13.10−2 s and therefore this assumption is clearly satisfied.

Let us assume now that we dispose of an instrument allowing us to the detect this photon
loss when it happens. As soon as we detect a photon loss, the cavity density matrix ρ evolves
drastically as follows:

ρ+ =
M lossρM

†
loss

Tr
(
M lossρM

†
loss

) =
aρa†

Tr (Nρ)
,

12



recalling that this loss happens with a small probability of Tr (Nρ) (1+nth)τa/τcav. Now, let
us consider the situation where we do not detect any photon loss. A first impression would
be that the density matrix should not change. This is not correct and the fact that we do
not detect any photon, actually, updates our information on the system as it privileges the
probability of having a fewer number of photons in the cavity. In order to have a more clear
idea of the situation, let us assume that, similarly to the photon loss case, we associate a
measurement operator Mno-loss to the phenomenon of not detecting a photon loss. Let us
now find this jump operator.

In order to have a well-defined POVM, we need to have

M †
lossM loss +M †

no-lossMno-loss = I. (18)

This, in particular, forbids the possibility of having Mno-loss = I. Indeed, a possible solution,
up to the first order in τa/Tcav, is given by:

Mno-loss = I − (1 + nth)
τa

2Tcav
a†a.

Noting now that, we actually do not dispose of a measurement instrument indicating the
loss of the photons, the evolution of the density matrix is given by the following Kraus
representation:

ρ+ = M lossρM
†
loss +Mno-lossρM

†
no-loss = ρ+ (1 + nth)

τa
Tcav

(
aρa† − 1

2a
†aρ− 1

2ρa
†a

)
,

where we have still neglected the second order terms in τa/Tcav.
The photon gain phenomenon can be treated exactly in the same way and through the

measurement operator
Mgain =

√
κ+τaa

†

proportional to the photon creation operator. The total evolution can be therefore written
as follows:

ρ+ = M lossρM
†
loss +MgainρM

†
gain +MnoρM

†
no

where the operator Mno closed to I and corresponding to no-loss and no-gain has to satisfy

M †
lossM loss +M †

gainMgain +M †
noMno = I.

Up to second order terms versus τa/Tcav we have

Mno = I − (1 + nth)
τa

2Tcav
a†a− nth

τa
2Tcav

aa†.

The associated Kraus map reads then

ρ+ = ρ+ (1 + nth)
τa
Tcav

(
aρa† − 1

2a
†aρ− 1

2ρa
†a

)
+ nth

τa
Tcav

(
a†ρa− 1

2aa
†ρ− 1

2ρaa
†
)
.

Exploiting the fact that τa � Tcav (small sampling period τa) this equation becomes a differ-
ential equation:

ρ+ − ρ

τa
≈ d

dt
ρ = (1 + nth)κ

(
aρa† − 1

2a
†aρ− 1

2ρa
†a

)
+ nthκ

(
a†ρa− 1

2aa
†ρ− 1

2ρaa
†
)
.

(19)
This kind of equation will be investigated in next chapter on continuous-time open quantum
systems.
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2 Structure of discrete-time open quantum systems

The theory of open quantum systems starts with the contributions of Davies [26]. The goal
of this section is first to present in an elementary way the general structure of the Markov
models describing such systems. Throughout this section, H is an Hilbert space; for each
time-step k ∈ N, ρk denotes the density operator describing the state of the quantum Markov
process; for all k, ρk is a trace class operator on H, Hermitian and of trace one.

2.1 Markov models

These models generalize the models developed for the photon box (17) merging quantum
measurement and probability theory with classical probability through Bayesian estimation.
Take a positive integer m and consider a finite set (Mμ)μ∈{1,...,m} of operators on H such that

I =
m∑

μ=1

M †
μMμ (20)

Then each Mμ ∈ L(H). Take another positive integer m̄ and consider a left stochastic m̄×m-
matrix (ηyμ): its entries are non-negative and ∀μ ∈ {1, . . . ,m}, ∑m̄

y=1 ηyμ = 1. Consider the
Markov process of state ρ and output y ∈ {1, . . . , m̄} (measurement outcome) defined via the
transition rule

ρk+1 =

∑
μ ηykμMμρkM

†
μ

Tr
(∑

μ ηyk′μMμρkM
†
μ

) , outcome yk of probability Tr

(∑
μ

ηykμMμρM
†
μ

)
.

(21)
The left stochastic matrix η yields to the decomposition of the Kraus map K into the sum of
m̄ partial Kraus maps (Ky)y∈{1,...,m̄}:

K(ρ) =

m̄∑
y=1

Ky(ρ) with Ky(ρ) =
∑
μ

ηyμMμρM
†
μ. (22)

The Markov chain (21) reads:

ρk+1 =
Kyk(ρk)

Tr (Kyk(ρk))
, outcome yk of probability Tr (Kyk(ρk)) . (23)

Exercice 5. Explicit the quantum channel operators Mμ and the stochastic matrix η (di-
mension, entries) for the model (17).

2.2 Kraus and unital maps

The Kraus map K corresponds to the master equation of (21). It is given by the expectation
value of ρk+1 knowing ρk:

K(ρ) �
∑
μ

MμρM
†
μ = E

(
ρk+1 / ρk = ρ

)
. (24)

In quantum information [47] such Kraus maps describe quantum channels. They admit many
interesting properties. In particular, they are contractions for many metrics (see [48] for the

14



characterization, in finite dimension, of metrics for which any Kraus map is a contraction).
We just recall below two such metrics. For any density operators ρ and ρ′ we have

D(K(ρ),K(ρ′)) ≤ D(ρ,ρ′) and F (K(ρ),K(ρ′)) ≥ F (ρ,ρ′) (25)

where the trace distance D and fidelity F are given by

D(ρ,ρ′) � Tr
(∣∣ρ− ρ′∣∣) ≡ Tr

(√
(ρ− ρ′)2

)
and F (ρ,ρ′) � Tr2

(√√
ρρ′√ρ

)
. (26)

Fidelity is between 0 and 1: F (ρ,ρ′) = 1 if and only if, ρ = ρ′. Moreover F (ρ,ρ′) = F (ρ′,ρ).
If ρ′ = |ψ〉 〈ψ| is a pure state (|ψ〉 element of H of length one), F (ρ,ρ′) coincides with
the Frobenius product: F (ρ, |ψ〉 〈ψ|) ≡ Tr (ρ |ψ〉 〈ψ|) = 〈ψ|ρ |ψ〉 . Kraus maps provide the
evolution of open quantum systems from an initial state ρ0 without information coming from
the measurements (see [34, chapter 4: the environment is watching]):

ρk+1 = K(ρk) for k = 0, 1, . . . , . (27)

This corresponds to the ”Schrödinger description” of the dynamics.
The ”Heisenberg description” is given by the dual mapK

∗. It is characterized by Tr (AK(ρ)) =
Tr (K∗(A)ρ) and defined for any bounded operator A on H by

K
∗(A) =

∑
μ

M †
μAMμ.

Technical conditions on A are required when H is of infinite dimension, they are not given
here (see, e.g., [26]). The map K

∗ is unital since (20) reads K∗(I) = I. As K, the dual map
K

∗ admits a lot of interesting properties. It is noticed in [57] that, based on a theorem due
of Birkhoff [13], such unital maps are contractions on the cone of non-negative Hermitian
operators equipped with the Hilbert’s projective metric. In particular, when H is of finite
dimension, we have, for any Hermitian operator A:

λmin(A) ≤ λmin(K
∗(A)) ≤ λmax(K

∗(A)) ≤ λmax(A)

where λmin and λmax correspond to the smallest and largest eigenvalues. As shown in [49],
such contraction properties based on Hilbert’s projective metric have important implications
in quantum information theory.

To emphasize the difference between the ”Schrödinger description” and the ’Heisenberg
description” of the dynamics, let us translate convergence issues from the ”Schrödinger de-
scription” to the ”Heisenberg one”. Assume that K does not depend on the discrete-time
k. For clarity’s sake, H is of finite dimension where convergence issues are simple and inde-
pendent of the norms. Suppose that K admits the density operator ρ̄ as unique fixed point
and that, for any initial density operator ρ0, the density operator at step k, ρk, defined by
k iterations of K, converges towards ρ̄ when k tends to ∞. Then k �→ D(ρk, ρ̄) is decreasing
and converges to 0 whereas k �→ F (ρk, ρ̄) is increasing and converges to 1.

The translation of this convergence in the ”Heisenberg description” is the following: for
any initial operator A0, its k iterates via K

∗, Ak, converge towards Tr (A0ρ̄) I. Moreover
when A0 is Hermitian, k �→ λmin(Ak) and k �→ λmax(Ak) are respectively increasing and
decreasing and both converge to Tr (A0ρ̄).
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Notice finally that any operator A that is a fixed point of K∗ that does not dependent of
the discrete-time k, K∗(A) = A, yields to a constant of motion for ρk+1 = K(ρk):

Tr
(
Aρk

)
= Tr

(
Aρ0

)
.

This means that, for any unraveling Markov process of the form (22), the stochastic variable
Tr

(
Aρk

)
is a martingale and is attached to fundamental properties of the dynamics (analogue

of a priori estimates and first integral for (partial) differential equations).

2.3 Quantum filtering

Quantum filtering has its origin in Belavkin’s work [12] on continuous-time open quantum
systems (see next chapter). We just give here a discrete-time version. The state ρk of (23) is
not directly measured: open quantum systems are governed by hidden-state Markov model.
Quantum filtering provides an estimate ρest

k of ρk based on an initial guess ρest
0 (possibly

different from ρ0) and the measurement outcomes y
 between 0 and k − 1:

ρest

+1 =

Ky�(ρ
est

 )

Tr
(
Ky�(ρ

est

 )

) , � ∈ {0, . . . , k − 1}. (28)

Thus (ρ,ρest) is the state of an extended Markov process governed by the following rule

ρk+1 =
Ky(ρk)

Tr (Ky(ρk))
and ρest

k+1 =
Ky(ρ

est
k )

Tr
(
Ky(ρest

k )
)

with transition probability py(ρk) = Tr (Ky(ρk)) depending only on ρk.
When H is of finite dimension, it is shown in [60] with an inequality proved in [51]

that such discrete-time quantum filters are always stable in the following sense: the fidelity
between ρ and its estimate ρest is a sub-martingale for any initial condition ρ0 and ρest

0 :
E

(
F (ρk+1,ρ

est
k+1)

∣∣(ρk,ρ
est
k )

) ≥ F (ρk,ρ
est
k ). This result does not guaranty that ρest

k converges to
ρk when k tends to infinity. The convergence characterization of ρest towards ρ via checkable
conditions on the partial Kraus maps (Ky) remains an open problem [66, 67]. Characterization
of asymptotic almost-sure convergence is an open-problem with recent progresses in [4].

2.4 Quantum tomography and statistical estimation

Assume that the maps Ky in (23) depend on a constant parameter p and also on k via a
known control input uk. This means that we have the following Markov model

ρk+1 =
Kyk,uk,p(ρk)

Tr (Kyk(ρk))
, outcome yk of probability Tr (Kyk,uk,p(ρk)) . (29)

Starting form ρ0 and collecting the measurements Y = (y0, . . . , yT ) between k = 0 to k = T ,
simple computations show that the likelihood probability of a measurement record Y is given
by

P
[
Y = (y0, . . . , yT )

∣∣ρ0, U = (u0, . . . , uT ), p
]

= Tr
(
KyT ,uT ,p

(
KyT−1,uT−1,p

(
. . . (Ky0,u0,p(ρ0)) . . .

)))
=

T∏
k=0

Tr (Kyk,uk,p(ρk)) (30)
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where ρk is governed by (29). Such likelihood probability could be very small when T is large.
Thus, numerically, it is wise to compute its logarithm via the following recurrence

�k+1 = �k + log(Tr (Kyk,uk,p(ρk)))

starting from �0 = 0 and until k = T . Then

�T+1 = log
(
P
[
Y = (y0, . . . , yT )

∣∣ρ0, U = (u0, . . . , uT ), p
] )

.

Quantum process tomography consists in fact to estimate parameters gathered in the vec-
tor p from several data sets of measurement outcomes Y (1), . . . , Y (N) associated to known in-

puts sequences U (1), . . . , U (N), known initial states ρ
(1)
0 , . . . , ρ

(N)
0 and sharing the same p. Each

measurement data Y (n1) is statistically independent of Y (n2) when n1 	= n2. Then log(�(p)) =∑N
n=1 �

(n)(p) where �(n)(p) corresponds to �
(n)
T+1 with �

(n)
k+1 = �

(n)
k +log(Tr

(
K

y
(n)
k ,u

(n)
k ,p

(ρ
(n)
k )

)
).

The optimal way is to use Bayesian inference. Let us consider here a single real parameter
p (Bayesian formula for several real parameters are similar). One has the following usual
formula

pB =

∫
p e
(p)P0pdp∫
e
(p)P0(p)dp

, σB =

∫
(p− pB)

2e
(p) P0pdp∫
e
(p)P0(p)dp

,

from P0 a prior probability density of p (typically uniform between the maximum and mini-
mum possible values of p ) and where pB is the Bayesian estimate of p with σB its Bayesian
variance.

Maximum likelihood estimate pML of p with its variance σML are given by

�(pML) = max
p

�(p), σML =
−1

�′′(pML)

where �′′ is the second derivative of � assumed to strictly negative at pML. For multidimen-
sional parameter p, 1/ 1


′′ is replace by the inverse of the Hessian matrix of � assume to be
negative definite at pML.

Maxlike estimation is particularly interesting for multidimensional parameter p to provide
an approximation of the optimal estimates pB and σB where the numerical computation of
the multidimensional integrals cannot be performed efficiently. Such approximation is valid
when p �→ e
(p) almost vanishes except around a small ball centered at its maximum value
pML assumed to be unique and non degenerate (the Hessian of � at pML negative definite).
Then asymptotic method developed for Laplace integrals and stationary phases correspond
to the dominant term.

Quantum state tomography can be also tackled similarly when we have a large collection

of data sets N starting from the same unknown state ρ
(1)
0 = . . . = ρ

(N)
0 = ρ0 to be estimated

with known input sequences U (1), . . . , U (N) and known p. From (30), for each data set n,

e

(n)(ρ0) is a linear function of ρ0. Thus �

(n)(ρ0) is a concave function of ρ0. This implies that
log-likelihood function �(ρ0) =

∑
n �

(n)(ρ0) is also concave. This means that efficient convex
optimization methods can be applied. More detail are given in [59].

3 Lindblad master equation

3.1 General properties

The continuous-time analogue of the discrete-time quantum master equation and quantum
channel (ensemble average dynamics) becomes a differential equation for the time-evolution
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of the density operator t �→ ρ(t):

d

dt
ρ = L(ρ) � −i[H,ρ] +

∑
ν

LνρL
†
ν − 1

2(L
†
νLνρ+ ρL†

νLν) (31)

where

� H is the Hamiltonian that could depend on t (Hermitian operator on the underlying
Hilbert space H)

� the Lν ’s are operators on H that are not necessarily Hermitian.

Here L denote the super-operator called Lindbladian. When L is time independent, ρ(t) =
etL(ρ0) and etL is the propagator. When all Lν vanish, etL(ρ0) = e−itHρ0e

+itH .
The differential equation (31) preserves the positivity and the trace: if the initial condi-

tion ρ0 is Hermitian of trace one and non-negative, then its solution ρ(t) for t ≥ 0 is also
Hermitian, non-negative and of trace one. To avoid mathematical technicalities we consider
in the theorem below that H is of finite dimension.

Theorem 1. Assume that H is of finite dimension. Then for any Hermitian operator t �→
H(t) and any operators Lν(t) that are bounded and measurable functions of time, the solution
of (31) with an initial condition ρ0 Hermitian, non-negative and of trace one, is defined for
all t > 0, remains Hermitian, non-negative and of trace one.

Proof. The existence and uniqueness of the solution for t > 0 is consequence of a standard
result on linear ordinary differential systems of finite dimension and with bounded and time-
measurable coefficients. The Hermiticity and trace conservation directly follows from the fact
that the right-hand side of (31) is Hermitian as soon as ρ is Hermitian, and admits a zero
trace. The positivity conservation is less simple. It can be seen from the following formulation
of (31):

d

dt
ρ = Aρ+ ρA† +

∑
ν

LνρL
†
ν

with A = −iH − 1
2

∑
ν L

†
νLν . Consider the solution of the matrix equation d

dtE = AE with

E0 = I. Then E is always invertible and defines the following change of variables ρ = EξE†.
We have then

d

dt
ξ =

∑
ν

MνξM
†
ν

with Mν = E−1LνE. The fact that ξ0 = ρ0 is Hermitian non-negative and that d
dtξ is also

Hermitian and non-negative, implies that ξ remains non-negative for all t > 0, and thus ρ
remains also non-negative.

The link between the discrete-time formulation and the continuous-time one (31), becomes
clear if we consider the following identity for ε positive and small:

ρ+ ε
d

dt
ρ = M ε,0ρM

†
ε,0 +

∑
ν

M ε,νρM
†
ε,ν +O(ε2)
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where d
dtρ is given by (31), M ε,0 = I − ε

(
iH + 1

2

∑
ν L

†
νLν

)
and M ε,ν =

√
εLν . Since

ρ(t+ ε) = ρ(t) + ε d
dtρ(t) + o(ε) and M †

ε,0M ε,0 +
∑

ν M
†
ε,νM ε,ν = I +O(ε2), the continuous-

time evolution (31) is attached to a discrete-time evolution with the following infinitesimal
Kraus map

ρ(t+ dt) = Mdt,0ρ(t)M
†
dt,0 +

∑
ν

Mdt,νρ(t)M
†
dt,ν (32)

up to second order terms versus the time-step dt > 0. Such correspondence can be used to
develop positivity preserving numerical schemes (see next sub-section).

Since any Kraus map is a contraction for the trace-distance and fidelity-distance, we
have the following theorem, the continuous-time counter part of discrete-time contraction
properties.

Theorem 2. Consider two solutions of (31), ρ and ρ′, starting form ρ0 and ρ′
0 two Hermitian

non negative operators of trace one. Assume that H is of finite dimension and the Hermitian
operator H(t) and the operators Lν(t) are bounded and measurable functions of time. Then
for any 0 ≤ t1 ≤ t2,

Tr
(|ρ(t2)− ρ′(t2)|

) ≤ Tr
(|ρ(t1)− ρ′(t1)|

)
and F (ρ(t2),ρ

′(t2)) ≥ F (ρ(t1),ρ
′(t1)).

The proof just consists in exploiting (32) with the discrete-time contraction proper-
ties (25).

Take the operators A(t) solution of the ad-joint dynamics

d

dt
A = L∗(A) � +i[H, A] +

∑
ν

L†
νALν − 1

2(L
†
νLνA+AL†

νLν) (33)

where the operators H and Lν do not depends on time t, i.e., the super-operator L is time-
independent. With ρ(t) solution of (33), the following identity

Tr (A(0)ρ(t)) = Tr (A(t)ρ(0))

characterizes the equivalence between the Schrödinger view-point with ρ(t) and the Heisenberg
view-point with A(t). Any A such that L∗(A) = 0 correspond to an invariant, i.e. Tr (Aρ(t)) =
Tr (Aρ(0)).

The identity

L†
νALν − 1

2(L
†
νLνA+AL†

νLν) ≡ 1

2

(
L†

ν [A,Lν ] + [L†
ν , A]Lν

)
could be useful.

3.2 Numerical integration scheme based on quantum maps

Take

d

dt
ρt = −i[H, ρt] +

∑
ν

LνρtL
†
ν −

1

2
(L†

νLνρt + ρtL
†
νLν).

With a discretisation time-step dt and

M0 = I +
(− iH − 1

2

∑
ν

L†
νLν

)
dt, S = M †

0M0 +

(∑
ν

L†
νLν

)
dt
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set
M̃0 = M0S

−1/2, L̃ν = LνS
−1/2

Then the update ρt+dt is given by the following formulation

ρt+dt = M̃0ρtM̃
†
0 +

∑
ν

L̃νρtL̃
†
νdt

which is a trace-preserving quantum map.

One can also use the following splitting scheme when the unitary operator e−
idt
2
H is

numerically available and where in the above calculations M0 is reduced to I − dt
2

∑
ν L

†
νLν :

ρt+dt = e−
idt
2
H

(
M̃0e

− idt
2
Hρte

idt
2
HM̃†

0 +
∑
ν

dt L̃νe
− idt

2
Hρte

idt
2
HL̃†

ν

)
e

idt
2
H .

Such scheme is interesting when the transition frequencies in H are larger than the decoher-
ence rates attached to Lν, i.e. when ‖H‖ � ‖L†

νLν‖.

3.3 Typical decoherence dynamics of a qubit

The controlled dynamic of qubit including decoherence effects is typically described by the
following master differential equation:

d

dt
ρ = −i

ωeg

2
[σz, ρ]− i

u(t)

2
[σy, ρ] + κ−Dσ−(ρ) + κ+Dσ+(ρ) + κφDσz(ρ) (34)

with a real control input (drive) u(t), real parameters ωeg � |u(t)|, κ−, κ+, κφ

2 ≥ 0 and

σ− = |g〉〈e| , σ+ = σ−†, σx = σ− + σ+, σy = iσ− − iσ+, σz = −iσxσy.

The decoherence super-operator associated to operator L is denoted by DL with DL(ρ) =
LρL† − (L†Lρ+ ρL†L)/2.

In the Bloch sphere coordinates (x, y, z),

ρ =
I + xσx + yσy + zσz

2
with x2 + y2 + z2 ≤ 1,

one gets

d

dt
x = −ωegy + uz −

(
κφ + κ−+κ+

2

)
x (35)

d

dt
y = +ωegx−

(
κφ + κ−+κ+

2

)
y (36)

d

dt
z = −ux− (κ− + κ+)

(
z +

κ− − κ+
κ− + κ+

)
. (37)

Usually T1 = 1/κ− is the life-time of the excited state |e〉 and Tφ = 1/κφ is the dephasing
time. The decoherence time T2 = 1/(κφ + κ−+κ+

2 ) is always smaller than 2T1.
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3.4 Driven and damped quantum harmonic oscillator

3.4.1 Classical ordinary differential equations

Consider the following damped harmonic oscillator

d

dt
x′ = ωp′,

d

dt
p′ = −ωx′ − κp′ − 2u1 sin(ωt) + 2u2 cos(ωt)

where ω � κ,
√
u21 + u22. Consider the following periodic change of variables (x′, p′) �→ (x, p):

x′ = cos(ωt)x+ sin(ωt)p, p′ = − sin(ωt)x+ cos(ωt)p.

Then, we have

cos(ωt)
d

dt
x+ sin(ωt)

d

dt
p = 0

− sin(ωt)
d

dt
x+ cos(ωt)

d

dt
p = −κ(− sin(ωt)x+ cos(ωt)p)− 2u1 sin(ωt) + 2u2 cos(ωt).

Thus

d

dt
x = −κ sin2(ωt)x+ 2u1 sin

2(ωt) + (κp− 2u2) sin(ωt) cos(ωt)

d

dt
p = −κ cos2(ωt)p+ 2u2 cos

2(ωt) + (κx− 2u1) sin(ωt) cos(ωt).

Removing highly oscillating terms (rotating wave approximation), we get:

d

dt
x = −κ

2x+ u1,
d

dt
p = −κ

2p+ u2

that reads also with the complex variables α = x+ ip and u = u1 + iu2:

d

dt
α = −κ

2α+ u. (38)

This yields to the following approximate model in the original frame (x′, p′):

d

dt
x′ = −κ

2x
′ + ωp+ u1 cos(ωt) + u2 sin(ωt),

d

dt
p′ = −ωx′ − κ

2p
′ − u1 sin(ωt) + u2 cos(ωt)

or with complex variable α′ = x′ + ip′ = e−iωtα:

d

dt
α′ = −(κ2 + iω)α′ + ue−iωt (39)

3.4.2 Quantum master equation

We consider here the quantum model of the classical oscillator modeled by (38) and (39).
It admits the infinite dimensional Hilbert-space H with (|n〉)n∈N as orthonormal basis (Fock
states). Its Hamiltonian with a resonant coherent drive of complex amplitude u (|u| � ω)
reads

H =
(
ωN + i(ue−iωta† − u∗eiωta)

)
.
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Consider the Lindblad master equation (31) with the above H and two operators L1 =√
(1 + nth)κ a and L2 =

√
nthκ a† corresponding to decoherence via photon losses and

thermal photon gains. We get the following master equation where ρ′ is the density operator:

d

dt
ρ′ = −ıω[N ,ρ′] + [ue−iωta† − u∗eiωta,ρ′] + (1 + nth)κ

(
aρ′a† − 1

2a
†aρ′ − 1

2ρ
′a†a

)
+ nthκ

(
a†ρ′a− 1

2aa
†ρ′ − 1

2ρ
′aa†

)
. (40)

with parameter κ > 0 and nth ≥ 0. When nth = 0, we recover (39) with α′ = Tr (ρ′a).
Consider the change of frame ρ′ = e−iωtNρeiωtN . Since eiωtNae−iωtN = e−iωta, we get:

d

dt
ρ = [ua† − u∗a,ρ] + (1 + nth)κ

(
aρa† − 1

2a
†aρ− 1

2ρa
†a

)
+ nthκ

(
a†ρa− 1

2aa
†ρ− 1

2ρaa
†
)
. (41)

When nth = 0, we recover with α = Tr (ρa) the classical amplitude equation (38).
The above models (40) and (41) are valid only when ω � κ, |u|: weak drive amplitude and

high quality factor of the oscillator. With initial conditions ρ′
0 and ρ0 being density operators

their solutions give the forward time evolution of ρ′ and ρ . In the sequel, we focus on the
dynamics of ρ, i.e., on the dynamics in the frame rotating at the oscillator frequency ω.

3.4.3 Zero temperature case: nth = 0

Assume that nth = 0:

d

dt
ρ = [ua† − u∗a,ρ] + κ

(
aρa† − 1

2a
†aρ− 1

2ρa
†a

)
.

Set α = 2u
κ . We recover the classical equation for the complex amplitude α = Tr (ρa):

d

dt
α = −κ

2 (α− 2u/κ) = −κ
2 (α− α).

Consider the following change of frame

ρ = eαa
†−α∗aξe−αa†+α∗a

corresponding to a displacement of amplitude −α of ρ. Since e−αa†+α∗aaeαa
†−α∗a = a + α

and e−αa†+α∗aa†eαa†−α∗a = a+ α∗ we have

d

dt
ξ = [u(a†+α∗)−u∗(a+α), ξ]+κ

(
(a+ α)ξ(a† + α∗)− 1

2(a
† + α∗)(a+ α)ξ − 1

2ξ(a
† + α∗)(a+ α)

)
= κ

(
aξa† − 1

2a
†aξ − 1

2ξa
†a

)
.

Consider V (ξ) = Tr (ξN) (N = a†a). Since ξ is a density operator V (ξ) ≥ 0 and V (ξ) = 0
if, and only if, ξ = |0〉 〈0| (vacuum state). We have

d

dt
V (ξ) = −κV (ξ).
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If the initial energy V (ξ0) < +∞, ξ(t) remains of finite energy for all t and moreover,
V (ξ(t)) = V (ξ0)e

−κt. Thus V (ξ(t)) tends to 0 and thus ξ(t) converges towards |0〉 〈0|. Since
ρ is just ξ up to a coherent displacement α, this proves that ρ(t) converges towards |α〉 〈α|,
the coherent and pure state of amplitude α.

The above arguments with the strict Lyapunov function V are not presented here above
with all the necessarily mathematical rigour since H is an infinite dimensional Hilbert space.
Nevertheless, they can be made rigorous to prove the following theorem

Theorem 3. Consider (41) with u ∈ C, κ > 0 and nth = 0. Denote by |α〉 the coherent state
of complex amplitude α = 2u

κ . Assume that the initial state ρ0 is a density operator with finite
energy Tr (ρ0N) < +∞. Then, there exists a unique solution to the Cauchy problem (41)
initialized with ρ0 in the the Banach space K1(H) (see appendix C). It is defined for all t > 0
with t �→ ρ(t) a density operator (Hermitian, non-negative and trace-class) that remains in
the domain of the Lindblad super-operator

ρ �→ [ua† − u∗a,ρ] + κ
(
aρa† − 1

2a
†aρ− 1

2ρa
†a

)
.

Thus t �→ ρ(t) is differentiable in the Banach space K1(H). Moreover ρ(t) converges for the
trace-norm towards |α〉 〈α| when t tends to +∞.

The following lemma gives the link with the classical damped oscillator.

Lemma 1. Consider (41) with u ∈ C, κ > 0 and nth = 0.

1. for any initial density operator ρ0 with Tr (ρ0N) < +∞, we have d
dtα = −κ

2 (α − α)
where α = Tr (ρa).

2. Assume that ρ0 = |β0〉 〈β0| where β0 is some complex amplitude. Then for all t ≥ 0,
ρ(t) = |β(t)〉 〈β(t)| remains a coherent and pure state of amplitude β(t) solution of the
following equation: d

dtβ = −κ
2 (β − α) with β(0) = β0.

Proof. Statement 1 follows from d
dtα = Tr

(
a d

dtρ
)
with d

dtρ given by (41). Statement 2 relies
on the following relationships specific to coherent state:

a |β〉 = β |β〉 , |β〉 = e−
ββ∗
2 eβa

† |0〉 and
d

dt
|β〉 =

(
−1

2(β
∗β̇ + ββ̇∗) + β̇a†

)
|β〉 .

For the finite temperature case, i.e. nth > 0, see appendix F showing the convergence
with the Wigner representation of the quantum state ρ.

4 Continuous-time Stochastic Master Equations (SME)

These models have their origins in the work of Davies [26], are related to quantum trajecto-
ries [19, 25] and to Belavkin quantum filters [12]. A modern and mathematical exposure of
the diffusive models is given in [9]. For a tutorial passage of discret-time towards continuous-
time formulation of stochastic master equations see [52]. These models are interpreted here as
continuous-time versions of discrete-time (partial) Kraus maps. They are based on stochas-
tic differential equations, also called Stochastic Master Equations (SME). They provide the
evolution of the density operator ρt with respect to t, an evolution similar to the dynamics
of discrete-time SME (21).
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4.1 Diffusive SME

Diffusive SME are driven by a finite number of independent Wiener processes indexed by ν,
(Wν,t), each of them being associated to a continuous classical and real signal, yν,t, produced
by detector ν. These SMEs admit the following Ito form:

dρt =

(
−i[H,ρt] +

∑
ν

LνρtL
†
ν − 1

2(L
†
νLνρt + ρtL

†
νLν)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρtL

†
ν − Tr

(
(Lν +L†

ν)ρt

)
ρt

)
dWν,t (42)

where H is the Hamiltonian operator on the underlying Hilbert space H and Lν are arbitrary
operators (not necessarily Hermitian) on H. Each measured signal yν,t is related to ρt and
Wν,t by the following output relationship:

dyν,t = dWν,t +
√
ην Tr

(
(Lν +L†

ν)ρt

)
dt

where ην ∈ [0, 1] is the efficiency of detector ν.
For the case of a finite dimensional Hilbert space, it has been proven in [46, 9] that the

above SME admits a unique strong solution in the space of well-defined density matrices

S = {ρ | ρ = ρ†,ρ ≥ 0,Tr (ρ) = 1}.

The ensemble average of ρt obeys thus to a linear differential equation, also called master or
Lindblad-Kossakowski differential equation [37, 43]:

d

dt
ρ = −i[H,ρ] +

∑
ν

LνρtL
†
ν − 1

2(L
†
νLνρt + ρtL

†
νLν). (43)

It is the continuous-time analogue of the Kraus map K associated to a discrete-time quantum
Markov process.

In fact (42) has the same structure. This becomes obvious if one remarks that, with
standard Itō rules, (42) admits the following formulation

ρt+dt =
MdytρtM

†
dyt

+
∑

ν(1− ην)LνρtL
†
νdt

Tr
(
MdytρtM

†
dyt

+
∑

ν(1− ην)LνρtL
†
νdt

)
with Mdyt = I +

(−iH − 1
2

∑
ν L

†
νLν

)
dt+

∑
ν

√
ηνdyνtLν .

We recall here the basic rule of Ito differential calculus for the stochastic system of state
X ∈ R

n and driven by m scalar Wiener independent processes Wv,t:

Xt+dt −Xt = dXt = F (Xt, t)dt+
∑
ν

Gν(Xt, t)dWν,t

where F (X, t) and (Gν(X, t)) are smooth functions ofX and piece-wise continuous functions of
t. For any C2 real function f of X, the computation of dft = f(Xt+dt)− f(Xt) is conducted
up to including order one in dt with the following rules: dWν,t = O(

√
dt), (dWν,t)

2 = dt,
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dWν,t dWν′,t = 0 for ν 	= ν ′ and any other products between the dWν,t being zero since of
order greater than (dt)3/2. This means that we have

dft = f(Xt+dt)− f(Xt) = f(Xt + dXt)− f(Xt)

=
∂f

∂X

∣∣∣∣
Xt

dXt +
1
2

∂2f

∂X2

∣∣∣∣
Xt

(dXt, dXt) + . . .

=

(
∂f

∂X

∣∣∣∣
Xt

F (Xt, t) +
1
2

∑
ν

∂2f

∂X2

∣∣∣∣
Xt

(Gν(Xt, t), Gν(Xt, t))

)
dt

+
∑
ν

∂f

∂X

∣∣∣∣
Xt

Gν(Xt, t)dWν,t.

Notice that we have removed terms with dtdWν,t since of order dt
3/2. For expectation values,

all dWν,t are independent of Xt and E (dWν,t) = 0. Thus we have for any C2 function f of X:

E (dft | Xt) =

(
∂f

∂X

∣∣∣∣
Xt

F (Xt, t) +
1
2

∑
ν

∂2f

∂X2

∣∣∣∣
Xt

(Gν(Xt, t), Gν(Xt, t))

)
dt.

4.2 Numerical schemes for diffusive SME

From the above formulation, one can construct a linear, positivity and trace preserving nu-
merical integration scheme for such diffusive SME (see [35, appendix B]):

dρt =

(
−i[H, ρt] +

∑
ν

LνρtL
†
ν −

1

2
(L†

νLνρt + ρtL
†
νLν)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρtL

†
ν − Tr

(
(Lν +L†

ν)ρt

)
ρt

)
dWν,t,

dyν,t =
√
ην Tr

(
Lνρt + ρtL

†
ν

)
dt+ dWν,t

With

M0 = I +
(− iH − 1

2

∑
ν

L†
νLν

)
dt, S = M †

0M0 +

(∑
ν

L†
νLν

)
dt

set
M̃0 = M0S

−1/2, L̃ν = LνS
−1/2

Then the sampling of dyν,t = sν,t
√
dt follows to the following exact probability density:

dP

[
dy ∈

∏
ν

√
dt[sν , sν + dsν ]

∣∣∣ ρt
]
= Tr

(
M̃s

√
dtρtM̃

†
s
√
dt
+

∑
ν

(1− ην)L̃νρtL̃
†
νdt

)∏
ν

e−
s2ν
2 dsν√
2π

.

where dy = (dyν)ν , s = (sν)ν and

M̃dy = M̃0 +
∑
ν

√
ηνdyνL̃ν .

The update ρt+dt is then given by the following exact Kraus-map formulation:

ρt+dt =
M̃dytρtM̃

†
dyt

+
∑

ν(1− ην)L̃νρtL̃
†
νdt

Tr
(
M̃dytρtM̃

†
dyt

+
∑

ν(1− ην)L̃νρtL̃
†
νdt

) .
25



Notice that the operators M̃dyt and L̃ν are bounded operators even if H and Lν are un-
bounded.

When ‖H‖ is larger than ‖L†
νLν‖, the following version based on a splitting scheme is

usually efficient. It requires to have a good numerical approximation of the unitary operator

e−
idt
2
H . Then with M0 reduced to I − dt

2

∑
ν L

†
νLν , this splitting version reads

ρt+dt = e−
idt
2
H

M̃dyte
− idt

2
Hρte

idt
2
HM̃†

dyt
+

∑
ν(1− ην)L̃νe

− idt
2
Hρte

idt
2
HL̃†

νdt

Tr
(
M̃dyte

− idt
2
Hρte

idt
2
HM̃†

dyt
+

∑
ν(1− ην)L̃νe

− idt
2
Hρte

idt
2
HL̃†

νdt
)e idt

2
H .

4.3 QND measurement of a qubit and asymptotic behavior

In this section, we consider a continuous measurement protocol for a single qubit. The
considered setup corresponds to the inverse of the photon box experiment. As illustrated in
Figure 2, we consider the qubit to be fixed inside the cavity and interacting with the confined
electromagnetic field. The cavity however is assumed to be not ideal and the confined field
can leak out at a rate κ. This outgoing field is continuously measured through what is called
a homodyne measurement process, corresponding to the measurement of a certain quadrature
Xλ = (eiλa† + e−iλa)/2 as physical observable. Assuming a dispersive coupling between the
qubit and the cavity and in the regime where the leakage rate κ is much stronger than the
other dynamical time-scales, such as an eventual Rabi oscillation rate for the qubit, the cavity
dynamics can be removed leading to a stochastic master equation for the qubit [31] (we will
skip the details of this model reduction which includes some details that are out of the scope
of these lectures).

|g〉

|e〉 κ

Figure 2: The cavity field interacts with the qubit and the cavity output gets measured
providing information on the state of the qubit.

For a well-chosen measured quadrature Xλ, this SME of the form (42) is given by

dρt = −i[H,ρt]dt+
Γm

4
(σzρtσz − ρt)dt+

√
ηΓm

2
(σzρt + ρtσz − 2Tr (σzρt)) dWt, (44)

where H is the qubit’s Hamiltonian, the only Lindblad operator Lν is given by
√
Γmσz/2,

and η ∈ [0, 1] represents the detector efficiency. The measured signal dyt is given by

dyt = dWt +
√
ηΓmTr (σzρt) dt. (45)

Let us consider here the uncontrolled case where the Hamiltonian H is simply given by
ωegσz/2. Following the arguments of the previous section, the above SME correspond to a
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Markov process with the Kraus operators

Mdyt = I − (i
ωeg

2
σz +

Γm

8
I)dt+

√
ηΓm

2
σzdyt and

√
(1− η)dtL =

√
(1− η)Γmdt

2
σz.

Noting that the above operators commute with σz. Thus we have a quantum non-demolition
(QND) measurement of the observable σz. We study here the asymptotic behavior of the
open-loop system undergoing the above continuous measurement process.

Theorem 4. Consider the SME (44) with H = ωegσz/2 and η > 0. For any initial density
matrix ρ0, the solution ρt converges almost surely as t → ∞ to one of the states |g〉 〈g| or
|e〉 〈e|. Furthermore the probability of convergence to |g〉 〈g| (respectively |e〉 〈e|) is given by
pg = Tr (|g〉 〈g|ρ0) (respectively Tr (|e〉 〈e|ρ0)).

Proof. We consider the Lyapunov function

V (ρ) = 1− Tr (σzρ)
2 .

Applying the Ito rules, we have

d

dt
E (V (ρt)) = −ηΓmE

(
V 2(ρt)

) ≤ 0,

and thus

E (V (ρt)) = V (ρ0)− ηΓm

∫ t

0
E

(
V 2(ρs)

)
ds.

Noting that V (ρ) ≥ 0, we have

ηΓm

∫ t

0
E

(
V 2(ρs)

)
ds = V (ρ0)− E (V (ρt)) ≤ V (ρ0) < ∞.

Thus we have the monotone convergence

E

(∫ ∞

0
V 2(ρs)ds

)
< ∞ ⇒

∫ ∞

0
V 2(ρs)ds < ∞ almost surely.

By Theorem 5 of Appendix E, the limit V (ρt) as t → ∞ exists with probability one (as a
supermartingale bounded from below) and hence, the above inequality implies that V (ρt) → 0
almost surely. But the only states ρ satisfying V (ρ) = 0 are ρ = |g〉 〈g| or ρ = |e〉 〈e|.

We can finish the proof by noting that Tr (σzρt) is a martingale. Therefore the probability
of convergence to |g〉 〈g| (respectively |e〉 〈e|) is given by pg = Tr (|g〉 〈g|ρ0) (respectively
Tr (|e〉 〈e|ρ0)).

The above theorem implies that the continuous QND measurement can be seen as a non-
deterministic preparation protocol for the states |g〉 〈g| and |e〉 〈e|. This preparation can be
rendered deterministic by adding an appropriate feedback control. Indeed, it has been proven
in [65, 46] that, a controlled Hamiltonian

H =
ωeg

2
σz +

u

2
σx,

with the feedback law

u(ρ) = −αTr
(
i[σx,ρ]ρtag

)
+ β(1− Tr

(
ρρtag

)
), α, β > 0 and β2 < 8αη,

globally stabilizes the target state ρtag = |g〉 〈g| or |e〉 〈e|.
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4.4 Jump SME in continuous-time

Assume that the detector is a counter (typically, photon counting detector). This means that
the measurement outcome yt is a signal with increasing integer values t �→ yt = Nt piece-wise
constant and with step of 1 at random time. Such counting measurement Nt follows a Poisson
law depending on the quantum state ρt and an operator V . With dt > 0 very smmall

P [Nt+dt −Nt = 1|ρt] =
(
θ̄ + η̄Tr

(
V ρtV

†
))

dt,

where counting imperfections are modeled by θ̄ ≥ 0 (dark-count rate) and η̄ ∈ [0, 1] (detection
efficiency). Then the quantum state ρt is usually mixed and obeys to the following stochastic
differential equation driven by the Poisson process Nt

dρt =
(
−i[H, ρt] + V ρtV

† − 1
2(V

†V ρt + ρtV
†V )

)
dt

+

(
θ̄ρt + η̄V ρtV

†

θ̄ + η̄Tr
(
V ρtV

†) − ρt

)(
dNt −

(
θ̄ + η̄Tr

(
V ρtV

†
))

dt
)

where dNt = Nt+dt −Nt. Here when H and V are operators on an underlying Hilbert space
H, H being Hermitian. This just means that between t to t+ dt, one has two possibilities:

� dNt = 0 with probability 1−
(
θ̄+η̄Tr

(
V ρtV

†) )
dt = Tr

(
e−θ̄dtM0ρtM

†
0 + (1− η̄)dtV ρtV

†
)
+

O(dt2)

ρt+dt =
e−θ̄dtM0ρtM

†
0 + (1− η̄)dtV ρtV

†

Tr
(
e−θ̄dtM0ρtM

†
0 + (1− η̄)dtV ρtV

†
)

where M0 = I − (
iH + 1

2V
†V

)
dt.

� dNt = 1 with probability θ̄dt+η̄dtTr
(
V ρtV

†) = Tr
((

1− e−θ̄dt
)
M0ρtM

†
0 + η̄dtV ρtV

†
)
+

O(dt2),

ρt+dt =

(
1− e−θ̄dt

)
M0ρtM

†
0 + η̄dtV ρtV

†

Tr
((

1− e−θ̄dt
)
M0ρtM

†
0 + η̄dtV ρtV

†
) .

These SME have been introduced in the Physics literature in [24, 32] for numerical purposes to
solve Lindbald master equation via Monte-Carlo method for high dimensional Hilbert spaces.

As in subsection 4.2, if one replaces here above M0 and V by M̃0 = M0S
−1/2 and

Ṽ = V S−1/2 with S = M †
0M0 + V †V dt, the probabilities are preserved exactly in the

following sense: for any density operator ρt and parameters θ̄ ≥ 0, η̄ ∈ [0, 1], one has the
identity

Tr
(
e−θ̄dtM̃0ρtM̃

†
0 + (1− η̄)dtṼρtṼ

†
)
+Tr

((
1− e−θ̄dt

)
M̃0ρtM̃

†
0 + η̄dtṼρtṼ

†
)
≡ 1

where the two left-hand side terms correspond always to probabilities. This provides an
efficient numerical scheme where dt can be chosen no too small and where the operators
H and V can be large and finite dimensional approximation of unbounded operators like
polynomials of annihilation or creation operators. Similarly to subsection 4.2, one can also

use a splitting scheme when e−i dt
2
H can be computed with high precision and ‖H‖ larger

than ‖V †V ‖.
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4.5 General mixed diffusive/jump SME

One can combine in a single SME driven simultaneously by Wiener and Poisson processes
describing diffusive and counting measurements. The quantum state ρt, usually mixed, obeys
to

dρt =
(
−i[H, ρt] +LρtL

† − 1
2(L

†Lρt + ρtL
†L) + V ρtV

† − 1
2(V

†V ρt + ρtV
†V )

)
dt

+
√
η

(
Lρt + ρtL

† − Tr
(
(L+L†)ρt

)
ρt

)
dWt

+

(
θ̄ρt + η̄V ρtV

†

θ̄ + η̄Tr
(
V ρtV

†) − ρt

)(
dNt −

(
θ̄ + η̄Tr

(
V ρtV

†
))

dt
)

With dyt =
√
ηTr

(
(L+L†) ρt

)
dt+dWt and dNt = 0 with probability 1−

(
θ̄+η̄Tr

(
V ρtV

†) )
dt.

Wiener process dWt and Poisson process dNt are independent.
The Kraus-map equivalent formulation reads:

� for dNt = 0 of probability 1 −
(
θ̄ + η̄Tr

(
V ρtV

†) )
dt corresponding, up to terms of

order dt3/2, to Tr
(
e−θ̄dt

(
MdytρtM

†
dyt

+ (1− η)dtLρtL
†
)
+ (1− η̄)dtV ρtV

†
)
one gets

the following update:

ρt+dt =
e−θ̄dt

(
MdytρtM

†
dyt

+ (1− η)dtLρtL
†
)
+ (1− η̄)dtV ρtV

†

Tr
(
e−θ̄dt

(
MdytρtM

†
dyt

+ (1− η)dtLρtL
†
)
+ (1− η̄)dtV ρtV

†
)

with Mdyt = M0 +
√
ηdytL and M0 = I − (

iH + 1
2L

†L+ 1
2V

†V
)
dt.

� for dNt = 1 of probability
(
θ̄ + η̄Tr

(
V ρtV

†) )
dt corresponding, up to terms of order

dt3/2, to Tr
((

1− e−θ̄dt
)(

MdytρtM
†
dyt

+ (1− η)dtLρtL
†
)
+ η̄dtV ρtV

†
)
one has

ρt+dt =

(
1− e−θ̄dt

)(
MdytρtM

†
dyt

+ (1− η)dtLρtL
†
)
+ η̄dtV ρtV

†

Tr
((

1− e−θ̄dt
)(

MdytρtM
†
dyt

+ (1− η)dtLρtL
†
)
+ η̄dtV ρtV

†
) .

As in subsection 4.2, one can replace M0, L and V by M̃0 = M0S
−1/2, L̃ = LS−1/2 and

Ṽ = V S−1/2 with S = M †
0M0 + L†Ldt + V †V dt where M̃s

√
dt = M̃0 + s

√
η dtL̃ν . Then

the probabilities are preserved exactly in the following sense. For any density operator ρt and

parameters θ̄ ≥ 0, η, η̄ ∈ [0, 1], the probability laws dP
[
dNt = 0, dyt ∈

√
dt[s, s+ ds]

∣∣∣ ρt] and

dP
[
dNt = 1, dyt ∈

√
dt[s, s+ ds]

∣∣∣ ρt] are given by the following formulae

dP
[
dNt = 0, dyt ∈

√
dt[s, s+ ds]

∣∣∣ ρt] =⎛⎝Tr
(
e−θ̄dt

(
M̃s

√
dtρtM̃

†
s
√
dt
+ (1− η)dtL̃ρtL̃

†
)
+ (1− η̄)dtV ρtV

†
) e−

s2

2√
2π

⎞⎠ ds
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and

dP
[
dNt = 1, dyt ∈

√
dt[s, s+ ds]

∣∣∣ ρt] =⎛⎝Tr
((

1− e−θ̄dt
) (

M̃s
√
dtρtM̃

†
s
√
dt
+ (1− η)dtL̃ρtL̃

†
)
+ η̄dtV ρtV

†
) e−

s2

2√
2π

⎞⎠ ds

One can check that∫ s=+∞

s=−∞

(
dP

[
dNt = 1, dyt ∈

√
dt[s, s+ ds]

∣∣∣ ρt]+ dP
[
dNt = 0, dyt ∈

√
dt[s, s+ ds]

∣∣∣ ρt]) ≡ 1.

Similarly to subsection 4.2, one can also use a splitting scheme when ‖H‖ is larger than
‖V †V ‖.

5 Open-loop control

This section investigates two types of questions:

1. State preparation: for |ψ〉 obeying a controlled Schrödinger equation i d
dt |ψ〉 = (H0 +∑m

k=1 ukHk) |ψ〉 with a given initial condition |ψi〉, find an open-loop control [0, T ] �
t �→ u(t) = (u1(t), u2(t), · · · , um(t)) such that at a final time T , |ψ〉 has reached a
pre-specified target state |ψf 〉.

2. Logical gates: for the unitary propagator U obeying the controlled Schrödinger equation
i d
dtU = (H0 +

∑m
k=1 ukHk)U with initial condition U(0) = I, find an open-loop

control [0, T ] � t �→ u(t) = (u1(t), u2(t), · · · , um(t)) such that at a final time T , U has
reached a pre-specified target unitary operation U f . This target unitary operation is
the so-called logical gate we seek to implement.

In different sections, emphasis is put on different methods to construct efficient open-
loop steering controls: resonant control and the rotation wave approximation are treated in
section 5.1; quasi-static controls exploiting adiabatic invariance are presented in section 5.2;
optimal control techniques are investigated in section 5.3. All these control techniques are
routinely used in experiments that could be modeled as spins, springs or composite spin-
spring systems. Therefore, while we provide a general framework for these techniques, we will
emphasize on their application to spin-spring systems.

Note once again that |ψ〉 and eiθ |ψ〉 for any phase θ ∈ [0, 2π[ represent the same physical
state. Therefore, the relevant state preparation control problem consists of, finding for a given
initial and final state, |ψi〉 and |ψf 〉, a set of piecewise continuous controls [0, T ] � t �→ uk(t)
such that the solution for |ψ〉0 = |ψi〉 satisfies |ψ〉T = eiθ |ψf 〉. In a similar manner, in case of
generating a unitary propagator U f associated to a logical gate, the unitary can be prepared
up to a an arbitrary phase U(T ) = eiθU f .

5.1 Resonant control and Rotating Wave Approximation (RWA)

5.1.1 Approximation recipes

Let us consider the system

d

dt
|ψ〉 = −i

(
H0 +

m∑
k=1

ukHk

)
|ψ〉 , |ψ(0)〉 = |ψi〉 (46)
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defined on a finite-dimensional Hilbert space H (while one can consider infinite dimensional
systems we will present the general framework only for the finite-dimensional case). The
corresponding controlled Hamiltonian is

H = H0 +
m∑
k=1

ukHk (47)

with m oscillating real controls

uk(t) =

r∑
j=1

uk,je
ωjt + u∗k,je

−ωjt

where uk,j is the slowly varying complex amplitude associated to control number k and fre-
quency ωj . In the sequel, all the computations are done assuming uk,j constant. Nevertheless,
the obtained approximate Hamiltionians given in (50) are also valid for slowly time-varying
amplitudes.2 Note furthermore that the recipes below directly apply to the propagator version
of this equation

d

dt
U = −i

(
H0 +

m∑
k=1

ukHk

)
U , U(0) = I. (48)

The interaction Hamiltonian

H int(t) =
∑
k,j

(
uk,je

ωjt + u∗k,je
−ωjt

)
eiH0tHke

−iH0t (49)

is associated to the interaction frame via the unitary transformation |φ〉 = eiH0t |ψ〉. It admits
the decomposition

H int(t) = H1st

rwa +
d

dt
Iosc(t)

where H1st
rwa is the averaged Hamiltonian corresponding to the non-oscillating part of H int

(secular part) and Iosc is the time integral of the oscillating part. Iosc is an almost periodic
Hermitian operator whose entries are linear combinations of oscillating time-exponentials.
The Rotating Wave Approximation consists in approximating the time-varying Hamiltonian

H int(t) by H1st
rwa. This approximation is valid when the amplitudes uk,j are small. It is of

first order.
The second order approximation is then obtained by adding to H1st

rwa a second order
correction made by the averaged part J rwa of the almost periodic Hamiltonian

i

(
d

dt
Iosc(t)

)
Iosc(t) = J rwa +

d

dt
Josc(t)

with Josc almost periodic. Notice J rwa is also Hermitian since d
dtI

2
osc =

d
dtIoscIosc+Iosc

d
dtIosc.

We can summarize these approximations as the following recipes:

H1st

rwa = H int, H2nd

rwa = H1st

rwa − i
(
H int −H int

)(∫
t
(H int −H int)

)
(50)

where the over-line means taking the average.
For the mathematical justification of these recipes see appendix H.

2More precisely and according to exercise 21, we can assume that each uk,j is of small magnitude, admits a
finite number of discontinuities and, between two successive discontinuities, is a slowly time varying function
that is continuously differentiable.
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5.1.2 Rabi oscillations and single qubit logical gates

Let us consider the spin-half system described below and fix the phase of the drive, so that
the controlled dynamics is given by:

i
d

dt
|ψ〉 =

(
ωeg

2 σz + u(t)
2 σx

)
|ψ〉 .

Furthermore, we assume that u(t) = veiωrt+v∗e−iωrt where the complex amplitude v is chosen
such that |v| � ωeg and the frequency ωr is close to ωeg, i.e., |ωeg − ωr| � ωeg. Denote by
Δr = ωeg − ωr the detuning between the control and the system then we get the standard

form (47) with m = 2, H0 = ωr
2 σz, u1H1 = Δr

2 σz and u2H2 = veiωrt+v∗e−iωrt

2 σx with ‖H0‖
much larger than ‖u1H1 + u2H2‖. A direct computation yields to the following interaction
Hamiltonian defined by (49):

H int =
Δr

2
σz + veiωrt+v∗e−iωrt

2 e
iωrt
2

σzσxe
− iωrt

2
σz .

With the identities eiθσz = cos θI + i sin θσz and σzσx = iσy we get the formula

eiθσzσxe
−iθσz = e2iθσ+ + e−2iθσ−.

Thus we have
H int =

Δr
2 σz + ve2iωrt+v∗

2 σ+ + v∗e−2iωrt+v
2 σ−.

The decomposition of H int = H1st
rwa +

d
dtIosc reads:

H int =
Δr
2 σz + v∗

2 σ+ + v
2σ−︸ ︷︷ ︸

H1st
rwa

+ ve2iωrt

2 σ+ + v∗e−2iωrt

2 σ−︸ ︷︷ ︸
d
dt
Iosc

.

Thus the first order approximation of any solution |ψ〉 of

i
d

dt
|ψ〉 =

(
ωr+Δr

2 σz + veiωrt+v∗e−iωrt

2 σx

)
|ψ〉

is given by e−iωrt
2

σz |φ〉 where |φ〉 is solution of the linear time-invariant equation

i
d

dt
|φ〉 = (

Δr
2 σz + v∗

2 σ+ + v
2σ−

) |φ〉 , |φ(0)〉 = |ψ(0)〉 . (51)

According to (50), the second order approximation requires the computation of the secular

term in Iosc
d
dtIosc. Since Iosc =

ve2iωrt

4iωr
σ+ − v∗e−2iωrt

4iωr
σ−, we have

Iosc
d

dt
Iosc =

|v|2
8iωr

σz

where we have also applied σ+
2 = σ−2 = 0 and σz = σ+σ− − σ−σ+. The second order

approximation resulting from (50) reads:

i
d

dt
|φ〉 =

((
Δr
2 + |v|2

8ωr

)
σz + v∗

2 σ+ + v
2σ−

)
|φ〉 , |φ(0)〉 = |ψ(0)〉 . (52)
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We observe that (51) and (52) differ only by a correction of |v|2
4ωr

added to the detuning Δr.
This correction is called the Bloch-Siegert shift.

Set v = Ωre
iθ and Δ′

r = Δr +
Ω2

r
4ωr

with Ωr > 0 and θ real and constant. Then

((
Δr
2 + |v|2

8ωr

)
σz + v∗

2 σ+ + v
2σ−

)
=

Ωr

2
(cos θσx + sin θσy) +

Δ′
r

2
σz. (53)

Set

Ω′
r =

√(
Δr +

Ω2
r

4ωr

)2
+Ω2

r , σr =
Ωr (cos θσx + sin θσy) + Δ′

rσz
Ω′
r

.

Then σr
2 = I and thus the solution of (52),

|φ(t)〉 = e−i
Ω′
rt

2
σr |φ(0)〉 = cos

(
Ω′

rt
2

)
|φ(0)〉 − i sin

(
Ω′

rt
2

)
σr |φ(0)〉 ,

oscillates between |φ(0)〉 and −iσr |φ(0)〉 with the Rabi frequency Ω′
r
2 .

For Δr = 0 and neglecting second order terms in Ωr, we have Ω′
r ≈ Ωr, Δ

′
r ≈ 0 and

σr ≈ cos θσx + sin θσy. When |φ(0)〉 = |g〉 we see that, up-to second order terms, |φ(t)〉
oscillates between |g〉 and e−i(θ+π

2
) |e〉. With θ = −π

2 , we have

|χ(t)〉 = cos
(
Ωrt
2

) |g〉+ sin
(
Ωrt
2

) |e〉 ,
and we see that, with a constant amplitude v = Ωre

iη for t ∈ [0, T ], we have the following
transition, depending on the pulse-length T > 0:

� if ΩrT = π then |φ(T )〉 = |e〉 and we have a transition between the ground state to
the excited one, together with stimulated absorption of a photon of energy ωeg. If we
measure the energy in the final state we always find Ee. This is a π-pulse in reference
to the Bloch sphere interpretation of (52).

� if ΩrT = π
2 then |φ(T )〉 = (|g〉+ |e〉)/√2 and the final state is a coherent superposition

of |g〉 and |e〉. A measure of the energy of the final state yields either Eg or Ee with a
probability of 1/2 for both Eg and Ee. This is a

π
2 -pulse.

Since |ψ〉 = e−
iωrt
2

σz |φ〉, we see that a π-pulse transfers |ψ〉 from |g〉 at t = 0 to eiα |e〉 at
t = T = π

Ωr
where the phase α ≈ ωr

Ωr
π is very large since Ωr � ωr. Similarly, a π

2 -pulse,

transfers |ψ〉 from |g〉 at t = 0 to e−iα|g〉+eiα|e〉√
2

at t = T = π
2Ωr

with a very large relative

half-phase α ≈ ωr
2Ωr

π.

Exercice 6. Take the first order approximation (51) with Δr = 0 and v ∈ C as control.

1. Set Θr = Ωr
2 T . Show that the solution at T of the propagator U(t) ∈ SU(2), i d

dtU =
Ωr(cos θσx+sin θσy)

2 U , U0 = I is given by

U(T ) = cosΘrI − i sinΘr (cos θσx + sin θσy) ,

2. Take a wave function
∣∣φ̄〉. Show that there exist Ωr and θ such that U(T ) |g〉 = eiα

∣∣φ̄〉,
where α is some global phase.
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3. Prove that for any given two wave functions |φa〉 and |φb〉 exists a piece-wise constant
control [0, 2T ] � t �→ v(t) ∈ C such that the solution of (51) with |φ(0)〉 = |φa〉 and
Δr = 0 satisfies |φ(T )〉 = eiβ |φb〉 for some global phase β.

4. Generalize the above question when |φ〉 obeys the second order approximation (52) with
Δr as additional control.

Following the above analysis, the second order approximation of the solution U of the
propagator equation

i
d

dt
U =

(
ωr+Δr

2 σz + veiωrt+v∗e−iωrt

2 σx

)
U , U(0) = I,

is given by

U2nd(t) = e−iωrt
2

σze−itH2nd

, H2nd =
Δ′

r

2
σz +

Ωr cos(θ)

2
σx +

Ωr sin(θ)

2
σy. (54)

Note that by varying the parameters Δr, Ωr and θ, corresponding respectively to the fre-

quency, amplitude and phase of the driving control u(t), the Hamiltonian H2nd varies over
the ensemble of Hermitian operators over C

2 up to the addition of a constant multiple of
identity. In consequence, it is easy to see (by further varying T ) that the unitary operator

U2nd(T ) varies over the ensemble of unitary operators on C
2 up to a global phase. There-

fore, by varying the parameters of the driving control, we can generate all possible unitary
operations (logical gates) on a single qubit.

5.1.3 Λ-systems and Raman transition

g

e

f

Figure 3: Raman transition for a Λ-level system (δr < 0 and Δr > 0 on the figure).

This transition strategy is used for a three-levem Λ-system. In such a 3-level system
defined on the Hilbert space H = {cg |g〉 + ce |e〉 + cf |f〉 , (cg, ce, cf ) ∈ C

3}, we assume the
three energy levels |g〉, |e〉 and |f〉 to admit the energies Eg, Ee and Ef (see Figure 3). The
atomic frequencies are denoted as follows:

ωfg =
(Ef − Eg)

�
, ωfe =

(Ef − Ee)

�
, ωeg =

(Ee − Eg)

�
.
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We assume a Hamiltonian of the form

H(t)

�
=

Eg

�
|g〉 〈g|+Ee

�
|e〉 〈e|+Ef

�
|f〉 〈f |+ u(t)

2

(
μg(|g〉 〈f |+|f〉 〈g|)+μe(|e〉 〈f |+|f〉 〈e|)

)
(55)

where μg and μe are coupling coefficients with the electromagnetic field described by u(t).
Assuming the third level |f〉 to admit an energy Ef much greater than Ee and Eg, we will
see that the averaged Hamiltonian (after the rotating wave approximation) is very similar
to the one describing Rabi oscillations and the state |f〉 can be ignored. The transition
from |g〉 to |e〉 is no more performed via a quasi-resonant control with a single frequency
close to ωeg = (Ee − Eg)/�, but with a control based on two frequencies ωrg and ωre, in a
neighborhood of ωfg = (Ef − Eg)/� and ωfe = (Ef − Ee)/�, with ωrg − ωre close to ωeg.
Such transitions result from a nonlinear phenomena and second order perturbations. The
main practical advantage comes from the fact that ωre and ωrg are in many examples optical
frequencies (around 1015 rad/s) whereas ωeg is a radio frequency (around 1010 rad/s). The
wave length of the laser generating u is around 1 μm and thus spatial resolution is much
better with optical waves than with radio-frequency ones.

Indeed, in the Hamiltonian (55), we take a quasi-resonant control defined by the constant
complex amplitudes ug and ue,

u(t) = uge
iωrgt + u∗ge

−iωrgt + uee
iωret + u∗ee

−iωret

where the frequencies ωrg and ωre are close to ωfg and ωfe. According to Figure 3 set

ωfg = ωrg +Δr − δr
2 , ωfe = ωre +Δr +

δr
2 ,

and assume that

(max(|μg|, |μe|)max(|ug|, |ue|)) and |δr|
� min (ωrg, ωre, ωfg, ωfe, |Δr|, |ωre − ωrg +Δr|, |ωre − ωrg −Δr|) .

In the interaction frame (passage from |ψ〉 where i d
dt |ψ〉 = H(t)

�
|ψ〉 to |φ〉),

|ψ〉 =
(
e−i(Eg+

δr
2 )t |g〉 〈g|+ e−i(Ee− δr

2 )t |e〉 〈e|+ e−iEf t |f〉 〈f |
)
|φ〉

the Hamiltonian becomes (i d
dt |φ〉 =

Hint(t)
�

|φ〉):

H int(t)

�
= δr

2 (|e〉 〈e| − |g〉 〈g|)

+ μg

(
uge

iωrgt + uee
iωret + u∗ge

−iωrgt + u∗ee
−iωret

) (
ei(ωrg+Δr)t |g〉 〈f |+ e−i(ωrg+Δr)t |f〉 〈g|

)
+ μe

(
uge

iωrgt + uee
iωret + u∗ge

−iωrgt + u∗ee
−iωret

) (
ei(ωre+Δr)t |e〉 〈f |+ e−i(ωre+Δr)t |f〉 〈e|

)
.

It is clear from (50), that H1st
rwa
�

= δr
2 (|e〉 〈e| − |g〉 〈g|) and thus second order terms should

be considered and H2nd
rwa has to be computed for a meaningfull approximation. Simple but
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tedious computations show that
∫
(H int−H1st

rwa)/� (the time primitive of zero mean) is given
by

μg

2

(
uge

i(2ωrg+Δr)t

i(2ωrg+Δr)
+ uee

i(ωrg+ωre+Δr)t

i(ωrg+ωre+Δr)
+

u∗
ge

iΔrt

iΔr
+ u∗

ee
i(ωrg−ωre+Δr)t

i(ωrg−ωre+Δr)

)
|g〉 〈f |

+ μe

2

(
uge

i(ωrg+ωre+Δr)t

i(ωrg+ωre+Δr)
+ ueei(2ωre+Δr)t

i(2ωre+Δr)
+

u∗
ge

i(ωre−ωrg+Δr)t

i(ωre−ωrg+Δr)
+ u∗

ee
iΔrt

iΔr

)
|e〉 〈f |

− μg

2

(
u∗
ge

−i(2ωrg+Δr)t

i(2ωrg+Δr)
+ u∗

ee
−i(ωrg+ωre+Δr)t

i(ωrg+ωre+Δr)
+

uge−iΔrt

iΔr
+ uee

−i(ωrg−ωre+Δr)t

i(ωrg−ωre+Δr)

)
|f〉 〈g|

− μe

2

(
u∗
ge

−i(ωrg+ωre+Δr)t

i(ωrg+ωre+Δr)
+ u∗

ee
−i(2ωre+Δr)t

i(2ωre+Δr)
+

uge
−i(ωre−ωrg+Δr)t

i(ωre−ωrg+Δr)
+ uee−iΔrt

iΔr

)
|f〉 〈e| .

The non-oscillating terms of i
(∫

t

(
H int −H1st

rwa

)
/�

)(
H int −H1st

rwa

)
/� are then given by

simple but tedious computations:

H2nd
rwa

�
=

μgμe

4

(
1

ωrg+ωre+Δr
+ 1

Δr

) (
u∗gue |g〉 〈e|+ ugu

∗
e |e〉 〈g|

)
+ δr

2 (|e〉 〈e| − |g〉 〈g|)

+
μ2
g

4

( |ug |2
2ωrg+Δr

+
|ug |2
Δr

+ |ue|2
ωrg−ωre+Δr

)
|g〉 〈g|+ μ2

e
4

( |ue|2
2ωre+Δr

+ |ue|2
Δr

+
|ug |2

ωre−ωrg+Δr

)
|e〉 〈e|

−1
4

(
μ2
g |ug |2

2ωrg+Δr
+ μ2

e|ue|2
2ωre+Δr

+
μ2
g |ug |2+μ2

e|ue|2
ωrg+ωre+Δr

+
μ2
g |ug |2+μ2

e|ue|2
Δr

+
μ2
g |ug |2

ωre−ωrg+Δr
+ μ2

e|ue|2
ωrg−ωre+Δr

)
|f〉 〈f | .

(56)

This expression simplfies if we assume additionnally that

|Δr|, |ωre − ωrg +Δr|, |ωre − ωrg −Δr| � ωrg, ωre, ωfg, ωfe.

With these additional assumptions we have 3 time-scales:

1. The slow one associated to δr, μg|ug|, μg|ue|, μe|ug| and μe|ue|
2. The intermediate one attached to Δr, |ωre − ωrg +Δr| and |ωre − ωrg −Δr|
3. The fast one related to ωrg, ωre, ωfg and ωfe.

We have then the following approximation of the average Hamiltonian

H2nd
rwa

�
≈ μgμeu∗

gue

4Δr
|g〉 〈e|+ μgμeugu∗

e
4Δr

|e〉 〈g|+ δr
2 (|e〉 〈e| − |g〉 〈g|)

+
μ2
g

4

( |ug |2
Δr

+ |ue|2
ωrg−ωre+Δr

)
|g〉 〈g|+ μ2

e
4

( |ue|2
Δr

+
|ug |2

ωre−ωrg+Δr

)
|e〉 〈e|

− 1
4

(
μ2
g |ug |2+μ2

e|ue|2
Δr

+
μ2
g |ug |2

ωre−ωrg+Δr
+ μ2

e|ue|2
ωrg−ωre+Δr

)
|f〉 〈f | .

If 〈φ(0)|f〉 = 0 then 〈φ(t)|f〉 = 0 up to third order terms: the space span{|g〉 , |e〉} and

span{|f〉} are invariant space of H2nd
rwa . Thus, if the initial state belongs to span{|g〉 , |e〉}, we

can forget the |f〉 〈f | term in H2nd
rwa (restriction of the dynamics to this invariant subspace)

and we get a 2-level Hamiltonian, called Raman Hamiltonian, that lives on span{|g〉 , |e〉}:
HRaman

�
=

μgμeu∗
gue

4Δr
|g〉 〈e|+ μgμeugu∗

e
4Δr

|e〉 〈g|+ δr
2 (|e〉 〈e| − |g〉 〈g|)

+
μ2
g

4

( |ug |2
Δr

+ |ue|2
ωrg−ωre+Δr

)
|g〉 〈g|+ μ2

e
4

( |ue|2
Δr

+
|ug |2

ωre−ωrg+Δr

)
|e〉 〈e| . (57)
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that is similar (up to a global phase shift) to the average Hamiltonian underlying Rabi oscil-
lations (53) with

Δ′
r = δr +

μ2
e
4

( |ue|2
Δr

+
|ug |2

ωre−ωrg+Δr

)
− μ2

g

4

( |ug |2
Δr

+ |ue|2
ωrg−ωre+Δr

)
,

Ωre
iθ =

μgμeu∗
gue

2Δr
.

During such Raman pulses, the intermediate state |f〉 remains almost empty (i.e. 〈ψ|f〉 ≈
0) and thus, this protocol remains rather robust with respect to an eventual instability of the
state |f〉, not modeled through such Schrödinger dynamics. To tackle such questions, one has
to consider non-conservative dynamics for |ψ〉 and to take into account decoherence effects
due to the coupling of |f〉 with the environment, coupling leading to a finite lifetime. The
incorporation into the |ψ〉-dynamics of such irreversible effects, is analogous to the incorpo-
ration of friction and viscous effects in classical Hamiltonian dynamics. Later on through
these lecture notes, we will present such models to describe open quantum systems (see also
chapter 4 of [34] for a tutorial exposure and [15, 3] for more mathematical presentations).

5.1.4 Jaynes-Cummings model

Consider the following spin-spring interaction Hamiltonian Htot that governs the dynamics
of |ψ〉,

i
d

dt
|ψ〉 =

(
ωeg

2 σz + ωc

(
a†a+

I

2

)
+ u(t)(a+ a†) + iΩ2σx(a

† − a)

)
|ψ〉 ,

where we have additionally considered a drive of real amplitude u(t) applied on the harmonic
oscillator. Assume that u(t) = veiωrt + v∗e−iωrt where the complex amplitude v is constant.
Define the following detunings

Δc = ωc − ωr, Δeg = ωeg − ωr

and assume that
|Δc|, |Δeg|, |Ω|, |v| � ωeg, ωc, ωr.

Then Htot = H0 + εH1 where ε is a small parameter and

H0

�
= ωr

2 σz + ωr

(
a†a+

I

2

)
ε
H1

�
=

(
Δeg

2 σz +Δc

(
a†a+

I

2

)
+ (veiωrt + v∗e−iωrt)(a+ a†) + iΩ2σx(a

† − a)

)
.

Even if the system is infinite dimensional, we apply here heuristically the rotating wave
approximation summarized in Subsection 5.1.1. First we have to compute the Hamiltonian
in the interaction frame via the following change of variables |ψ〉 �→ |φ〉:

|ψ〉 = e−iωrt(a†a+ I
2)e

−iωrt
2

σz |φ〉
We get the following interaction Hamiltonian

H int

�
=

Δeg

2 σz +Δc

(
a†a+

I

2

)
+

(
veiωrt + v∗e−iωrt

)
(e−iωrta+ eiωrta†)

+ iΩ2 (e
−iωrtσ− + eiωrtσ+)(e

iωrta† − e−iωrta)
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where we have applied the following identities:

e
iθ
2
σz σxe

− iθ
2
σz = e−iθσ− + eiθσ+, eiθ(a

†a+ I
2) a e−iθ(a†a+ I

2) = e−iθa

The secular part of H int is given by

H1st
rwa

�
=

Δeg

2 σz +Δc

(
a†a+

I

2

)
+ va+ v∗a† + iΩ2 (σ−a† − σ+a). (58)

This precisely corresponds to the Jaynes-Cummings approximation. The oscillating part of
H int is given by

(H int −H1st
rwa)

�
= ve2iωrta† + v∗e−2iωrta+ iΩ2 (e

2iωrtσ+a
† − e−2iωrtσ−a).

Then we have∫
t

(H int −H1st
rwa)

�
= 1

2iωr

(
ve2iωrta† − v∗e−2iωrta+ iΩ2 (e

2iωrtσ+a
† + e−2iωrtσ−a)

)
and, following (50), the second order approximation reads

H2nd
rwa

�
=

Δeg+
Ω2

8ωr
2 σz +Δc

(
a†a+

I

2

)
+ va+ v∗a† + iΩ2 (σ−a† − σ+a)

+ i Ω
4ωr

(vσ− − v∗σ+) + Ω2

8ωr
σza

†a−
(

Ω2

16ωr
+ |v|2

2ωr

)
I (59)

(use [a,a†] = 1, σ+σ− = |e〉 〈e| and σ−σ+ = |g〉 〈g|).
Consider now that the average Hamiltonian H1st

rwa defined by (58) with v ∈ C as control.
It splits into H0 + v1H1 + v2H2 where v = 1

2(v1 + iv2) with v1, v2 ∈ R and

H0

�
=

Δeq

2 σz +Δc(X
2 + P 2)− Ω

2
(Xσy + Pσx),

H1

�
= a+a†

2 = X,
H2

�
= a−a†

2i = P .

(60)
The controlled system i d

dt |φ〉 = (H0 + v1H1 + v2H2) |φ〉 reads as a system of two partial

differential equations, affine in the two scalar controls u1 = v1/
√
2 and u2 = v2/

√
2. The

quantum state |φ〉 is described by two elements of L2(R,C), φg and φe, whose time evolution
is given by

i
∂φg

∂t
= −Δc

2

∂2φg

∂x2
+

(
Δcx

2 −Δeg

2

)
φg +

(
u1x+ iu2

∂

∂x

)
φg + i Ω

2
√
2

(
x+

∂

∂x

)
φe

i
∂φe

∂t
= −Δc

2

∂2φe

∂x2
+

(
Δcx

2 +Δeg

2

)
φe +

(
u1x+ iu2

∂

∂x

)
φe − i Ω

2
√
2

(
x− ∂

∂x

)
φg

(61)

since X stands for x√
2

and P for − i√
2
∂
∂x . An open question is the controllability (see

Appendix G) on the set of functions (φg, φe) defined up to a global phase and such that
‖φg‖L2 + ‖φe‖L2 = 1. In a first step, one can take Δc = 0 (which is not a limitation in fact)
and Δeg = 0 (which is a strict sub-case).
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Exercice 7. Consider i d
dt |ψ〉 = (H0+v1H1+v2H1)

�
|ψ〉 with H0, H1 and H2 given by (60)

with Δeg = Δc = 0, Ω > 0 and (v1, v2) as control. The system is therefore given by

i
d

dt
|ψ〉 =

(
iΩ2 (σ−a† − σ+a) + va† + v∗a

)
|ψ〉

with v = v1+iv2
2 .

1. Set ν ∈ C solution of d
dtν = −iv and consider the following change of frame |φ〉 =

D−ν |ψ〉 with the displacement operator D−ν = e−νa†+ν∗a. Show that, up to a global
phase change, we have

i
d

dt
|φ〉 =

(
iΩ
2

(
σ−a† − σ+a) + (ṽσ+ + ṽ∗σ−)

)
|φ〉

with ṽ = iΩ2 ν.

2. Take the orthonormal basis {|g, n〉 , |e, n〉} with n ∈ N being the photon number and where
for instance |g, n〉 stands for the tensor product |g〉 ⊗ |n〉. Set |φ〉 =

∑
n φg,n |g, n〉 +

φe,n |e, n〉 with φg,n, φe,n ∈ C depending on t and
∑

n |φg,n|2 + |φe,n|2 = 1. Show that,
for n ≥ 0

i
d

dt
φg,n+1 = i

Ω

2

√
n+ 1φe,n + ṽ∗φe,n+1, i

d

dt
φe,n = −iΩ2

√
n+ 1φg,n+1 + ṽφg,n

and i d
dtφg,0 = ṽ∗φe,0.

3. Assume that |φ(0)〉 = |g, 0〉. Construct an open-loop control [0, T ] � t �→ ṽ(t) such that
|φ(T )〉 = |g, 1〉 (hint: take ṽ = v̄δ(t) and adjust the constants v̄ and T > 0, δ(t) Dirac
distribution at 0).

4. Generalize the above open-loop control when the goal state |φ(T )〉 is |g, n〉 with any
arbitrary photon number n.

5.2 Adiabatic control

5.2.1 Time-adiabatic approximation without gap conditions

We first recall the quantum version of adiabatic invariance. We restrict here the exposure
to finite dimensions and without the exponentially precise estimations. However we give the
simplest version of a time-adiabatic approximation result without any gap conditions. All the
details can be found in a book by Teufel [63] with extension to infinite dimensional case.

Theorem 2. Take m + 1 Hermitian matrices of size n × n: H0, . . . ,Hm. For u ∈ R
m set

H(u) := H0 +
∑m

k=1 uk Hk. Assume that u is a slowly varying time-function: u = u(s) with
s = εt ∈ [0, 1] and ε a small positive parameter. Consider a solution

[
0, 1ε

] � t �→ |ψε(t)〉 of

i
d

dt
|ψε(t)〉 = H(u(εt))

�
|ψε(t)〉 .

Take [0, s] � s �→ P (s) a family of orthogonal projectors such that for each s ∈ [0, 1],
H(u(s))P (s) = E(s)P (s) where E(s) is an eigenvalue of H(u(s)). Assume that [0, s] �
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s �→ H(u(s)) is C2, [0, s] � s �→ P (s) is C2 and that, for almost all s ∈ [0, 1], P (s) is the
orthogonal projector on the eigenspace associated to the eigenvalue E(s). Then

lim
ε �→0+

⎛⎝ sup
t∈[0,1ε ]

|‖P (εt) |ψε(t)〉 ‖2 − ‖P (0) |ψε(0)〉 ‖2|
⎞⎠ = 0.

This theorem is a finite dimensional version of Theorem 6.2, page 175, in [63] where, for
simplicity sake, we have removed the so-called adiabatic Hamiltonian and adiabatic propaga-
tor that intertwines the spectral subspace of the slowly time-dependent HamiltonianH(u(εt)).

This theorem implies that the solution of i d
dt |ψ〉 =

H
(
u(

t
T )

)
�

|ψ〉 follows the spectral de-
composition of H

(
u( t

T )
)
as soon as T is large enough and when H

(
u( t

T )
)
does not admit

multiple eigenvalues (non-degenerate spectrum): apply the above theorem with P = P k

where P k is the orthogonal projection on the k’th eigenstate of H to conclude that the pop-
ulation on state |k〉 is approximatively constant. If, for instance, |ψ〉 starts at t = 0 in the
ground state and if u(0) = u(1) then |ψ〉 returns at t = T , up to a global phase (related to
the Berry phase [58]), to the same ground state.

Whenever, for some value of s, the spectrum of H(u(s)) becomes degenerate the above
theorem says that the populations follow the smooth decomposition versus s of H(u(s)).
For example, assume that the spectrum of H is not degenerate except at s̄ where only two
eigenvalues become identical: for all s we assume that the n eigenvalues ofH(u(s)) are labeled
according to their order

E1(s) < E2(s) < . . . < Ek̄(s) ≤ Ek̄+1(s) < Ek+2(s) < . . . < En(s)

and Ek̄(s) = Ek̄+1(s) only when s = s̄ for some k̄ ∈ {1, . . . , n}. Since s �→ H(u(s)) is smooth,
there always exists a spectral decomposition of H(u(s)) that is smooth versus s (this comes
from the fact that the spectral decomposition of a Hermitian matrix depends smoothly on its
entries). Thus we have only two cases:

1. the non-crossing case where s �→ Ek̄(s) and s �→ Ek̄+1(s) are smooth functions

2. the crossing case where

s �→
{

Ek̄(s), for s ≤ s̄;
Ek̄+1(s), for s ≥ s̄.

and s �→
{

Ek̄+1(s), for s ≤ s̄;
Ek̄(s), for s ≥ s̄.

are smooth functions.

In the non-crossing case the projectors that satisfy the theorem’s assumption are the orthogo-
nal projectors P k(s) on the k’th eigen-direction associated to Ek(s). In the crossing case, the
projectors on the eigenspaces associated to Ek̄ and Ek̄+1 have to be exchanged when s passes
through s̄ to guaranty at least the continuity of P k̄(s) and P k̄+1(s): for s < s̄, P k̄ (resp.
P k̄+1 is the projector of the eigenspace associated to Ek̄ (resp. Ek̄+1); for s > s̄, P k̄ (resp.
P k̄+1) is the projector of the eigenspace associated to Ek̄+1 (resp. Ek̄); for s = s̄, P k̄ and
P k̄+1 are extended by continuity and correspond to orthogonal projectors on two orthogonal
eigen-directions that span the eigenspace of dimension two associated to Ek̄(s̄) = Ek̄+1(s̄).
This corresponds to so-called conic intersection that can be exploited to construct explicit
open-loop control laws (see e.g. [6]).
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5.2.2 Adiabatic motion on the Bloch sphere

Let us take a qubit system. Since we do not care for global phase, we will use the Bloch
vector formulation:

d

dt
�M = (u�i+ v�j+ w�k)× �M

where we assume that �B = (u�i+v�j+w�k), a vector in R
3, is the control (in magnetic resonance,

�B is the magnetic field). We set ω ∈ R and �B = ω�b where �b is a unit vector in R
3. Thus we

have
d

dt
�M = ω�b× �M, with, as control input, ω ∈ R,�b ∈ S

2.

Assume now that �B varies slowly: we take T > 0 large (i.e., ωT � 1), and set ω(t) = �
(
t
T

)
,

�b(t) = �β
(
t
T

)
where � and �β depend regularly on s = t

T ∈ [0, 1]. Assume that, at t = 0,
�M0 = �β(0). If, for any s ∈ [0, 1], �(s) > 0, then the trajectory of �M with the above control
�B verifies: �M(t) ≈ �β

(
t
T

)
, i.e. �M follows adiabatically the direction of �B. If �b(T ) = �b(0), i.e.,

if the control �B makes a loop between 0 and T (β(0) = β(1)) then �M follows the same loop
(in direction).

To justify this point, it suffices to consider |ψ〉 that obeys the Schrödinger equation
i d
dt |ψ〉 =

(
u
2σx +

v
2σy +

w
2 σz

) |ψ〉 and to apply the adiabatic theorem of the previous sub-
section. The absence of spectrum degeneracy results from the fact that � never vanishes
and remains always strictly positive. The initial condition �M0 = �β(0) corresponds to |ψ〉0
in the ground state of u(0)

2 σx + v(0)
2 σy + w(0)

2 σz. Thus |ψ〉t follows the ground state of
u(t)
2 σx +

v(t)
2 σy +

w(t)
2 σz, i.e., �M(t) follows �β

(
t
T

)
.

The assumption concerning the non degeneracy of the spectrum is important. If it is not
satisfied, |ψ(t)〉 can jump smoothly from one branch to another branch when some eigenvalues
cross. In order to understand this phenomenon (analogue to monodromy), assume that �(s)
vanishes only once at s̄ ∈]0, 1[ with �(s) > 0 (resp. < 0) for s ∈ [0, s̄[ (resp. s ∈]s̄, 1]). Then,
around t = s̄T , |ψ〉t changes smoothly from the ground state to the excited state ofH(t), since

their energies coincide for t = s̄T . With such a choice for �, �B performs a loop if, additionally
�b(0) = −�b(1) and �(0) = −�(1), whereas |ψ〉t does not. It starts from the ground state at

t = 0 and ends on the excited state at t = T . In fact, �M(t) follows adiabatically the direction
of �B(t) for t ∈ [0, s̄T ] and then the direction of − �B(t) for t ∈ [s̄T, T ]. Such quasi-static motion
planing method is particularly robust and widely used in practice. We refer to [72, 1, 50] for
related control theoretical results. In the following subsections we detail some important
examples.

5.2.3 Stimulated Raman Adiabatic Passage (STIRAP)

Consider the Λ-system of Figure 3. The controlled Hamiltonian reads

H(t)

�
= ωg |g〉 〈g|+ ωe |e〉 〈e|+ ωf |f〉 〈f |+ u(t) (μgf (|g〉 〈f |+ |f〉 〈g|) + μef (|e〉 〈f |+ |f〉 〈e|)) .

Assume ωgf = ωf − ωg > ωef = ωf − ωe > 0. We take a quasi-periodic and small control
involving perfect resonances with transitions g ↔ f and e ↔ f :

u = ugf cos(ωgf t) + uef cos(ωef t)
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with slowly varying small real amplitudes ugf and uef . Put the system in the interaction
frame via the unitary transformation e−it(ωg |g〉〈g|+ωe|e〉〈e|+ωf |f〉〈f |). We apply the rotating wave
approximation (order 1 in (50)) to get the average Hamiltonian

H1st

rwa/� =
Ωgf

2 (|g〉 〈f |+ |f〉 〈g|) + Ωef

2 (|e〉 〈f |+ |f〉 〈e|)
with slowly varying Rabi pulsations Ωgf = μgfugf and Ωef = μefuef .

Let us now analyze the dependence of the spectral decomposition of H1st
rwa on the two

parameters Ωgf and Ωef . When Ω2
gf + Ω2

ef 	= 0, spectrum of H1st
rwa/� admits three distinct

eigenvalues:

Ω− = −
√

Ω2
gf+Ω2

ef

2 , Ω0 = 0, Ω+ =

√
Ω2

gf+Ω2
ef

2

associated to the following eigenvectors :

|−〉 = Ωgf√
2(Ω2

gf+Ω2
ef )

|g〉+ Ωef√
2(Ω2

gf+Ω2
ef )

|e〉 − 1√
2
|f〉

|0〉 = −Ωef√
Ω2

gf+Ω2
ef

|g〉+ Ωgf√
Ω2

gf+Ω2
ef

|e〉

|+〉 = Ωgf√
2(Ω2

gf+Ω2
ef )

|g〉+ Ωef√
2(Ω2

gf+Ω2
ef )

|e〉+ 1√
2
|f〉 .

Assume now that the Rabi frequencies depend on s ∈ [0, 3π2 ] according to the following formula

Ωgf (s) =

{
Ω̄g cos

2 s, for s ∈ [π2 ,
3π
2 ];

0, elsewhere.
, Ωef (s) =

{
Ω̄e sin

2 s, for s ∈ [0, π];
0, elsewhere.

with Ω̄g > 0 and Ω̄e > 0 constant parameter. With such s dependence, we have three analytic
branches of the spectral decomposition:

� for s ∈]0, π2 [ we have

Ω−(s) = −Ω̄e sin s with |−〉s = |e〉−|f〉√
2

.

Ω0 = 0 with |0〉s = − |g〉
Ω+(s) = Ω̄e sin s with |+〉s = |e〉+|f〉√

2
.

� for s ∈]π2 , π[ we have

Ω−(s) = −
√
Ω̄2
g cos

4 s+ Ω̄2
e sin

4 s with |−〉s = Ω̄g cos2s|g〉+Ω̄e sin2s|e〉√
2(Ω̄2

g cos4 s+Ω̄2
e sin

4 s)
− 1√

2
|f〉

Ω0 = 0 with |0〉s = −Ω̄e sin2s|g〉+Ω̄g cos2s|e〉√
Ω̄2

g cos4 s+Ω̄2
e sin

4 s

Ω+(s) =
√
Ω̄2
g cos

4 s+ Ω̄2
e sin

4 s with |+〉s = Ω̄g cos2s|g〉+Ω̄e sin2s|e〉√
2(Ω̄2

g cos4 s+Ω̄2
e sin

4 s)
+ 1√

2
|f〉 .

� for s ∈]π, 3π2 [ we have

Ω−(s) = −Ω̄g| cos s| with |−〉s = |g〉−|f〉√
2

.

Ω0 = 0 with |0〉s = |e〉
Ω+(s) = Ω̄g| cos s| with |+〉s = |g〉+|f〉√

2
.
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Let us consider the eigenvalue Ω0: it is associated to the projector P 0(s) on |0〉s that depends
smoothly on s ∈ [0, 3π2 ] as shown by the concatenation of the above formula on the three
intervals ]0, π2 [, ]

π
2 , π[ and ]π, 3π2 [. Thus assume that |ψ〉0 = |g〉 then adiabatic Theorem 2

shows that, for ε > 0 small enough, the solution of i d
dt |ψ〉 = H1st

rwa
�

|ψ〉 with the time-varying
control amplitudes

[0, 3π2ε ] � t �→ (ufg, uef ) =
(
Ωgf (εt)
μgf

,
Ωef (εt)
μef

)
is approximatively given by

|ψ〉t ≈ eiθt |0〉εt = eiθt

⎧⎪⎨⎪⎩
− |g〉 , for t ∈ [0, π

2ε ];
−Ω̄e sin2(εt)|g〉+Ω̄g cos2(εt)|e〉√

Ω̄2
g cos4(εt)+Ω̄2

e sin
4(εt)

, for t ∈ [ π2ε ,
π
ε ];

|e〉 , for t ∈ [πε ,
3π
2ε ];

where θt is a time-varying global phase. Thus at the final time t = 3π
2ε , |ψ〉 coincides, up to

a global phase to |e〉. It is surprising that during this adiabatic passage from |g〉 to |e〉 the
control uef driving the transition e ↔ f is turned on first whereas the control ugf driving
transition g ↔ f is turned on later. It is also very interesting that the precise knowledge of
the coupling parameter μgf and μef is not necessary (robustness with respect to uncertainty
in these parameters). However the precise knowledge of the transition frequencies ωgf and
ωef is required. Such adiabatic control strategies are widely used (see, e.g., the recent review
article [38]).

Exercice 8. Design an adiabatic passage s �→ (Ωgf (s),Ωef (s)) from |g〉 to −|g〉+|e〉√
2

, up to a

global phase.

5.2.4 Chirped pulse for a 2-level system

Let us start with H
�
=

ωeg

2 σz+
u
2σx considered in Subsection 5.1.2 and take the quasi-resonant

control (|ωr − ωeg| � ωeg)

u(t) = v
(
ei(ωrt+θ) + e−i(ωrt+θ)

)
where v, θ ∈ R, |v| and |dθdt | are small and slowly varying

|v|, ∣∣dθdt ∣∣ � ωeg,
∣∣dv
dt

∣∣ � ωeg|v|,
∣∣∣d2θdt2

∣∣∣ � ωeg

∣∣dθ
dt

∣∣ .
Following similar computations to those of Subsection 5.1.2, consider the following change of

frame |ψ〉 = e−i
ωrt+θ

2 σz |φ〉. Then i d
dt |ψ〉 = H

�
|ψ〉 becomes

i
d

dt
|φ〉 =

(
ωeg−ωr− d

dt
θ

2 σz + ve2i(ωrt+θ)+v
2 σ+ + ve−2i(ωrt−θ)+v

2 σ−
)
|φ〉 .

With Δr = ωeg − ωr and w = − d
dtθ and using the first order rotating wave approximation

(see (50) with H1st
rwa) we get the following averaged control Hamiltonian

Hchirp

�
= Δr+w

2 σz + v
2σx
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where (v, w) are two real control inputs. Take three constant parameters a > |Δr|, b > 0,
0 < ε � a, b. Set

w = a cos(εt), v = b sin2(εt).

Set s = εt varying in [0, π]. These explicit expressions are not essential. Only the shape of
s �→ w(s) and of s �→ v(s) are important here: w decreases regularly from a to −a; v is a bump
function that remains strictly positive for s ∈]0, π[ and that vanishes with its derivatives at
s = 0 and s = π.

The spectral decomposition of Hchirp/� for s ∈]0, π[ is standard with two distinct and
opposite eigenvalues.

Ω− = −
√

(Δr+w)2+v2

2 associated to eigenstate |−〉 = cosα |g〉 − (1− sinα) |e〉√
2(1− sinα)

Ω+ =

√
(Δr+w)2+v2

2 associated to eigenstate |+〉 = (1− sinα) |g〉+ cosα |e〉√
2(1− sinα)

where α ∈]−π
2 , π2 [ is defined by tanα = Δr+w

v . Since lims �→0+ α = π
2 and lims �→π− α = −π

2

lim
s �→0+

|−〉s = |g〉 , lim
s �→0+

|+〉s = |e〉 , lim
s �→π−

|−〉s = − |e〉 , lim
s �→π−

|+〉s = |g〉 .

Consequently the adiabatic approximation of Theorem 2 implies that the solution |φ〉 of

i
d

dt
|φ〉 =

(
Δr+a cos(εt)

2 σz + b sin2(εt)
2 σx

)
|φ〉 , |φ〉t=0 = |g〉

is given approximatively, for ε small and t ∈ [0, πε ], by

|φ〉t = eiϑt |−〉s=εt

with ϑt a time-varying global phase. Thus for t = π
ε , |φ〉 coincides with |e〉 up to a global

phase. Notice the remarkable robustness of such adiabatic control strategy. We do not need
to know precisely neither the detuning Δr nor the chirp and control amplitudes a and b.
This means in particular that such adiabatic chirp control from g to e is insensitive to all
parameters appearing in a 2-level system.

This adiabatic chirp passage can be extended to any ladder configuration that is slightly
an-harmonic.

5.2.5 Principle of adiabatic quantum computation

An alternative approach towards quantum computing is based on the adiabatic control de-
tailed in this section. This is for instance the case of annealing machines developed by one
of the D-Wave Systems Inc. a Canadian company. The main idea in this approach is that
many combinatorial optimization problems can be encoded as the problem of finding the
ground state of a multi-qubit Hamiltonian. Let us assume that we are interested in a classi-
cally hard combinatorial optimization problem that is encoded as the problem of finding the
ground state of the Hamiltonian Hf . Starting from a different Hamiltonian H0 for which
the ground state is well-known, we try to find an implementable time-dependent H(t), such
that H(0) = 0 and H(T ) = Hf . Initializing the system in the well-known ground state of
H0, and assuming a slow variation of the Hamiltonian, and non-degeneracy of the ground
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state during the evolution, the state of the system at time T should be close to the ground
state of Hf . Below, we present a typical example.

Consider the following classical omptimization problem: for a large n > 0 and a collection
(λi,j)1≤i,j≤n of real numbers, find the argument x̄ of the minimization problem

min
x∈{−1,+1}n

Λ(x), Λ(x) :=
∑
i,j

λi,jxixj .

In order to solve this hard classical optimization problem, we consider an n-qubit system
(with the wave-function |ψ〉 ∈ (C2)⊗n ≡ C

2n). We consider the Hamiltonian

Hu =
∑
i,j

λi,jσz
(i)σz

(j) + u
∑
i

σx
(i).

Now, considering a smooth decreasing function f on [0, 1] with f(0) � max1≤i,j≤n |λi,j | and
f(1) = 0, we assume that the smallest eigenvalue of Hu is not degenerate for any u ∈ [0, f(0)].
The ground state of Hf(0) is close to the ground state of u

∑
i σx

(i), which is given by the
well-known separable state

|ψ0〉 =
( |g〉 − |e〉√

2

)⊗n

.

Also, note that the ground state of H0 is given by the separable state |q1〉 ⊗ |q2〉 ⊗ · · · ⊗ |qn〉
where |qi〉 = |g〉 (resp. |e〉) when x̄i = −1 (resp. x̄i = +1). Therefore, considering the
slowly varying Hamiltonian H(t) = Hf(εt), and initializing all the n qubits in the state

(|g〉 − |e〉)/√2, the solution of the Schrödinger equation at time t = 1/ε is close to the state
|q1〉 ⊗ |q2〉 ⊗ · · · ⊗ |qn〉 (solution of the optimization problem). By measuring the Pauli σz
operator on each qubit, we can therefore identify this solution x̄.

5.3 Optimal control

In this section, we introduce a widely used optimization technique for finding a control field
u(t) = (u1(t), · · · , um(t)) that steers the state |ψu(t)〉 of the system

i
d

dt
|ψu〉 = (H0 +

m∑
k=1

uk(t)Hk) |ψu〉 , |ψu(0)〉 = |ψi〉 (62)

from its initial state |ψi〉 to a desired target state |ψf 〉. As we will see, the same technique
can also be used to generate arbitrary unitary operations U f .

5.3.1 Gradient ascent pulse engineering for state transfer

This approach, also known under the acronym GRAPE [36], has for goal to maximize the
functional

u �→ F (u) := |〈ψf | ψu(T )〉|2 ,
where ψu satisfies the equation (62). The space of control functions u over which we want
to solve the above optimization problem could for instance be L∞([0, T ];Rm). However the
GRAPE algorithm assumes a descretization of the time domain to N identical time intervals
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of duration Δt = T/N . We therefore look into maximizing the above functional over the
space of piecewise constant functions

u(t) = (u1(t), · · · , um(t)) = (uj1, · · · , ujm), for t ∈ [(j − 1)Δt, jΔt[, j = 1, 2, · · · , N.

Therefore the functional F (u) can be written as follows

F (u) = |〈ψf |UNUN−1 · · ·U1 |ψi〉|2 , U j = exp

(
−iΔt(H0 +

m∑
k=1

ujkHk)

)
.

The optimization is simply done by a gradient ascent method, where at each iteration, we
calculate the gradient of the functional with respect to ujk, k’th control amplitude over the
j’th time step and we update the associated control value by going in the direction of this
gradient. More precisely, we update the control value ujk as follows

ujk −→ ujk + ε
∂F

∂ujk
, (63)

where ε is a small step size. We further note that this gradient is analytically given by the
following simple computation. First, we note that the functional F can be written as follows

F (u) = |〈ψf |UNUN−1 · · ·U1 |ψi〉|2 = | 〈ψj,f | ψj,i〉 |2,
where

|ψj,i〉 = U jU j−1 · · ·U1 |ψ〉 and |ψj,f 〉 = U †
j+1U

†
j+2 · · ·U †

N |ψf 〉 .
Furthermore, noting that none of U r’s, except for U j , does depend on ujk, we can calculate

∂U j

∂ujk
= −iΔtH̃kU j , H̃k =

1

Δt

∫ Δt

0
e−iτ(H0+

∑m
r=1 u

j
rHr)Hke

iτ(H0+
∑m

r=1 u
j
rHr)dτ. (64)

To prove the above equation, we have used the identity

d

dx
eA+xB

∣∣∣
x=0

=

(∫ 1

0
eAτBe−Aτdτ

)
eA.

Exercice 9. Prove the above identity, by showing the more general identity for an x-dependent
matrix A(x),

d

dx
eA(x) =

∫ 1

0
dye(1−y)A(x)dA

dx
eyA(x).

Hint: proceed by expanding the exponentials.

In the equation (64), for small Δt (Δt � ‖H0 +
∑

k u
j
kHk‖−1), we can take the approxi-

mation H̃k ≈ Hk. Thus

∂F

∂ujk
≈ −iΔt (〈ψj,f |Hk |ψj,i〉 〈ψj,i | ψj,f 〉 − 〈ψj,i|Hk |ψj,f 〉 〈ψj,f | ψj,i〉) . (65)

We can therefore summarize the basic GRAPE algorithm as follows:

1. Start with an initial control guess ujk, for k = 1, · · · ,m and j = 1, · · · , N .
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2. Starting from |ψi〉, calculate for all j = 1, · · · , N , |ψj,i〉 = U j · · ·U1 |ψi〉.

3. Starting from |ψf 〉, calculate for all j = 1, · · ·N , |ψj,f 〉 = U †
j+1 · · ·U †

N |ψf 〉.

4. Evaluate ∂F/∂ujk according to (65) and update the m × N control amplitudes ujk ac-
cording to (63).

5. Go to step 2.

The algorithm terminates if the change in the functional F from an iteration to the next one
is smaller than a threshold. Here are a few remarks on the algorithm.

Remark 1. In case we want to ensure limited control amplitudes (L2-norm for instance), we
can add a penalty Fpen to the above functional, with

Fpen = −αΔt

N∑
j=1

m∑
k=1

|ujk|2.

This leads to the update rule

ujk −→ ujk + ε
∂F

∂ujk
− 2αεΔtujk.

Remark 2. The gradient ascent algorithms ensure a monotonic convergence towards a local
maximum of the functional. Therefore, the initial control guess is rather important to avoid
getting trapped in such local maxima instead of converging towards the global one.

Remark 3. The step size ε needs to be small to ensure the convergence, but at the same
time choosing a too small step size leads to a slow convergence. One other possibility is to
vary the step size ε at each iteration by choosing an optimal value. This would lead to more
computations at each iteration but perhaps a faster convergence.

5.3.2 Gradient ascent pulse engineering for unitary generation

The same tool can be used to address the synthesis of unitary transformations, for instance
multi-qubit gates. The equation of motion for the propagator of the quantum system is given
by

d

dt
U = −i(H0 +

m∑
k=1

uk(t)Hk)U , U(0) = I.

We consider the problem of generating a desired unitary U f , by maximizing the functional

F (u) = |Tr (U∗
fU(T )

) |2.
Note that as soon as U(T ) = eiθU f , we have F (u) = 1.

Exercice 10. Prove that for any two unitary operators U and V

|Tr (U∗V ) | ≤ 1.
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Once again descretizing the time to N steps of length Δt, we have

U(T ) = UNUN−1 · · ·U1, U j = exp

(
−iΔt(H0 +

m∑
k=1

ujkHk)

)
.

We define for j = 1, · · · , N ,

V j := U jU j−1 · · ·U1, W j := U †
j+1U

†
j+2 · · ·U †

NUF .

Therefore, we have

F (u) = |Tr (U∗
fU(T )

) |2 = |Tr
(
W †

jV j

)
|2.

Simple calculations, similar to the previous subsection, lead to

∂U

∂ujk
= 2ΔtIm

(
Tr

(
W †

jHkV j

)
Tr

(
V †

jW
))

.

With this formulation of the gradient, the implementation of the GRAPE algorithm is pre-
cisely the same as in the previous subsection.

6 Quantum feedback schemes

6.1 Markovian feedback

The special class of Markovian feedback, introduced by H. Wiseman [70, 69, 71] for quantum
systems, is a static output feedback. Thus such feedback schemes do not require the estimation
in real-time of quantum state and are thus simpler to implement in practice. Another crucial
property comes from the fact that the closed-loop dynamics of the ensemble average for the
density operator remains linear. Thus closed-loop convergence analysis boils down to a linear
question despite the open-loop and closed-loop statistical nonlinearities.

6.1.1 Discrete-time Markovian feedback

Add to the Markov chain given by (21) a unitary control depending on a classical input uk
just after measurement at step k: the control input u parameterizes a unitary evolution Uu

corresponding to the actuator process. Then (21) becomes

ρk+1 =
Uuk

Kyk(ρk)U
†
uk

Tr (Kyk(ρk))
, with prob.pyk(ρk) = Tr

(
Uuk

Kyk(ρk)U
†
uk

)
= Tr (Kyk(ρk)) (66)

where uk and yk are respectively the input and measurement output at step k.
A static output feedback is just setting uk = f(yk) where the function f defines the output

feedback law. The closed-loop dynamics reads

ρk+1 =
Uf(yk)Kyk(ρk)U

†
f(yk)

Tr (Kyk(ρk))
, with probability pyk(ρk) = Tr

(
Uf(yk)Kyk(ρk)U

†
f(yk)

)
.

Since Tr
(
UuKy(ρ)U

†
u

)
= Tr (Ky(ρ)) for any u, the ensemble average evolution of the density

operator ρ reads

ρ̄k+1 =
∑
y

Uf(y)Ky(ρ̄k)U
†
f(y) ρ̄0 = ρ0
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where ρ̄k = E (ρk | ρ0). The closed-loop Kraus map K(·) =
∑

y Uf(y)Ky(·)U †
f(y) is a priori

different from the open-loop one K =
∑

y Ky.

6.1.2 Diffusive Markovian feedback of a qubit

Appendix M presents the general multi-input multi-output situations.
This subsection is inspired by [17] where the excited state of a qubit is stabilized via

a simple Markovian feedback based on diffusive measurement of fluorescence. The qubit
dynamics is governed by the following diffusive SME

ρt+dt = e−iutdt σy
(
ρt + κ

(
σ−ρtσ+ − 1

2σ+σ−ρt − 1
2ρtσ+σ−

)
dt . . .

+
√
ηκ

(
σ−ρt + ρtσ+ − Tr (σxρt) ρt

)
dWt

)
e+iudt σy

dyt =
√
ηκTr (σxρt) dt+ dWt

with control input ut and measured output dyt (fluorescence rate κ > 0 and efficiency η ∈
[0, 1]). In open-loop with u = 0, the ensemble-average dynamics

d

dt
ρ = κ

(
σ−ρtσ+ − 1

2σ+σ−ρt − 1
2ρtσ+σ−

)
converges to the ground pure-state |g〉 〈g| fro any initial condition. Thus the stochastic SME
converges also towards the pure state, for almost all realizations with u = 0.

Take a constant gain g and the Markovian feedback

utdt = gdyt

Then in closed-loop, we have to take into account Ito terms in e±igdyt σy using dy2t = dt:

e±igdyt σy = 1 +
(± ig

√
ηκTr (σxρt)− g2

2

)
dt± igdWtσy.

This yields to the following closed-loop SME

dρt = ρt+dt − ρt =

(
2∑

ν=1

LνρtL
†
ν − 1

2L
†
νLνρt − 1

2ρtL
†
νLν

)
dt . . .

+
√
η
(
(L1ρt + ρtL

†
1 − Tr

(
L1ρt + ρtL

†
1

)
ρt)

)
dWt . . .

+
√
1− η

(
(L2ρt + ρtL

†
2 − Tr

(
L2ρt + ρtL

†
2

)
ρt)

)
dWt

with L1 =
√
κσ− − ig

√
ησy and L2 = −ig

√
1− ησy.

When η = 1 and g = −√
κ, one has L1 =

√
κσ+, L2 = 0 and

dρt = κ
(
σ+ρtSm − 1

2σ−σ+ρt − 1
2ρtσ−σ+

)
dt+

√
κ ((σ+ρt + ρtσ− − Tr (σxρt) ρt)) dWt

where σ− is replaced by σ+ and thus the closed-loop system converges towards the excited
state |e〉.
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6.2 Quantum-state feedback

6.2.1 Optimal QDN measurement of photons

A very nice feedback scheme has been proposed in [53] in the context of the photon box for
QND photon measurement via dispersive probe-atoms: any state of photons in the Hilbert
space of dimension 2m spanned by (|0〉 , |1〉 , . . . , |2m − 1〉) can be measured by m probe-atoms.
This protocol is optimal in the sense: each measurement outcome cannot contain more that
one bit of information; to encode an integer n ∈ {0, . . . , 2m − 1} one needs exactly m bits of
information attached to its decomposition into base two:

n =
m−1∑

=0

x
2

 with x
 ∈ {0, 1}.

This measurement protocol exploits the fact that the Kraus operators M g and M e in (14)
depend on two parameters ϕ0 and ϑ that can be manipulated and are two control inputs
(u, v) = (ϕ0, ϑ):

M g,(u,v) = cos(u+ vN), M e,(u,v) = sin(u+ vN).

Starting from initial condition ρ0 with initial control input (u0, v0) = (0, π/2), the stochastic
dynamics reads

ρk+1 =
Myk,(uk,vk)ρkM

†
yk,(uk,vk)

Tr
(
Myk,(uk,vk)ρkM

†
yk,(uk,vk)

)
where (uk, vk) depends on (yk−1, . . . , y0) as follows

uk = − π

2k+1

(
k−1∑

=0

f(y
)2



)
, vk =

π

2k+1

with f(g) = 0 and f(e) = 1. After the passage of m successive atoms with outcome
y0, . . . , ym−1 then ρm = |n〉 〈n| with n =

∑m−1

=0 f(y
)2


 and ρk = ρm for k > m.

6.2.2 Stabilization of photon-number states

Theorem 1 implies that the QND measurement of the Subsection 1.4 can be seen as a photon-
number state preparation tool. However, this state preparation is non-deterministic as we
can not be sure to converge towards a desired Fock state |n̄〉 〈n̄|. One way of removing this
indeterminism is to repeat the QND measurement process by re-preparing the same initial
state and re-launching the same measurement process up to reaching |n̄〉 〈n̄|. However this
can be very time-consuming and perhaps inefficient when dealing with the measurement
uncertainties and relaxations.

This non-deterministic preparation tool can be turned into a deterministic stabilization
protocol with the addition of appropriate feedback strategies [56, 73]. We focus here on the
feedback scheme experimentally tested in [73] (see Figure 6.2.2). This could be modeled
through the following Markov chain:

ρk+1 = Msk,uk
(ρk)

where the control uk at step k is chosen between three possible values:
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1. uk = 0 corresponds to dispersive interaction and QND atom with

M g,0 = cos(ϕ0 +Nϑ), M e,0 = sin(ϕ0 +Nϑ);

2. uk = 1 corresponds to resonant atom entering in |e〉 in cavity C (UR1 = e−i
π
2σy) with

resonant interactionUC given by (10) and without post-cavity manipulation (UR2 = I):

M g,1 =

(
sin

(
Θ
2

√
N

)
√
N

)
a†, M e,1 = cos

(
Θ
2

√
N + I

)
;

3. uk = −1 corresponds to resonant atom entering in |g〉 in cavity C (UR1 = I) with
resonant interactionUC given by (10) and without post-cavity manipulation (UR2 = I):

M g,−1 = cos
(
Θ
2

√
N

)
, M e,−1 = a

(
sin

(
Θ
2

√
N

)
√
N

)
.

The idea is to construct a Lyapunov function V (ρ) similar to (15) but with a different
weighting on various photon-number states to favor the convergence towards a particular Fock
state with n̄ photon (set-point),

V (ρ) =
∑
n≥0

f(n) Tr (ρ |n〉 〈n|) ,

with N � n �→ f(n) being a real function, taking its minimum at n = n̄, strictly decreasing
(resp. increasing) for n ∈ {0, . . . n̄} (resp. n ∈ {n̄, . . .+∞}).

The control input will then be selected so that the function V (ρk) becomes a super-
martingale. This means that at each time-step k, the value uk is the argument of the minimum
of the conditional expectation of V (ρk+1) knowing the density operator at step k, ρk, and
the control input at step k, uk = u with u ∈ {−1, 0, 1}:

uk := argmin
u∈{−1,0,1}

{
E

(
V (ρk+1)|ρk, uk = u

)}
where

E
(
V (ρk+1)|ρk, uk = u

)
= Tr (M g,uρkM g,u)V

(
Mg,u(ρk)

)
+Tr (M e,uρkM e,u)V

(
Me,u(ρk)

)
=

∑
n

f(n) 〈n |M g,uρkM g,u +M e,uρkM e,u|n〉 .

Thus uk is a function of ρk, the quantum-state at step k. This kind of feedback law is called
a measurement-based feedback since the controller is a classical controller based on the past
measurement outcomes summarized in the present quantum state ρk.
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Figure 4: A schematic of the closed-loop system borrowed from [73]. The feedback control
relies on three kinds of probe atoms (resonant atom prepared in |g〉 or |e〉 and dispersive atom
prepared in (|g〉+ |e〉 /√2.

6.2.3 Continuous-time measurement feedback of a qubit

Theorem 4 of subsection 1.4 implies that the diffusive measurement of σz of a qubit can be seen
as a non-deterministic preparation protocol for the states |g〉 〈g| and |e〉 〈e|. This preparation
can be rendered deterministic by adding an appropriate feedback control. Indeed, it has been
proven in [65, 46] that, a controlled Hamiltonian

H =
ωeg

2
σz +

u

2
σx,

with the feedback law

u(ρ) = −αTr
(
i[σx,ρ]ρtarget

)
+ β(1− Tr

(
ρρtarget

)
), α, β > 0 and β2 < 8αη,

globally stabilizes the target state ρtarget = |g〉 〈g| or |e〉 〈e|.

6.3 Autonous feedback and dissipative engineering

6.3.1 Stabilisation of a Schrödinger-cat

This section is inspired by [55]. Consider the photon box of section 2 where:

� the probe atom getting outside the preparation box in |g〉 is slightly excited in Ramsey
zone R1 and thus enters in the trapping cavity C in state cos(u/2) |g〉+sin(u/2) |e〉 with
|u| � 1.

� the interaction between the probe atom and the cavity C is composite: first dispersive
with positive detuning Δ, resonant in the middle (Δ = 0) and dispersive with negative
detuning −Δ.
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� after its interaction with the trapped photons in C, the probe atom is not measured.

Thus we have to compute the associated quantum channel, i.e., the operator M g and M e,
in the Kraus formulation

ρk+1 = K(ρk) = M gρkM
†
g +M eρkM

†
e.

Our key observation is that sandwiching the resonant interaction between opposite dispersive
interactions corresponds to a change of frame for the photons. With Udrd the composite
propagator, this results from

Udrd = Ud(φ(N))U r(Θ)Ud(−φ(N)) = e−ih(N)U r(Θ)eih(N)

where U r(Θ) corresponds to UC given by (10), Ud to UC given by (11) and

h(N + I)− h(N) = 2φ(N + 1).

From φ(N) = ϑ0 + ϑN , h is quadratic in N and thus is a Kerr Hamiltonian:

h(N) = ϑN2 + (2ϑ0 − ϑ)N .

Thus

Udrd

(
|ψ〉⊗(cos(u/2) |g〉+sin(u/2) |e〉)

)
= e−ih(N)

(
U r(Θ)

(
(eih(N) |ψ〉)⊗ (cos(u/2) |g〉+ sin(u/2) |e〉)

))
.

With |φ〉 = eih(N) |ψ〉 and

U r(Θ)
(
|φ〉 ⊗ (cos(u/2) |g〉+ sin(u/2) |e〉)

)
= (M gr |φ〉)⊗ |g〉+ (M er |φ〉)⊗ |e〉 ,

one gets using ρ = eih(N) |ψ〉 〈ψ| e−ih(N),

K(ρ) = e−ih(N)M gre
ih(N)ρe−ih(N)M †

gre
ih(N) + e−ih(N)M ere

ih(N)ρe−ih(N)M †
gee

ih(N).

Thus with ξ = eih(N)ρe−ih(N) we have

ξk+1 = M grξkM
†
gr +M erξkM

†
er.

With |u| � 1, |Θ| � 1 and |u/Θ| ∼ 1, one has the following approximation up to third order
terms in (u,Θ)

M gr ≈ I − u2

8 − Θ2

8 N + Θu
4 a†, M er ≈ u

2I − Θ
2 a.

Thus

M grξkM
†
gr+M erξkM

†
er ≈ ξ+Θu

4

[
a† − a, ξ

]
+Θ2

4

(
aξa† − 1

2a
†aξ − 1

2ξa
†a

)
+O(|u|3+|θ|3)).

Since |Θ2| � 1 and |u/Θ| ∼ 1, we have approximately the following dynamics

ξk+1−ξk
Θ2/4

∼ dξ

dt
= u

Θ [a
† − a, ξ] + aξa† − 1

2a
†aξ − 1

2ξa
†a

where the continuous time t corresponds to kΘ2/4.
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According to theorem 3, page 23, any solution of the above continuous-time dynamics
converges towards the coherent state |α〉 〈α| of amplitude α = 2u

Θ . When the parameters
of the dispersive interaction ϑ and ϑ0 are tuned such that ϑ = π/2 and 2ϑ0 − ϑ = 0, then

h(N) = π
2N

2 and ρ = e−iπ
2
N2

ξei
π
2
N2

converges to e−iπ
2
N2 |α〉 〈α| eiπ2N2

. Since

e−iπ
2
N2 |α〉 = |α〉+ i |−α〉√

2

we have up to first-order corrections in |u| and |Θ| the convergence of ρ, whatever its initial
condition is, towards ρ∞ close to this Schrödinger phase-cat.

Exercice 11 (Micro-maser and convergence in the resonant case). Consider the Markov chain
ρk+1 = Msk(ρk) where sk = g (resp. sk = e) with probability pg,k = Tr

(
M gρkM

†
g

)
(resp.

pe,k = Tr
(
M eρkM

†
e

)
). The Kraus operator are given by (13) with θ1 = 0. Assume the initial

state to be defined on the subspace {|n〉}nmax

n=0 and that the cavity state at step k is described
by the density operator ρk.

1. Show that

E
(
Tr

(
Nρk+1

) | ρk

)
= Tr (Nρk)− Tr

(
sin2

(
Θ
2

√
N

)
ρk

)
.

2. Assume that for any integer n, Θ
√
n/π is irrational. Then prove, using Theorem 7 of

Appendix E, that almost surely ρk tends to the vacuum state |0〉 〈0| whatever its initial
condition is.

3. When Θ
√
n/π is rational for some integer n, describes the set of asymptotic states for

ρk.

6.3.2 Autonomous correction of bit-flips of a cat-qubit

This subsection details on a slightly simplified Hamiltonian the mathematical methods used
to analyze the super-conducting circuit illustrated on figure 5 and stabilizing any quantum
state ρ of an oscillator with support in the vector space spanned by two coherent states |α〉
and |-α〉 with α 	= 0 a complex amplitude. This circuit implements autonomous quantum
error correction and is directly related to bosonic quantum code, a possible and actively
investigated path for building a universal quantum computer (see the seminal paper [45]).

We detail below perturbation techniques, rotating wave approximation (averaging) and
adiabatic elimination (singular perturbation), yielding to reduced dynamical models for the
oscillator supporting these Schrödinger cats, i.e. storing quantum information attached to a
logical qubit (cat-qubit). The time asymptotic behavior of these reduced models are then
analyzed with Lyapunov techniques showing exponential convergence.

The quantum Hamiltonian corresponding to the classical slightly simplified Hamilto-
nian (122) is as follows:

H1(t) = ωaa
†a+ ωbb

†b+ 2g cos
(
φa(a+ a†) + φb(b+ b†) + (2ωa − ωb)tI

)
(67)

where a = (qa +
∂

∂qa
)/
√
2 and b = (qb +

∂
∂qb

)/
√
2 are the annihilation operators on oscillators

a and b respectively ( [a,a†] = Ia, [b, b
†] = Ib). The density operator ρ1 obeys to the usual

Liouville equation: d
dtρ1 = −i[H1(t),ρ1].
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Figure 5: The super-conducting quantum circuit of [42, figure S3] stabilizes Schrödinger
phase-cats of the high-quality oscillator a with pulsation ωa (in blue) via nonlinear (Josephson
junctions) and oscillatory (pulsation 2ωa−ωb) Hamiltonian coupling to a low quality oscillator
b of pulsation ωb (in red).

The change of frame

ρ2 = exp
(
iωata

†a+ iωbtb
†b

)
ρ1 exp

(
−iωata

†a− iωbtb
†b

)
yields to d

dtρ2 = −i[H2(t),ρ2] with the new Hamiltonian

H2(t) = gei(2ωa−ωb)t exp
(
iφa(e

−iωata+ eiωata†) + iφb(e
−iωbtb+ eiωbtb†)

)
+ h.c.

Expansion up-to order 3 versus φa, φb � 1 of the exponential gives

H2(t) ≈ gei(2ωa−ωb)t . . .(
I + iφa

(
e−iωata+ eiωata†)− φ2

a
2

(
e−iωata+ eiωata†)2 − iφ3

a
6

(
e−iωata+ eiωata†)3) . . .(

I + iφb

(
e−iωbtb+ eiωbtb†

)− φ2
b
2

(
e−iωbtb+ eiωbtb†

)2 − iφ3
b

6

(
e−iωbtb+ eiωbtb†

)3)
+ h.c. (68)

Following the approximation recipes of subsection 5.1.1, one gets at first-order only two
secular terms (i.e. non-oscillatory): −ig2a

2b† and its Hermitian conjugate ig2
(
a†)2b where

g2 = gφ2
aφb/2. This justifies the following first-order time-invariant approximation where the

oscillatory H2(t) is replaced by its time-invariant averaged H2 (rotating wave approxi-
mation): :

H2 = −ig2a
2b† + ig2

(
a†)2b.
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Exercice 12. Instead of Hamiltonian given by (67), consider

H1(t) = ωaa
†a+ωbb

†b+2g cos
(
φa(a+ a†)+φb(b+ b†)+(2ωa−ωb)tI

)
+iue−iωbtb†−iu∗eiωbtb

with u complex amplitude associated to a resonant input drive on mode b. Show that a similar
first-order RWA yields to

H2 = i(u− g2a
2)b† − i(u∗ − g2

(
a†)2)b.

Exercice 13. Use approximation recipes (50) to compute second-order corrections to H2 for
oscillatory Hamiltonian H2(t) given by (68)

In the frame rotating at frequencies of oscillators a and b, the density operator ρ obeys
to the following master equation

d

dt
ρ = Lab(ρ)

� −
[
g2

(
a2 − α2

)
b† − g2

(
(a†)2 − (α∗)2

)
b , ρ

]
+ κb

(
bρb† − (b†bρ+ ρb†b)/2

)
(69)

where, for mode b, we have added a damping rate κb > 0 and also a resonant drive of frequency
ωb and complex amplitude u (see exercice 12) providing α2 = u/g2 ∈ C.

Exercice 14. Show that Lab(|z1〉 〈z2| ⊗ |0b〉 〈0b|) = 0 for z1, z2 ∈ {α, -α}. Deduce that any
density operator ρ̄ = ρ̄a ⊗ |0b〉 〈0b|b is a steady-state as soon the range of ρ̄a belongs to
span{|α〉 , |-α〉}.

Assume that κb � g2, i.e., that dissipation of mode b to vacuum |0b〉 is the dominant
dynamics in Lab. Following section N and approximation (108), we can eliminated adiabati-
cally mode b to get a Lindblad master equation only for mode b. With ε = g2, LA = 0 and
LA = a2 − α2, on get here

d

dt
ρA =

4g22
κb

(
(a2 − α2)ρA(a

2 − α2)†

− ((a2 − α2)†(a2 − α2)ρA + ρA(a
2 − α2)†(a2 − α2))/2

)
(70)

where ρ = ρA ⊗ |0b〉 〈0b|+O
(
(g2/κb)

2
)
and ρA = TrB (ρ).

Exercice 15. Take (70)and assume that ρA is initialized to the coherent state of amplitude
za: ρa(0) = |za〉 〈za|. Show that d

dt Tr (aρA) at time 0 is given by (123).

It is clear that any density operators ρ̄a is a steady-state as soon as the support of ρ̄a

belongs to the two dimensional vector space spanned by the quasi-classical wave functions |α〉
and |-α〉 (range(ρ̄a) ⊂ span{|α〉 , |-α〉}). In particular any coherent superposition of |α〉 and
|-α〉 is a steady state such as Schrödinger phase cat |α〉+ |-α〉.

In [8] well-posedness of this master equation and exponential convergence of ρA(t) towards
such a ρA are proved with the following Lyapunov function V (ρA) = Tr

(
(a2 − α2)†(a2 − α2)ρA

)
.

This results from the following key identity

d

dt
V (ρA) = −8g22

κb
Tr

(
(a2 − α2)†(2a†a+ Ia)(a

2 − α2)ρA

)
≤ −8g22

κb
V (ρA)

exploiting the fact that [(a2 − α2)†, (a2 − α2)] = −2(2a†a+ Ia).
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A Spin and Spring

Through this appendix, we will overview some of the basic properties of a quantum har-
monic oscillator of an two-level system as central systems for many experimental realizations
of quantum information proposals such as trapped ions, nano-photonics, cavity quantum
electrodynamics and quantum superconducting circuits. For a more thorough study of such
systems we invite the reader to see e.g. [10].

A.1 Harmonic oscillator

A.1.1 Quantization of classical harmonic oscillator

We start with the case of a classical harmonic oscillator of frequency ω > 0, d2

dt2
x = −ω2x.

In the case of a mechanical oscillator, this could represent the periodic motion of a particle
of mass m in a quadratic potential V (x) = mω2x2/2, or in the case of an electrical one, it
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could represent the oscillation between the voltage across the capacitance and the current
through the inductance in an LC circuit (the frequency ω being given by 1/

√
LC). A generic

Hamiltonian formulation of this classical harmonic oscillator, is as follows:

d

dt
x = ωp =

∂H

∂p
,

d

dt
p = −ωx = −∂H

∂x

with the classical Hamiltonian H(x, p) = ω
2 (p

2 + x2). Note that, in this formulation, we have
intentionally rendered the position and momentum coordinates x and p dimensionless, so as
to keep it generic with respect to the choice of the physical system.

The correspondence principle yields the following quantization: H becomes an operator
H on the function of x ∈ R with complex values. The classical state (x(t), p(t)) is replaced
by the quantum state |ψ〉t associated to the function ψ(x, t) ∈ C. At each t, R � x �→ ψ(x, t)
is measurable and

∫
R
|ψ(x, t)|2dx = 1: for each t, |ψ〉t ∈ L2(R,C).

The Hamiltonian H is derived from the classical one H by replacing the position co-
ordinate x by the Hermitian operator X ≡ x√

2
(multiplication by x√

2
) and the momentum

coordinate p by the Hermitian operator P ≡ − i√
2

∂
∂x :

H

�
= ω(P 2 +X2) ≡ −ω

2

∂2

∂x2
+

ω

2
x2.

This Hamiltonian is defined on the Hilbert space L2(R,C) with its domain given by the
Sobolev space H2(R,C). The Hamilton ordinary differential equations are replaced by the
Schrödinger equation, d

dt |ψ〉 = −iH
�
|ψ〉, a partial differential equation describing the dynam-

ics of ψ(x, t) from its initial condition (ψ(x, 0))x∈R:

i
∂ψ

∂t
(x, t) = −ω

2

∂2ψ

∂x2
(x, t) +

ω

2
x2ψ(x, t), x ∈ R.

The average position is given by 〈X〉t = 〈ψ|X|ψ〉 = 1√
2

∫ +∞
−∞ x|ψ|2dx. Similarly, the average

momentum is given by 〈P 〉t = 〈ψ|P |ψ〉 = − i√
2

∫ +∞
−∞ ψ∗ ∂ψ

∂x dx, (real quantity via an integration

by part).

A.1.2 Spectral decomposition based on annihilation/creation operators

The Hamiltonian H = −�ω
2

∂2

∂x2 + �ω
2 x2 admits a discrete spectrum corresponding to the

eigenvalues
En = �ω(n+ 1/2), n = 0, 1, 2, · · ·

associated to orthonormal eigenfunctions

ψn(x) =

(
1

π

)1/4 1√
2nn!

e−x2/2Hn(x)

where Hn(x) = (−1)nex
2 dn

dxn e−x2
is the Hermite polynomial of order n. While this spectral

decomposition could be found through brute-force computations, here we introduce the more
elegant proof applying the so-called annihilation/creation operators.
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Indeed, as it will be clear through these lecture notes, it is very convenient to introduce
the annihilation operator a and, its hermitian conjugate, the creation operator a†:

a = X + iP ≡ 1√
2

(
x+

∂

∂x

)
, a† = X − iP ≡ 1√

2

(
x− ∂

∂x

)
.

These operators are defined on L2(R,C) with their domains given by H1(R,C). We have the
commutation relations

[X,P ] = i
2I, [a,a†] = I, H = ω(P 2 +X2) = ω

(
a†a+ 1

2I
)

where [A,B] = AB −BA and I stands for the identity operator.
We apply the canonical commutation relation [a,a†] = I, to obtain the spectral decompo-

sition of a†a (and therefore the Hamiltonian H). Indeed, assuming |ψ〉 to be an eigenfunction
of the operator a†a associated to the eigenvalue λ, we have

a†a(a |ψ〉) = (aa† − I)a |ψ〉 = a(a†a− I) |ψ〉 = (λ− 1)(a |ψ〉),
a†a(a† |ψ〉) = a†(aa†) |ψ〉 = a†(a†a+ I) |ψ〉 = (λ+ 1)(a† |ψ〉).

Therefore both a |ψ〉 and a† |ψ〉 should also be eigenfunctions of a†a associated to eigenvalues
λ− 1 and λ+1. Note however that the operator a†a is a positive semi-definite operator, and
thus the only choice for λ is to be a non-negative integer. This means that spectrum of the
operator a†a is given by the set of non-negative integers λn = n, n = 0, 1, 2, · · · . Furthermore,
the associated eigenfunctions are given by

|ψn〉 = a† n |ψ0〉
‖a† n |ψ0〉 ‖L2

=
1√
2nn!

(
x− ∂

∂x

)n

ψ0(x).

We can conclude by noting that |ψ0〉 should satisfy a |ψ0〉 ≡ 0, or equivalently (x+∂/∂x)ψ0(x) ≡
0. By solving this differential equation, we find

ψ0(x) =

(
1

π

)1/4

e−x2/2.

The eigenstates |ψn〉 are usually denoted by simpler notation of |n〉 (this is the notation that
we will use through the rest of the lecture notes). These states are called Fock states or
photon-number states (phonon-number states in the case of a mechanical oscillator) and form
an eigenbasis for the wave-functions in L2(R,C). Following the approach of operators, we will
replace the Hilbert space L2(R,C) by the equivalent one

H =

⎧⎨⎩∑
n≥0

cn |n〉 , (cn)n≥0 ∈ l2(C)

⎫⎬⎭ , (71)

where l2(C) is the space of l2 sequences with complex values. For n > 0, we have

a|n〉 = √
n |n− 1〉, a†|n〉 = √

n+ 1 |n+ 1〉.
In these new notations, the domain of the operators a and a† is given by⎧⎨⎩∑

n≥0

cn |n〉 , (cn)n≥0 ∈ h1(C)

⎫⎬⎭ , h1(C) =

⎧⎨⎩(cn)n≥0 ∈ l2(C) |
∑
n≥0

n|cn|2 < ∞
⎫⎬⎭ .
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The Hermitian operator N = a†a, is called the photon-number operator, and is defined with
its domain⎧⎨⎩∑

n≥0

cn |n〉 , (cn)n≥0 ∈ h2(C)

⎫⎬⎭ , h2(C) =

⎧⎨⎩(cn)n≥0 ∈ l2(C) |
∑
n≥0

n2|cn|2 < ∞
⎫⎬⎭ .

Finally, as proven above N admits a discrete non-degenerate spectrum simply given by N.
For any analytic function f we have the following commutation relations

af(N) = f(N + I)a, a†f(N) = f(N − I)a†.

In particular for any angle θ, eiθNae−iθN = e−iθa and eiθNa†e−iθN = eiθa†.

A.1.3 Glauber displacement operator and coherent states

For any amplitude α ∈ C, the Glauber displacement unitary operator Dα is defined by

Dα = eα a†−α∗a.

Indeed, the operator α a†−α∗a being anti-Hermitian and densely defined on H, it generates
a strongly continuous group of isometries on H. We have D−1

α = D†
α = D−α. The following

Glauber formula is useful: if two operators A and B commute with their commutator, i.e.,

if [A, [A,B]] = [B, [A,B]] = 0, then we have eA+B = eA eB e−
1
2 [A,B]. Since A = αa† and

B = −α∗a satisfy this assumption, we have another expression for Dα

Dα = e−
|α|2
2 eαa

†
e−α∗a = e+

|α|2
2 e−α∗aeαa

†
.

We have also for any α, β ∈ C

DαDβ = e
αβ∗−α∗β

2 Dα+β

This results from Glauber formula with A = αa† − α∗a, B = βa† − β∗a and [A,B] =
αβ∗ − α∗β.

The terminology displacement has its origin in the following property:

∀α ∈ C, D−αaDα = a+ αI and D−αa
†Dα = a† + α∗I.

This relation can be derived from Baker-Campbell-Hausdorff formula

eXY e−X = Y + [X,Y ] +
1

2!
[X, [X,Y ]] +

1

3!
[X, [X, [X,Y ]]] + · · · .

To the classical state (x, p) in the position-momentum phase space, is associated a quantum
state usually called coherent state of complex amplitude α = (x+ ip)/

√
2 and denoted by |α〉:

|α〉 = Dα |0〉 = e−
|α|2
2

+∞∑
n=0

αn√
n!
|n〉 . (72)
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|α〉 corresponds to the translation of the Gaussian profile corresponding to the fundamental
Fock state |0〉 also called the vacuum state:

|α〉 ≡
(
R � x �→ 1

π1/4 e
i
√
2x�αe−

(x−√
2�α)2

2

)
.

This usual notation is potentially ambiguous: the coherent state |α〉 is very different from
the photon-number state |n〉 where n is a non negative integer. The probability pn to obtain
n ∈ N during the measurement of N with |α〉 obeys to a Poisson law pn = e−|α|2 |α|2n/n!.
The resulting average energy is thus given by 〈α|N |α〉 = |α|2. Only for α = 0 and n = 0,
these quantum states coincide. For any α, β ∈ C, we have

〈α|β〉 = 〈
0
∣∣D−αDβ

∣∣0〉 = e−
|β−α|

2 〈0|β − α〉 = e−
|β−α|2

2 e
α∗β−αβ∗

2 .

This results from D−αDβ = e
α∗β−αβ∗

2 Dβ−α.
The coherent state α ∈ C is an eigenstate of a associated to the eigenvalue α ∈ C: a |α〉 =

α |α〉. Since H/� = ω(N + 1
2I), the solution of the Schrödinger equation d

dt |ψ〉 = −iH
�
|ψ〉 ,

with initial value a coherent state |ψ〉t=0 = |α0〉 (α0 ∈ C) remains a coherent state with time
varying amplitude αt = e−iωtα0:

|ψ〉t = e−iωt/2 |αt〉 .
These coherent solutions are the quantum counterpart of the classical solutions: xt =

√
2�(αt)

and pt =
√
2�(αt) are solutions of the classical Hamilton equations d

dtx = ωp and d
dtp = −ωx

since d
dtαt = −iωαt. The addition of a control input, a classical drive of complex amplitude

u ∈ C (encoding the amplitude and phase of the drive), yields to the following controlled
Schrödinger equation

d

dt
|ψ〉 = −i

(
ω
(
a†a+ 1

2

)
+ (u∗(t)a+ u(t)a†)

)
|ψ〉

Such a classical control is achieved in the case of a mechanical oscillator by a direct manip-
ulation of the particle (e.g. by applying an electric force to an ion trapped in a Coulomb
potential) and in the case of an electrical one, by connecting the oscillator to a large current
source whose quantum fluctuations could be neglected.

It is the quantum version of the controlled classical harmonic oscillator

d

dt
x = ωp+ �(u(t)), d

dt
p = −ωx−�(u(t)).

A.2 Qubit: spin-half models

A.2.1 Schrödinger equation and Pauli matrices

Take the system of Figure 6. Typically, it corresponds to electronic states in the potential
created by the nuclei of an atom. The system is either in the ground state |g〉 of energy Eg,
or in the excited state |e〉 of energy Ee (Eg < Ee). We discard the other energy levels. This
simplification to a few energy levels is similar to the case of flexible mechanical systems where
one would consider only few vibrational modes: instead of writing the partial differential form
of the Schrödinger equation describing the time evolution of the electronic wave function, we
consider only its components along two eigenmodes, one corresponding to the fundamental
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Figure 6: a 2-level system

state and the other to the first excited state. Later, we will see that controls are chosen close
to resonance with the transition frequency between these two energy levels, and thus such a
simplification is very natural: the higher energy levels do not get populated.

The quantum state, described by |ψ〉 ∈ C
2 of length 1, 〈ψ|ψ〉 = 1, is a linear superposition

of |g〉 ∈ C
2, the ground state, and |e〉 ∈ C

2, the excited state, two orthogonal states, 〈g|e〉 = 0,
of length 1, 〈g|g〉 = 〈e|e〉 = 1:

|ψ〉 = ψg |g〉+ ψe |e〉
with ψg, ψe ∈ C the complex probability amplitudes3. This state |ψ〉 depends on time t. For
this simple 2-level system, the Schrödinger equation is just an ordinary differential equation

i
d

dt
|ψ〉 = H

�
|ψ〉 = 1

�
(Eg |g〉 〈g|+ Ee |e〉 〈e|) |ψ〉 (73)

completely characterized by H, the Hamiltonian operator (H† = H) corresponding to the
system’s energy 4.

Since energies are defined up to a scalar, the Hamiltonians H and H + u0(t)I (with an
arbitrary u0(t) ∈ R) describe the same physical system. If |ψ〉 obeys i d

dt |ψ〉 = H
�
|ψ〉 then

|χ〉 = e−iθ0(t) |ψ〉 with d
dtθ0 = u0

�
satisfies i d

dt |χ〉 = 1
�
(H + u0I) |χ〉 where I = |g〉 〈g| + |e〉 〈e|

stands for the identity operator. Thus for all θ0, |ψ〉 and e−iθ0 |ψ〉 are attached to the same
physical system. The global phase of the quantum state |ψ〉 can be arbitrarily chosen. It is
as if we can add a control u0 of the global phase, this control input u0 being arbitrary (gauge
degree of freedom relative to the origin of the energy scale). Thus the one parameter family
of Hamiltonians

((Eg + u0) |g〉 〈g|+ (Ee + u0) |e〉 〈e|)u0∈R

describes the same system. It is then natural to take u0 = −Ee−Eg

2 and to set ωeg = (Ee −
Eg)/�, the frequency of the photon emitted or absorbed as a consequence of the transition
between the ground and excited states. This frequency is associated to the light emitted by
the electron during the jump from |e〉 to |g〉. This light could be observed in a spectroscopy
experiment: its frequency is a signature of the atom.

It is usual to consider the following operators on C
2, the Hilbert space of the qubit:

σ− = |g〉 〈e| , σ+ = σ−† = |e〉 〈g| , σx = σ− + σ+ = |g〉 〈e|+ |e〉 〈g| ,
σy = iσ− − iσ+ = i |g〉 〈e| − i |e〉 〈g| , σz = σ+σ− − σ−σ+ = |e〉〈e| − |g〉〈g|. (74)

3In a more standard formulation, |g〉 stands for
(
1
0

)
, |e〉 for

(
0
1

)
and |ψ〉 for

(
ψg

ψe

)
.

4In a more standard formulation, |g〉 〈g| stands for
(
1
0

)(
1 0

)
=

(
1 0
0 0

)
, |e〉 〈e| for

(
0
1

)(
0 1

)
=

(
0 0
0 1

)

and H for

(
Eg 0
0 Ee

)
.
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σx, σy and σz are the Pauli operators. They satisfy σx
2 = σy

2 = σz
2 = I, and anti-commute

σxσy = −σyσx = iσz, σyσz = −σzσy = iσx, σzσx = −σxσz = iσy

and thus [σx,σy] = 2iσz, [σy,σz] = 2iσx, [σz,σx] = 2iσy. The above uncontrolled evo-
lution (73) is therefore governed by the Hamiltonian H/� = ωegσz/2 and the solution of
d
dt |ψ〉 = −iH

�
|ψ〉 is given by

|ψ〉t = e
−i

(
ωt
2

)
σz |ψ〉0 = cos

(
ωt
2

) |ψ〉0 − i sin
(
ωt
2

)
σz |ψ〉0

since for any angle θ we have

eiθσx = cos θI + i sin θσx, eiθσy = cos θI + i sin θσy, eiθσz = cos θI + i sin θσz.

Since the Pauli operators anti-commute, we have the useful relationships:

eiθσxσy = σye
−iθσx , eiθσyσz = σze

−iθσy , eiθσzσx = σxe
−iθσz .

Assume now that the system is in interaction with a classical electromagnetic field (a large
field whose quantum fluctuations are neglected) described by the control input u(t) ∈ C

(encoding the amplitude and phase of a classical drive). Then the evolution of |ψ〉 is given by

i
d

dt
|ψ〉 = 1

2 (ωegσz + (u∗(t)σ+ + u(t)σ−)) |ψ〉 = 1
2 (ωegσz + �(u(t))σx + �(u(t))σy) |ψ〉 .

(75)
Since σx, σy and σz do not commute, there is no simple expression for the solution of the
associated Cauchy problem when u depends on t (in general the system is not integrable).

A.2.2 Bloch sphere representation

The orthogonal projector ρ = |ψ〉 〈ψ|, the density operator associated to the pure state |ψ〉,
obeys to the Liouville equation d

dtρ = − i
�
[H,ρ]. While a more thorough description of the

density matrix formulation, together with its application to the modeling of open quantum
systems, will be given later, here we apply this formulation to present the Bloch sphere
representation of a single qubit system. Such a representation is a useful tool exploiting the
smooth correspondence between ρ and the unit ball of R3 considered in Euclidian space:

ρ =
I + xσx + yσy + zσz

2
, (x, y, z) ∈ R

3, x2 + y2 + z2 ≤ 1.

(x, y, z) ∈ R
3 are the coordinates in the orthonormal frame (�ı,�j,�k) of the Bloch vector �M ∈ R

3

�M = x�ı+ y�j+ z�k.

In general, considering the case of an open quantum system undergoing dissipation, this vector
lies on or inside the unit sphere, called Bloch sphere. However, here considering the case of a
pure quantum state, where the density matrix is equivalent to a Rank 1 projector ρ = |ψ〉 〈ψ|,
this vector lies on the unit sphere. In order to see this, we note that Tr

(
ρ2

)
= x2 + y2 + z2,

and ρ being a projector Tr
(
ρ2

)
= Tr (ρ) = 1. The translation of Liouville equation on �M

yields with H/� = ωσz/2:
d
dt

�M = ωeg
�k× �M. For the two-level system with the coherent drive

described by the complex-value control u, H/� =
ωeg

2 σz + �(u)
2 σx + �(u)

2 σy and the Liouville

equation reads, with the Bloch vector �M representation,

d

dt
�M = (�(u)�ı+ �(u)�j+ ωeg

�k)× �M.
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B Linear quantum operations

A linear quantum operation K is a linear superoperator acting on the space of the density
matrices in the system’s Hilbert space S, and satisfying the following properties:

� K is trace-preserving or decreasing. This is, 0 ≤ Tr (K(ρ)) ≤ 1 for any density matrix
ρ.

� K is completely positive. That is, not only does K map positive operators to positive
operators in the system’s Hilbert space S, but so does IH ⊗K for positive operators in
H⊗ S. Here H is the Hilbert space of a second arbitrary system and IH is its identity
operator.

Concerning the last property, it may seem that positivity of a superoperator would be sufficient
to represent a physical process. However, in practice, the considered system can be entangled
to another system before the physical process acts on it. It must still be the case that the
total state of both systems remains a physical state with a positive density operator. This
justifies the last property.

We have the following theorem called the Kraus representation theorem (see [47, page
368] for a proof):

Theorem 3. Any linear quantum operation satisfying the above conditions, can be expressed
in the form

K(ρ) =
∑
j

M jρM
†
j

with
IS −

∑
j

M †
jM j ≥ 0.

The above formula is known as the Kraus representation or the operator-sum representation of
the linear quantum operation and the operators M j are known as the measurement operators.
Moreover, K is trace-preserving (Tr (K(ρ)) = Tr (ρ) for any density operator ρ) if, and only

if,
∑

j M
†
jM j = IS .

Linear quantum operations are also called Kraus maps or quantum channels. When not
trace preserving, they are also called partial Kraus maps.

As soon as we make the additional assumption of a trace-preserving quantum operation,
we can also prove some contraction properties. In this aim, we first define the quantum
fidelity and quantum trace distance between two density matrices:

Definition 1. Consider two well-defined density matrices ρ and σ. The quantum trace
distance D(ρ,σ) and the quantum fidelity F (ρ,σ) are then defined as follows:

D(ρ,σ) =
1

2
Tr (|ρ− σ|) , F (ρ,σ) = Tr2

(√
ρ1/2σρ1/2

)
,

where |A| ≡
√
A†A is the positive square root of A†A.

Remark 4. One can prove that (see [47, Chapter 9]) as soon as one of the density matrices
is a projector state σ = |ψ〉 〈ψ|, the fidelity between ρ and σ is given by the standard form

F (ρ,σ) = Tr (ρσ) = 〈ψ|ρ |ψ〉.
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We have the following contraction properties for trace-preserving quantum operations:

Theorem 4. Suppose that K is a trace-preserving quantum operation. Let ρ and σ be two
well-defined density operators. Then

D(K(ρ),K(σ)) ≤ D(ρ,σ) and F (K(ρ),K(σ)) ≥ F (ρ,σ).

The proof of this theorem is beyond the scope of these notes and we refer to [47, Chapter
9] for a rigorous proof.

C Operator spaces

This summary is strongly inspired from chapter 4 of [62] where detailed justifications can
be found. H denotes a separable Hilbert space. We summarize the basic properties of the
following spaces of linear operators on H: finite rank operators Kf (H), trace-class operators
K1(H), Hilbert-Schmidt operators K2(H), compact operators Kc(H) and bounded operators
B(H). These operators spaces, Kf (H) ⊂ K1(H) ⊂ K2(H) ⊂ Kc(H) ⊂ B(H), are non-
commutative analogue of the following usual spaces of complex-value series (λk)k≥0:

� Kf (H) mimics series with a finite number of non zero terms.

� K1(H) mimics absolutely converging series,
∑

k≥0 |λk| < +∞; the analogue of the l1

norm is the trace-class norm.

� K2(H) mimics l2 series,
∑

k≥0 |λk|2 < +∞; the analogue of the scalar product on l2 is
the Frobenius product.

� Kc(H) mimics series those general term converges to zero: limk �→+∞ λk = 0.

� B(H) mimics l∞ series, i.e., bounded series; the analogue of the l∞ norm becomes the
sup norm on bounded operators.

Elements of H are vectors denoted usually with the Ket notation |ψ〉 ∈ H. The Hermitian
product between two Kets |ψ〉 and |φ〉 is denoted by 〈ψ|φ〉 = 〈ψ| |φ〉 where 〈ψ| = |ψ〉† is the
Bra, the co-vector associated to |ψ〉, element of the dual H∗ of H, and defining a continuous
linear map: H � |φ〉 �→ 〈ψ|φ〉 ∈ C. The length of |ψ〉 is denote by ‖ψ‖ =

√〈ψ|ψ〉.
L(H) denotes the vector space of linear operators from H to H. For A ∈ L(H), A† denotes

its Hermitian conjugate, another element of L(H) defined by ∀ |ψ〉 , |φ〉 ∈ H,
〈
ψ|(A |φ〉 )〉 =〈(

A† |ψ〉 )|φ〉.
The set of bounded operators on H is denoted by B(H). The vector space B(H) equipped

with the following sup norm

‖A‖ = Sup
|ψ〉 ∈ H
〈ψ|ψ〉 = 1

√〈
ψ|A†A|ψ〉

is a Banach space. Bounded operators of L(H) are continuous operators of L(H). An operator
U of L(H) is called unitary, if it is invertible and if U−1 = U †. Any unitary operator U
belongs to B(H).
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Take two elements of H, |a〉 and |b〉: they define a Ket-Bra operator P a,b ∈ B(H) via the
following correspondence:

∀ |ψ〉 ∈ H,P a,b(|ψ〉) =
( 〈b|ψ〉 ) |a〉 .

Usual P a,b is denoted by |a〉 〈b| since P a,b(|ψ〉) = |a〉 〈b| |ψ〉.

Exercice 16. Show that ‖Pa,b‖ =

√
〈a|a〉〈b|b〉+|〈a|b〉|

2

Let |ψ〉 be a unitary vector of H (〈ψ|ψ〉 = 1). The orthogonal projector on the line
spanned by |ψ〉, {z |ψ〉 | z ∈ C} is the Ket-Bra operator Pψ,ψ = |ψ〉 〈ψ|. The orthogonal
projector PHf

on a finite dimensional vector space Hf of H reads

PHf
=

N∑
k=1

|ak〉 〈ak|

where (|a1〉 , . . . , |aN 〉) is any ortho-normal basis of Hf .
An element A of L(H) is said to be finite rank, if and only if, it can be expressed as a

finite sum of length N of Ket-Bra operators:

A =
N∑
k=1

|ak〉 〈bk|

where |ak〉 and |bk〉 belong to H. The linear sub-space of L(H) of finite rank operators of H
is noted by Kf (H). It is clear that Kf (H) ⊂ B(H). Moreover A ∈ L(H) belongs to Kf (H)
if and only if it range, the sub-vector space of H denoted by R(A) = {A |ψ〉 | |ψ〉 ∈ H}, is
finite dimensional. The rank of A is then the dimension of its range R(A).

Exercice 17. Show that for A ∈ Kf (H) with H of infinite dimension, the kernel of A,
ker(A) = {|ψ〉 ∈ H | A |ψ〉 = 0} is of infinite dimension.

An elementA of L(H) is said to be compact, if and only if, the image viaA of any bounded
sub-set of H admits a compact closure. The set of compact operators is denoted by Kc(H).
Any compact operator is thus bounded, Kc(H) ⊂ B(H): it is a sub-vector space of B(H).
The completion of Kf (H) with respect to the norm on B(H) is the set of compact operators
Kc(H): by Hilbert theorem, any compact operator is the limit of finite rank operators for
the sup norm on B(H). This implies that Kc(H) equipped with the sup norm inherited from
B(H) is a Banach space.

Finally, any compact Hermitian operator A admits a discrete real spectrum (λk)k∈N with
limk �→+∞ λk = 0. To each λk we can associated a unitary Ket |ek〉 such that (|ek〉)k∈N is an
Hilbert basis of H. Then we have

A =
∑
k≥0

λk |ek〉 〈ek| .

The above series is absolutely convergent in B(H) with the sup norm. In this decomposition,
the λk’s are countered with their possible multiplicities. Another equivalent and more intrinsic
decomposition (unitary invariance) where each λk are different, is as follows

A =
∑
k

λkP k
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where P k is the orthogonal projector on the eigen-space associated to the eigenvalue λk.
Consider a non-negative Hermitian compact operator A with eigenvalues (λk)k∈N counted

with their multiplicities (A =
∑

k≥0 λk |ek〉 〈ek|). Then λk ≥ 0. A is said trace class, if and
only if ,

∑
k≥0 λk < +∞. It is then simple to prove that

∑
k≥0 λk =

∑
n≥0 〈an|A|an〉 where

(|an〉)n≥0 is any ortho-normal basis of H. Consequently,
∑

k≥0 λk is denote by Tr (A).

More generally a compact operator A is trace class, if and only if, Tr
(√

A†A
)
< +∞.

Since A is compact, the non-negative Hermitian operator A†A is also compact. Thus it
admits a spectral decomposition A†A =

∑
k λkP k where λk ≥ 0. Then

√
A†A is defined as∑

k

√
λkP k: it is another non-negative Hermitian compact operator those square coincides

with A†A.

Exercice 18. Show that A ∈ Kc(H) is trace-class if and only if �(A) = (A + A†)/2 and
�(A) = (A − A†)/(2i) are trace class. Show that for any trace class operator A and for
any ortho-normal basis (|an〉)n≥0,

∑
n≥0 〈an|A|an〉 is an absolute convergent series. Show

that its sum depends only on A(this justifies the notation Tr (A)). When A is Hermitian
and trace class, show that Tr (A) coincides with the sum of its eigenvalues counted with their
multiplicity.

The set of trace class operators A is noted by K1(H): it is equipped with the trace norm

also called nuclear norm: ‖A‖1 = Tr
(√

A†A
)
. A finite rank operator is automatically trace

class: Kf (H) ⊂ K1(H). More-over the completion of Kf (H) for the trace-class norm is K1(H):
any element of K1(H) can be approximated for the trace norm topology by a sequence of finite
rank operators. For any trace-class operators A, B, we have :

� Tr (A) ≥ 0 when A† = A > 0.

� Tr (A) real when A† = A.

� Tr
(
A†) = (Tr (A))† where † =∗ stands for the conjugation of complex number.

� AB and BA are also trace class and Tr (AB) = Tr (BA).

For any trace class operator A and any bounded operator M , the operators AM is also
trace class: More over |Tr (AM) | ≤ ‖M‖‖A‖1. Thus for any M ∈ B(H), K1(H) ∈ A �→
Tr (AM) ∈ C is a continuous linear operator of the Banach space K1(H) is equipped with
the trace norm. Conversely, any linear map from K1(H) to C that is continuous with the
trace norm coincides with K1(H) � A �→ Tr (AM) for some M ∈ B(H). The dual of K1(H)
for the trace-class norm is B(H).

A compact operator A is an Hilbert-Schmidt operator if, and only if, Tr
(
A†A

)
< +∞.

The set of Hilbert-Schmidt operators is denoted by K2(H). Equipped with the Frobenius
scalar product Tr

(
AB†), this space admits an Hilbert-space: the Frobenius norm A is de-

noted by ‖A‖2 =
√
Tr

(
A†A

)
. We have Kf (H) ⊂ K1(H) ⊂ K2(H). More-over, the closure

of Kf (H) with the Frobenius norm coincides with K2(H).
We have the following list of properties:

1. For any A ∈ K1(H) ⊂ K2(H):

‖A‖2 ≤ ‖A‖1, |Tr (A) | ≤ ‖A‖1, ‖A†‖1 = ‖A‖1.
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2. if A ∈ K1(H) and B ∈ B(H), then AB and BA are in K1(H) and

‖AB‖1 = ‖BA‖1 ≤ ‖A‖1‖B‖.

3. if A and B belong to K2(H), then AB belongs to K1(H) and

‖AB‖1 = ‖BA‖1 ≤ ‖A‖2‖B‖2.

4. if A ∈ K2(H) and B ∈ B(H), then AB and BA are in K2(H).

An operator ρ ∈ K1(H) that is additionally Hermitian, non negative and of trace one is
called a density operator. The set of density operators is a closed convex subset of the Banach
space K1(H) equipped with the trace norm.

D Quantum measurement

Whenever talking about the quantum state of a system, we refer to an observer’s knowledge
about a system. More precisely, it is the knowledge of the observer about the outcome of the
future measurements on the system.

Such information theoretical definition of the state of a physical system may appear unfa-
miliar and uncomfortable as for instance, the observers with different knowledge may assign
different states, simultaneously, to a single system. The most natural way to talk about the
consistency of these assigned states is to define a common state of maximal knowledge as
a common pure state. So far through these lecture notes, we have only considered such a
common state of maximal knowledge and its evolution for a closed quantum system where
no measurement is performed on the system. This pure state is well represented by a wave
function |ψ〉 and its evolution is given by a Schrödinger equation as discussed through the
previous chapters. The rest of these notes, however, is devoted to the study of the case where
the quantum system is measured by an observer and in such a case, one needs to consider
a wider formulation of the quantum state called the density operator (or density matrix in
the case of finite dimensional quantum system). A density operator ρ is a Hermitian, semi-
definite positive, trace-class operator defined on the Hilbert space of the quantum system.
Moreover its trace is constant and equals unity during the evolution of the system. Such a
density operator represents the knowledge of an observer about the quantum system.

Considering the collection {ρj} of different density matrices assigned by different observers
to a same physical system, the common state of maximal knowledge is a pure state defined
by a wave function |ψ〉 such that there exists an εj > 0 for which, ρj − εj |ψ〉 〈ψ| is a positive
operator, i.e. ρj is the mixture of |ψ〉 with some other states. From a system theoretical
point of view, we can think of this common state of maximal knowledge as the actual state
of the system and the density matrix ρj is the filtering state encoding the information gained
by an observer j.

Another consequence of such definition of the quantum state is that any measurement of
the system, which leads to obtaining information on the system, necessarily changes the state
of the system. This is known as the projection postulate. Through this section, we provide a
brief overview of important measurement paradigms for quantum systems and the two next
sections are devoted to some concrete examples. This chapter is strongly inspired from [34]
and [71].
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D.1 Projective measurement

The projective measurement is the traditional description of measurement in quantum me-
chanics. Indeed, assume the measurement of a physical quantity O to which we can assign a
Hermitian operator (observable) O defined on H the Hilbert space of the system. We start
by diagonalizing the operator as

O =
∑
ν

λνP ν ,

where λν ’s are the eigenvalues of O, which are all real and different, and P ν the projection
operator over the associated eigenspace. Note that, in general, the spectrum of the operator
O can be degenerate and therefore the projection operator P ν is not necessarily a rank-1
operator.

When we measure O, the result will be necessarily one of the eigenvalues λν . Moreover,
an outcome λν of the measurement implies an instantaneous projection of the state of our
knowledge through the associated projection operator. We also talk of the conditional state
of the system as it is conditioned on the measurement outcome. Indeed, assuming that our
state of knowledge at time t is given by the density matrix5 ρ , measurement of the physical
observable O at time t can be formulated as below:

1. The probability of obtaining the value λν is given by pν = Tr (ρP ν); note that
∑

ν pν = 1
as

∑
ν P ν = IH (IH represents the identity operator of H).

2. After the measurement, the conditional (a posteriori) state of the system given the
outcome λν is

ρ+ =
P ν ρ P ν

pν
.

Here, ρ+ denotes the state of the system just after the measurement. Furthermore, we have
assumed that the evolution, from other causes, of the system during the measurement process
is not significant and can be neglected.

A particular feature of the projective measurement is that, if the same measurement is
immediately repeated, then the same result is guaranteed. Indeed, the probability of obtaining
the same result λν for the second measurement of the observable O is given by

Tr
(
P νρ+

)
= Tr (P ν ρ P ν) /pν = 1,

where we have applied the fact that P νP ν = P ν .
For pure states (encoding the common state of maximal knowledge), ρ = |ψ〉 〈ψ|, the

projective measurement can be more simply expressed as

pν = 〈ψ|P ν |ψ〉 ,
ψ+ =

P νψ√
pν

.

Finally, the particular case of a projective measurement where the eigenvalues {λν} are non-
degenerate, and therefore the eigenprojections P ν are rank-1 operators, is called a von Neu-
mann measurement.

5ρ is a Hermitian, semi-definite positive, trace-class operator on H of trace 1. Thus Tr
(
ρ2

) ≤ 1 with
equality only when ρ is an orthogonal projector on some pure quantum state |ψ〉, i.e., ρ = |ψ〉 〈ψ|.
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D.2 Positive Operator-Valued Measure (POVM)

The projective measurements are, generally, inadequate for describing real measurements, as
the experimenter never directly measures the system of interest. In fact, the system of interest
(for instance an atom or a quantized electromagnetic field) interacts with its environment
(electromagnetic field or a probe atom), and the experimenter observes the effect of the
system on the environment (the radiated field or the probe atom).

In order to formulate such measurement paradigm, we need to consider the quantum state
in a larger Hilbert space consisting of the system and the measurement apparatus (also called
the meter). Indeed, we consider a total initial state (before the measurement process) for the
system together with the meter, which is given by a separable wavefunction

|Ψ〉 = |ψS〉 ⊗ |θM 〉

living on the total Hilbert space HS ⊗HM . The measurement process consists in a unitary
evolution of the whole state (leading to a non-separable -entangled- state) followed by a
projective von Neumann measurement of the measurement apparatus. Let us denote by
US,M the unitary evolution entangling the state of the system to that of the meter, and
by OM = IS ⊗ (∑

ν λνP ν

)
the measured observable for the meter. Here, the projection

operator P ν is a rank-1 projection in HM over the eigenstate |λν〉 ∈ HM : P ν = |λν〉 〈λν |.
The measurement procedure can be formulated as below

1. The probability of obtaining the value λν is given by pν = 〈ψS |M †
νMν |ψS〉 where Mν

is an operator defined on HS , the Hilbert space of the system, by(
Mν |ψS〉

)⊗ |λν〉 =
(
IS ⊗ P ν

)
US,M

( |ψS〉 ⊗ |θM 〉 ).
Thus we have

US,M

( |ψS〉 ⊗ |θM 〉 ) =
∑
ν

(
Mν |ψS〉

)⊗ |λν〉 .

Note that
∑

ν pν = 1 as

∑
ν

〈ψS |M †
νMν |ψS〉 =

( |ψS〉 ⊗ |θM 〉 )†U †
S,M

(∑
ν

IH ⊗ P ν

)
US,M

( |ψS〉 ⊗ |θM 〉 ) = 1, (76)

where we have used
∑

ν |λν〉 〈λν | = IM and U †
S,MUS,M = ISM .

2. After the measurement, the conditional (a posteriori) state of the system given the
outcome λν is

|ψS〉+ =
Mν |ψS〉√

pν
.

The operators Mν are called the measurement operators (see appendix B).
This can also be extended to the case of a mixed state where the probability of obtaining

the value λν is simply given by pν = Tr
(
MνρM

†
ν

)
and the conditional state given the

outcome λν is

ρ+ = Mν(ρ) :=
MνρM

†
ν

Tr
(
MνρM

†
ν

) , (77)
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with Mν a nonlinear superoperator (it sends an operator to an operator) on HS . Indeed,
through the computations of (76),

∑
ν M

†
νMν = IS and this, together with the positiveness

of the operators M †
νMν , are the only conditions for the set {Mν} to define a Positive

Operator-Valued Measure (POVM).
Also, one can define the Generalized POVM as the case where the initial state of the meter

is not a pure state or that the projective measurement of the meter is not a von Neumann
measurement (see [71, chapter 1] for a tutorial exposure to quantum measurements).

D.3 Quantum Non-Demolition (QND) measurement

Before anything, we need that the measurement of the meter observable OM after the inter-
action between the system and the meter encodes some information on the system S itself.
This imposes some constraints on unitary transformation US,M considered in the previous
subsection:

US,M |Ψ〉 = US,M

( |ψS〉 ⊗ |θM 〉 ).
Assume that such unitary transformation US,M results from a Hamiltonian H = HS+HM+
HSM where HS and HM describe, respectively, the evolutions of the system and the meter
and HSM denotes the system-meter interaction Hamiltonian. Then US,M is the propagator
generated by H during the interaction interval of length τ between S and M (for time-
invariant H, we have US,M = e−iτH). It is clear that a necessary condition for the influence
of S on OM just after the interaction is that [H,OM ] 	= 0. Otherwise OMUS,M = US,MOM .
Using the spectral decomposition OM =

∑
ν λνIS ⊗ |λν〉 (see previous subsection), we have

for any ν,

OMUS,M

( |ψS〉 ⊗ |λν〉
)
= US,MOM

( |ψS〉 ⊗ |λν〉
)
= λνUS,M

( |ψS〉 ⊗ |θM 〉 ).
Thus, necessarilyUS,M

( |ψS〉⊗|λν〉
)
=

(
U ν |ψS〉

)⊗|λν〉 whereU ν is a unitary transformation
on HS only. With |θM 〉 = ∑

ν θν |λν〉, we get, for any |ψS〉,

US,M

( |ψS〉 ⊗ |θM 〉 ) =
∑
ν

θν
(
U ν |ψS〉

)⊗ |λν〉

Then measurement operators Mν are equal to θνU ν . The probability to get measurement
outcome ν,

〈
ψS |M †

νMν |ψS

〉
= |θν |2, is completely independent of systems state |ψS〉. This

means that the measurement statistics for the meter observable OM does not encode any
information on the system S and therefore [H,OM ] must not vanish. When HM = 0, this
necessary condition reads [HSM ,OM ] 	= 0.

Let us consider the measurement of a physical observable OS defined for the system S,
through its coupling with a meterM with a von Neumann measurements of an observable OM

on the meter. The essential condition for a measurement process of OS to be quantum non-
demolition (abbreviated as QND) is that the measurement should not affect the eigenstates
of OS when OS admits a non degenerate spectrum (other-wise we have to consider the
eigenspace instead of the eigenstate). A sufficient but not necessary condition for this is

[H,OS ] = 0

Under this condition OS and US,M commute. For eigenstate |μ〉 of OS associated to eigen-
value μ, we have

OSUS,M

( |μ〉 ⊗ |θM 〉 ) = US,MOS

( |μ〉 ⊗ |θM 〉 ) = μUS,M

( |μ〉 ⊗ |θM 〉 ).
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Exercice 19. Prove that the above formula implies US,M

( |μ〉 ⊗ |θM 〉 ) = |μ〉 ⊗ (
Uμ |θM 〉 )

where Uμ is a unitary operator on HM only: US,M does not entangle eigenstates of OS with
the meter.

With the measurement operators Mν , we also have

US,M

( |μ〉 ⊗ |θM 〉 ) =
∑
ν

Mν |μ〉 ⊗ |λν〉 .

Thus necessarily, using exercise 19 each Mν |μ〉 is colinear to |μ〉. Whatever the measurement
outcome ν is, the conditional state provided by (77) remains unchanged: ρ+ = Mν(ρ) when
ρ = |μ〉 〈μ|. When the spectrum ofOS is degenerate and P μ is the projector on the eigenspace
associated to the eigenvalue μ of OS , this invariance reads: for all ν, MνP μ = P μMν . Any
eigenspace of OS is invariant with respect to all the Mν ’s.

D.4 Stochastic process attached to a POVM

To any POVM defined by a set of measurement operators (Mν) onHS , is attached a stochastic
process. This process admits the set {ρ} of density operators on HS as state space. It is
defined by the transition rules:

ρ+ =
MνρM

†
ν

Tr
(
MνρM

†
ν

) with probability pν = Tr
(
MνρM

†
ν

)
. (78)

For any observableA onHS , its conditional expectation value after the transition knowing
the state ρ just before the transition is given by

E
(
Tr

(
Aρ+

)
/ρ

)
= Tr (AK(ρ)) (79)

where the linear map K(ρ) =
∑

ν MνρM
†
ν is a Kraus map (see appendix B).

Assume that this POVM provides a QND measurement of an observable OS on HS . Then
the orthogonal projector POS

on any eigenspace of OS , yields to a martingale6 Tr (ρPOS
):

E
(
Tr

(
POS

ρ+

)
/ρ

)
= Tr (POS

ρ)

since POS
is a stationary point of the dual Kraus map K

∗: K
∗(POS

) =
∑

ν M
†
νPOS

Mν =
POS

. Moreover, if POS
is of rank one, then it corresponds to a stationary state ρ̄ = POS

of
the Markov process (78): for all ν, Mν ρ̄M

†
ν = Tr

(
Mν ρ̄M

†
ν

)
ρ̄.

Exercice 20. Prove that for a QND measurement of a system observable OS, the random
process Tr (ρOS) is also a martingale.

E Markov chains, martingales and convergence theorems

This Appendix has for aim to give a very brief overview of some definitions and some theorems
in the theory of random processes. The stability Theorems 5, 6 and 7 can be seen as stochastic
analogues of deterministic Lyapunov function techniques.

We start the appendix by defining three types of convergence for random processes:

6See appendix E.
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Definition 2. Consider (Xn) a sequence of random variables defined on the probability space
(Ω,F , p) and taking values in a metric space X . The random process Xn is said to,

� converge in probability towards the random variable X if for all ε > 0,

lim
n→∞ p (|Xn −X| > ε) = lim

n→∞ p (ω ∈ Ω | |Xn(ω)−X(ω)| > ε) = 0;

� converge almost surely towards the random variable X if

p
(
lim
n→∞Xn = X

)
= p

(
ω ∈ Ω | lim

n→∞Xn(ω) = X(ω)
)
= 1;

� converge in mean towards the random variable X if

lim
n→∞E (|Xn −X|) = 0.

We can prove that the almost sure convergence and the convergence in mean imply the
convergence in probability. However no such relation can be proved between the convergence
in mean and the almost sure convergence in general.

Before defining the Markov processes, martingales, and discussing their convergence the-
orems, we provide two useful results from probability theory that are used for the proof of
convergence of QND measurement process. The first result is the Markov’s inequality

Lemma 2 (Markov’s inequality). If X ≥ 0 is a random variable and ε > 0, we have

P [X ≥ ε] ≤ E (X)

ε
.

The second result is the Borel-Cantelli lemma about sequences of events in the σ-algebra
F .

Lemma 3 (Borel-Cantelli lemma). Let Ek ∈ F be a sequence of events in the probability
space (Ω,F , p). Assuming

∞∑
n=1

p(En) < ∞,

we have

p

(
lim sup
n→∞

En

)
= p (∩∞

n=1 ∪∞
k=n Ek) = 0.

Let (Ω,F , p) be a probability space, and let F1 ⊆ F2 ⊆ · · · ⊆ F be a nondecreasing family
of sub-σ-algebras. We have the following definitions

Definition 3. The sequence (Xn,Fn)
∞
n=1 is called a Markov process with respect to F =

(Fn)
∞
n=1, if for n′ > n and any measurable function f(x) with supx |f(x)| < ∞,

E (f(Xn′) | Fn) = E (f(Xn′) | Xn) .
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Definition 4. The sequence (Xn,Fn)
∞
n=1 is called respectively a supermartingale, a sub-

martingale or a martingale, if E (|Xn|) < ∞ for n = 1, 2, · · · , and
E (Xn | Fm) ≤ Xm (p almost surely), n ≥ m,

or
E (Xn | Fm) ≥ Xm (p almost surely), n ≥ m,

or finally,
E (Xn | Fm) = Xm (p almost surely), n ≥ m.

Remark 5. A time-continuous version of the above definitions can also be considered for
(Xt,Ft)t≥0, where F = (Ft)t≥0, is non decreasing family of sub-σ-alegbras of F .

The following theorem characterizes the convergence of bounded martingales:

Theorem 5 (Doob’s first martingale convergence theorem). Let (Xn,Fn)n<∞ be a submartin-
gale such that (x+ is the positive part of x)

sup
n

E
(
X+

n

)
< ∞.

Then limnXn (= X∞) exists with probability 1, and E (X+∞) < ∞.

For a proof we refer to [44, Chapter 2, Page 43].
Here, we recall two results that are often referred as the stochastic versions of the Lyapunov

stability theory and the LaSalle’s invariance principle. For detailed discussions and proofs we
refer to [39, Sections 8.4 and 8.5]. The first theorem is the following:

Theorem 6 (Doob’s Inequality). Let {Xn} be a Markov chain on state space X . Suppose
that there is a non-negative function V (x) satisfying E (V (X1) | X0 = x) − V (x) = −k(x),
where k(x) ≥ 0 on the set {x : V (x) < λ} ≡ Qλ. Then

p

(
sup

∞>n≥0
V (Xn) ≥ λ | X0 = x

)
≤ V (x)

λ
.

Corollary 1. Consider the same assumptions as in Theorem 6. Assume moreover that there
exists x̄ ∈ X such that V (x̄) = 0 and that V (x) 	= 0 for all x different from x̄. Then the
Theorem 6 implies that the Markov process Xn is stable in probability around x̄, i.e.

lim
x→x̄

p

(
sup
n

‖Xn − x̄‖ ≥ ε | X0 = x

)
= 0, ∀ε > 0.

Theorem 7. Let {Xn} be a Markov chain on the compact state space S. Suppose that there
exists a non-negative function V (x) satisfying E (V (Xn+1) | Xn = x)− V (x) = −k(x), where
k(x) ≥ 0 is a positive continuous function of x. Then the ω-limit set (in the sense of almost
sure convergence) of Xn is included in the following set

I = {X | k(X) = 0}.
Trivially, the same result holds true for the case where E (V (Xn+1) | Xn = x)− V (x) = k(x)
(V (Xn) is a submartingale and not a supermartingale), with k(x) ≥ 0 and V (x) bounded from
above.

The proof is just an application of the Theorem 1 in [39, Ch. 8], which shows that k(Xn)
converges to zero for almost all paths. It is clear that the continuity of k(x) with respect to
x and the compactness of S implies that the ω-limit set of Xn is necessarily included in the
set I.
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F Quantum harmonic oscillator: Wigner function and quan-
tum Fokker-Planck equation

For a harmonic oscillator of space dimension 1, the phase space is the plane (x, p). To represent
this quantum state and its link with classical statistical physics, it is useful to consider the
Wigner function R

2 � (x, p) �→ W {ρ}(x, p) ∈ R attached to the density operator ρ. For a
physical interpretation of W {ρ} as a pseudo-probability density see appendix of [34] where
the Wigner function is defined via the Fourier transform

W {ρ}(x, p) =
1

π2

∫∫
R2

C{ρ}
s (λ1 + iλ2)e

−2i(xλ2−pλ1) dλ1 dλ2

of the symmetric characteristic function C
{ρ}
s attached to ρ (quantum probability):

C � λ1 + iλ2 = λ �→ C{ρ}
s (λ) = Tr

(
ρeλa

†−λ∗a
)
.

We will use here the following definition,

W {ρ}(x, p) = 2
π Tr

(
ρDαe

iπND−α

)
with α = x+ ip, (80)

where Dα = eαa
†−α∗a is the displacement of complex amplitude α. Consequently W {ρ}(x, p)

is real and well defined since Dαe
iπND−α is a bounded, unitary and Hermitian operator (the

dual of K1(H) is B(H), see appendix C).
For a coherent state ρ = |β〉 〈β| with β ∈ C we have

W {|β〉〈β|}(x, p) = 2
π

〈
β
∣∣Dαe

iπND−α

∣∣β〉 = 2
πe

−2|β−α|2 .

since 〈β|Dα = 〈β − α| with D−α |β〉 = |β − α〉 and eiπN |β − α〉 = |α− β〉. Thus W {|β〉〈β|}

is the usual Gaussian density function centered on β in the phase plane α = x + ip and of
variance 1/2 in all directions.

In the sequel we will consider that ρ is in Kf (H) (support with a finite number of photons)
and thus that the computations here below can be done without any divergence problem.
Using Dα = eαa

†
e−α∗ae−αα∗/2 = e−α∗aeαa

†
eαα

∗/2 we have two equivalent formulations:

π
2W

{ρ}(α, α∗) = Tr
(
ρeαa

†
e−α∗aeiπNeα

∗ae−αa†)
= Tr

(
ρe−α∗aeαa

†
eiπNe−αa†

eα
∗a

)
Here α and α∗ are seen as independent variables. We have the following correspondence:

∂

∂α
= 1

2

(
∂

∂x
− i

∂

∂p

)
,

∂

∂α∗ = 1
2

(
∂

∂x
+ i

∂

∂p

)
We have

π
2

∂

∂α
W {ρ}(α, α∗) = Tr

((
ρa† − a†ρ

)
eαa

†
e−α∗aeiπNeα

∗ae−αa†)
= Tr

(
(ρa† − a†ρ)Dαe

iπND−α

)
Since a†Dαe

iπND−α = Dαe
iπND−α(2α

∗ − a†), we have

∂

∂α
W {ρ}(α, α∗) = 2α∗W {ρ}(α, α∗)− 2W {a†ρ}(α, α∗).
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Thus W {a†ρ}(α, α∗) = α∗W {ρ}(α, α∗)− 1
2

∂
∂αW

{ρ}(α, α∗).
Similar computations yield to the following correspondence rules:

W {ρa} =
(
α− 1

2

∂

∂α∗

)
W {ρ}, W {aρ} =

(
α+ 1

2

∂

∂α∗

)
W {ρ}

W {ρa†} =
(
α∗ + 1

2

∂

∂α

)
W {ρ}, W {a†ρ} =

(
α∗ − 1

2

∂

∂α

)
W {ρ}.

With these rules the operator differential equation (41) for ρ becomes a partial differential
equation for W {ρ}(x, p). We have

W {[ua†−u∗a,ρ]} = −
(
u

∂

∂α
+ u∗

∂

∂α∗

)
W {ρ}

W {aρa†−a†aρ+ρa†a
2 } = 1

2

(
∂2

∂α∂α∗ +
∂

∂α
α+

∂

∂α∗α
∗
)
W {ρ}

W {a†ρa−aa†ρ+ρaa†
2 } = 1

2

(
∂2

∂α∂α∗ − ∂

∂α
α− ∂

∂α∗α
∗
)
W {ρ}.

Consequently, the time-varying Wigner function W {ρ} is governed by a partial differential
equation

∂

∂t
W {ρ} =

κ

2

(
∂

∂α
(α− α) +

∂

∂α∗ (α
∗ − α∗) + (1 + 2nth)

∂2

∂α∂α∗

)
W {ρ}

with α = 2u/κ. Set α = x + ip. Using ∂
∂α and ∂

∂α∗ as linear expressions in ∂
∂x and ∂

∂p ,
we get finally the following convection diffusion equation also called quantum Fokker-Planck
equation:

∂

∂t
W {ρ} =

κ

2

(
∂

∂x

(
(x− x)W {ρ}

)
+

∂

∂p

(
(p− p)W {ρ}

)
+ 1+2nth

4

(
∂2W {ρ}

∂x2
+

∂2W {ρ}

∂p2

))
.

(81)

It can be also written in a more geometric form with ∇ =

( ∂
∂x
∂
∂p

)
:

∂

∂t
W {ρ} = −∇ ·

(
W {ρ}F

)
+∇ ·

(
σ∇W {ρ}

)
where F = κ

2

(
x− x
y − y

)
and σ = κ(1+2nth)

8 .

The Green functionG(x, p, t, x0, p0) of (81), i.e., its solution with initial conditionW
{ρ}
0 (x, p) =

δ(x− x0)δ(p− p0) where δ is the Dirac distribution, reads:

G(x, p, t, x0, p0) =
1

π(nth+
1
2)(1−e−κt)

exp

⎛⎜⎜⎜⎝−

(
x− x− (x0 − x)e−

κt
2

)2

+

(
p− p− (p0 − p)e−

κt
2

)2

(nth +
1
2)(1− e−κt)

⎞⎟⎟⎟⎠ .
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The general solution of (81) with an L1 initial conditionW
{ρ}
0 (x, p) (

∫∫
R2 |W {ρ}

0 (x, p)| < +∞),
reads for t > 0:

W
{ρ}
t (x, p) =

∫
R2

W
{ρ}
0 (x′, p′)G(x, p, t, x′, p′) dx′dp′.

For t large, G(x, p, t, x′, p′) converges toward a Gaussian distribution independent of (x′, p′).
By application of the dominated convergence theorem we have:

∀(x, p) ∈ R
2, lim

t �→+∞W
{ρ}
t (x, p) =

∫∫
R2 W

{ρ}
0

π(nth+
1
2)

exp

(
−(x− x)2 + (p− p)2

(nth +
1
2)

)
.

Notice that Wigner functions associated to density operators satisfy
∫∫

R2 W
{ρ} = 1. Thus

the steady state solution of (81) is a Gaussian probability density centered on (x, p) with
variance (nth+

1
2) in all direction. Moreover any trajectory of (81) initialized with W {ρ0}, ρ0

being a density operator, converges to this Gaussian function. When nth = 0, we recover the
Wigner function of the coherent state α.

Many other properties on Wigner and related functions can be founded in [34] and also
in [20].

G Concepts of control theory

A large part of control theory is based on differential equations: this is the so-called state
space representation of deterministic systems in continuous time (versus stochastic systems
using stochastic differential equations). It goes as follows: consider a physical system (e.g. a
satellite, a car,...), described by its state x(t) at time t (e.g. position and speed), on which one
can act a every time by means of a control u (e.g. engine push for a satellite). We represent
the state by a vector of Rn, the control by a vector of Rm, and we model evolution of the
vector x(t) by a control system (or controlled differential equation)

(Σ) :
d

dt
x(t) = f(t, x(t), u(t)), t ∈ [0, τ ],

where τ > 0.
What is the meaning of the latter expression? The function u(t), t ∈ [0, τ ], called control

law is the mean of action on the system (Σ): it will be chosen in terms of the goals to be
achieved. To a control law u(·), is associated an ordinary differential equation

(Σu) :
d

dt
x(t) = fu(t, x(t)), t ∈ [0, τ ],

where fu(t, x) := f(t, x, u(t)). Hence, a function x(·) is solution of System (Σ) if there exists
a control law u(·) such that x(·) is solution of (Σu).

The main concepts to address are the following.

Controllability given an initial state x0 ∈ R
n, a final state v ∈ R

n and a time t = τ > 0, is
it possible to find a control law u(·) steering System (Σ) initially in x(0) at t = 0 to the
state v at time t = τ? Equivalently, is it possible to control System (Σ) from x0 to v in
time τ?
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Motion planning To the above structural question, corresponds the more practical problem
of determining an effective procedure which associates, to a pair of states x0, v ∈ R

n

and a time τ , a control law u(·) steering the system from x(0) to v in time t = τ .

Stabilization Is it possible to build a control law u(·) which asymptotically stabilizes System
(Σ) at an equilibrium point x0, i.e., such that, for every initial condition x(0), one has

lim
t→+∞x(t) = x0?

Observability In order to achieve a control goal (motion planning, stabilization, etc...) and
therefore to choose the appropriate control law, a certain amount of information on the
state x of the system is available at every time t. It is usually obtained by measurement.
However, it is not possible to measure in general (one says to observe in control theory)
directly the full state x(t) but only a function y(t) of the state and the control

y(t) = g(x(t), u(t), t).

One must then ”reconstruct” the state x(·) from the output y(·). The observability
issue resumes therefore to the following: does the knowledge of y(t) and u(t) for every
t ∈ [0, τ ] allow one to determine the state x(·) for every t ∈ [0, τ ] (or, let say the initial
state x(0))?

H Averaging theory and Rotating Wave Approximation (RWA)

We are interested in approximations, for ε tending to 0+, of trajectories t �→ |ψε(t)〉 of (46)
(resp. t �→ U ε(t) of (48)). Such approximations should be explicit and valid on time intervals
of length O(1ε ) (first order approximation) or O( 1

ε2
) (second order approximation). The wave

function |ψε〉 obeys the following linear time-varying differential equation

d

dt
|ψε〉 =

⎛⎝A0 + ε

⎛⎝ r∑
j=1

uje
iωjt + u∗je

−iωjt

⎞⎠A1

⎞⎠ |ψε〉 . (82)

Consider the following change of variables

|ψε(t)〉 = eA0t |φε(t)〉 (83)

where |ψε〉 is replaced by |φε〉. Through this change of variables, we put the system in the
so-called “interaction frame”:

d

dt
|φε〉 = εB(t) |φε〉 (84)

where B(t) is a skew-Hermitian operator whose time-dependence is almost periodic7:

B(t) =
r∑

j=1

uje
iωjte−A0tA1e

A0t + u∗je
−iωjte−A0tA1e

A0t.

7An almost periodic time function f is equal by definition to F (�1t, . . . , �pt) where the function F is a
2π-periodic function of each of its p arguments and the �j ’s form a set of p different frequencies.
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More precisely each entry of B is a linear combination of oscillating terms of the form eiω
′t

with ω′ 	= 0. This results from the spectral decomposition of A0 to compute eA0t. Thus
one can always decompose B(t) into a constant skew-Hermitian operator B̄ and the time
derivative of a bounded and almost periodic skew-Hermitian operator B̃(t) whose entries are
linear combinations of eiω

′t with ω′ 	= 0:

B(t) = B̄ +
d

dt
B̃(t). (85)

Notice that we can always set B̃(t) = d
dtC̃(t) where C̃ is also an almost periodic skew-

Hermitian operator. Then (84) reads d
dt |φε〉 =

(
εB̄ + ε d

dtB̃
)
|φε〉 and suggests the following

almost periodic change of variables

|χε〉 = (I − εB̃(t)) |φε〉 (86)

well defined for ε small enough and then close to identity. In the |χε〉 frame, the dynamics
reads

d

dt
|χε〉 = ε

(
B̄ − εB̃B̄ − εB̃

d

dt
B̃

)(
I − εB̃

)−1 |χε〉 .

Since B̃(t) is almost periodic and
(
I − εB̃

)−1
= I + εB̃ +O(ε2), the dynamics of |χε〉 reads

d

dt
|χε〉 =

(
εB̄ + ε2[B̄, B̃(t)]− ε2B̃(t)

d

dt
B̃(t) + ε3E(ε, t)

)
|χε〉

where the operator E(ε, t) is still almost periodic versus t but now its entries are no more
linear combinations of time exponentials. The operator B̃(t) d

dtB̃(t) is an almost periodic
operator whose entries are linear combinations of oscillating time exponentials. Thus we have

B̃(t)
d

dt
B̃(t) = D̄ +

d

dt
D̃(t)

where D̃(t) is almost periodic. With these notations we have

d

dt
|χε〉 =

(
εB̄ − ε2D̄ + ε2

d

dt

(
[B̄, C̃(t)]− D̃(t)

)
+ ε3E(ε, t)

)
|χε〉 (87)

where the skew-Hermitian operators B̄ and D̄ are constants and the other ones C̃, D̃, and
E are almost periodic.

The first order approximation of |φε〉 is given by the solution
∣∣∣φ1st

ε

〉
of

d

dt

∣∣∣φ1st

ε

〉
= εB̄

∣∣∣φ1st

ε

〉
(88)

where B̄ can be interpreted as the averaged value of B(t):

B̄ = lim
T �→∞

1
T

∫ T

0
B(t) dt = lim

T �→∞
1
T

∫ T

0

⎛⎝ r∑
j=1

uje
iωjte−A0tA1e

A0t + u∗je
−iωjte−A0tA1e

A0t

⎞⎠ dt.
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Approximating B(t) by B̄ in (84) is called the Rotating Wave Approximation (RWA). The
second order approximation reads then

d

dt

∣∣∣φ2nd

ε

〉
= (εB̄ − ε2D̄)

∣∣∣φ2nd

ε

〉
. (89)

In (88) and (89), the operators εB̄ and εB̄ − ε2D̄ are skew-Hermitian: these approximate
dynamics remain of Schrödinger type and are thus characterized by the approximate Hamil-
tonians

H̄1st = iεB̄ and H̄2nd = i(εB̄ − ε2D̄).

A very similar analysis yields a second order approximation of the propagator dynamics

d

dt
U2nd

ε = (εB̄ − ε2D̄)U2nd

ε . (90)

H.1 Two approximation lemmas

A precise justification of the rotating wave approximation is given by the following lemma.

Lemma 4 (First order approximation). Consider the solution of (84) with initial condition

|φε(0)〉 = |φa〉 and denote by
∣∣∣φ1st

ε

〉
the solution of (88) with the same initial condition,∣∣∣φ1st

ε (0)
〉
= |φa〉. Then, there exist M > 0 and η > 0 such that for all ε ∈]0, η[ we have

max
t∈

[
0,
1
ε

]
∥∥∥|φε(t)〉 −

∣∣∣φ1st

ε (t)
〉∥∥∥ ≤ Mε

Proof. Denote by |χε〉 the solution of (87) with |χε(0)〉 = (I − εB̃(0)) |φa〉. According
to (86), there exist M1 > 0 and η1 > 0, such that for all ε ∈]0, η1] and t > 0 we have
‖|χε(t)〉 − |φε(t)〉‖ ≤ M1ε. But (87) admits the following form d

dt |χε〉 =
(
εB̄ + ε2F (t)

) |χε〉
where the operator F (t) is uniformly bounded versus t. Thus, there exist M2 > 0 and η2 > 0

such that the solution
∣∣∣ϕ1st

ε

〉
of (89) with initial condition (I − εB̃(0)) |φa〉 satisfies, for all

ε ∈]0, η2],
max

t∈
[
0,
1
ε

]
∥∥∥∣∣∣ϕ1st

ε (t)
〉
− |χε(t)〉

∥∥∥ ≤ M2ε.

The propagator of (88) is unitary and thus∥∥∥∣∣∣ϕ1st

ε (t)
〉
−

∣∣∣φ1st

ε (t)
〉∥∥∥ =

∥∥∥∣∣∣ϕ1st

ε (0)
〉
−

∣∣∣φ1st

ε (0)
〉∥∥∥ = ε

∥∥∥B̃(0) |φa〉
∥∥∥ .

We conclude with the triangular inequality∥∥∥|φε〉t −
∣∣∣φ1st

ε

〉
t

∥∥∥ ≤ ‖|φε〉t − |χε〉t‖+
∥∥∥|χε〉t −

∣∣∣ϕ1st

ε

〉
t

∥∥∥+
∥∥∥∣∣∣ϕ1st

ε

〉
t
−

∣∣∣φ1st

ε

〉
t

∥∥∥ .
The following lemma underlies the second order approximation:
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Lemma 5 (Second order approximation). Consider the solution of (84) with initial condition

|φε(0)〉 = |φa〉 and denote by
∣∣∣φ2nd

ε

〉
the solution of (89) with the same initial condition,∣∣∣φ2nd

ε (0)
〉
= |φa〉. Then, there exist M > 0 and η > 0 such that for all ε ∈]0, η[ we have

max
t∈

[
0,

1
ε2

]
∥∥∥|φε(t)〉 −

∣∣∣φ2nd

ε (t)
〉∥∥∥ ≤ Mε

Proof. As for the proof of Lemma 4, we introduce |χε〉,
∣∣∣ϕ2nd

ε

〉
solution of (89) starting

from
∣∣∣ϕ2nd

ε (0)
〉
= (I − εB̃(0)) |φa〉. Using similar arguments, it is then enough to prove the

existence of M3, η3 > 0 such that, for all ε ∈]0, η3[, max
t∈

[
0,
1
ε

] ∥∥∥∣∣∣ϕ2nd
ε (t)

〉
− |χε(t)〉

∥∥∥ ≤ M3ε.

This estimate is a direct consequence of the almost periodic change of variables

|ξε〉 =
(
I − ε2

(
[B̄, C̃(t)]− D̃(t)

))
|χε〉

that transforms (87) into

d

dt
|ξε〉 =

(
εB̄ − ε2D̄ + ε3F (ε, t)

) |ξε〉
where F is almost periodic. This cancels the oscillating operator ε2 d

dt

(
[B̄, C̃(t)]− D̃(t)

)
appearing in (87): the equation satisfied by |ξε〉 and the second order approximation (89)
differ only by third order almost periodic operator ε3F (ε, t).

Exercice 21. The goal is to prove that, even if the amplitudes uj are slowly varying, i.e.,
uj = uj(εt) where τ �→ uj(τ) is continuously differentiable, the first and second order approx-
imations remain valid. We have then two time-dependancies for

B(t, τ) =

r∑
j=1

uj(τ)e
iωjte−A0tA1e

A0t + u∗j (τ)e
−iωjte−A0tA1e

A0t

with τ = εt. Then d
dtB = ∂B

∂t + ε∂B∂τ .

1. Extend the decomposition (85) to

B(t, τ) = B̄(τ) +
∂B̃

∂t
(t, τ)

where B̃(t, τ) is t-almost periodic with zero mean in t (τ is fixed here).

2. Show that the approximation Lemma 4 is still valid where (88) is replaced by

d

dt

∣∣∣φ1st

ε

〉
= εB̄(εt)

∣∣∣φ1st

ε

〉
3. Show that the approximation Lemma 5 is still valid where (89) is replaced by

d

dt

∣∣∣φ2nd

ε

〉
= (εB̄(εt)− ε2D̄(εt))

∣∣∣φ2nd

ε

〉
and where B̃(t, τ)∂B̃∂t (t, τ) = D̄(τ) + ∂D̃

∂t (t, τ) with D̃(t, τ) almost periodic versus t and
with zero t-mean.
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4. Extend the above approximation lemma when τ �→ uj(τ) is piecewise continuous and,
on each interval where it remains continuous, it is also continuously differentiable (τ �→
uj(τ) is made by the concatenation of continuously differentiable functions).

H.2 Single-frequency Averaging

We summarize here the basic result and approximations used in these notes for single-
frequency systems. One can consult [54, 33, 5] for much more elaborated results. We empha-
size a particular computational trick that simplifies notably second order calculations. This
trick is a direct extension of a computation explained in [40] and done by the soviet physicist
Kapitza for deriving the average motion of a particle in a highly oscillating force field.

Consider the oscillating system of dimension n;

dx

dt
= εf(x, t, ε), x ∈ R

n

with f smooth and of period T versus t, where ε is a small parameter. For x bounded and |ε|
small enough, there exists a time-periodic change of variables, close to identity, of the form

x = z + εw(z, t, ε)

with w smooth function and T -periodic versus t, such that, the differential equation in the z
frame reads:

dz

dt
= εf(z, ε) + ε2f1(z, t, ε)

with

f(z, ε) =
1

T

∫ T

0
f(z, t, ε) dt

and f1 smooth and T -periodic versus t.
Thus we can approximate on interval [0, Tε ] the trajectories of the oscillating system dx

dt =

εf(x, t, ε) by those of the average one dz
dt = εf(z, ε). More precisely, if x(0) = z(0) then

x(t) = z(t) + O(|ε|) for all t ∈ [0, Tε ]. Since this approximation is valid on intervals of length
T/ε, we say that this approximation is of order one. One also speaks of secular approximation.

The function w(z, t, ε) appearing in this change of variables is given by a t-primitive of
f − f̄ . If we replace x by z + εw in d

dtx = εf we get(
Id + ε

∂w

∂z

)
d

dt
z = εf − ε

∂w

∂t
= εf̄ + ε

(
f − f̄ − ∂w

∂t

)
.

Since for each z, the function
∫ t
0

(
f(z, τ, ε)− f̄(z, ε)

)
dτ is T -periodic, we set

w(z, t, ε) =

∫ t

0

(
f(z, τ, ε)− f̄(z, ε)

)
dτ + c(z, ε)

where the integration ”constant” c(z, ε) can be set arbitrarily. We will see that a clever choice
for c corresponds to w with a null time-average. We have(

Id + ε
∂w

∂z
(z, t, ε)

)
d

dt
z = εf̄(z, ε) + ε (f(z + εw(z, t, ε), t, ε)− f(z, t, ε))
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and thus

d

dt
z = ε

(
Id + ε

∂w

∂z
(z, t, ε)

)−1 (
f̄(z, ε) + f(z + εw(z, t, ε), t, ε)− f(z, t, ε)

)
.

We obtain the form we were looking for, d
dtz = εf̄ + ε2f1, with

f1(z, t, ε) =
1

ε

((
Id + ε

∂w

∂z
(z, t, ε)

)−1

− Id

)
f̄(z, ε)

+

(
Id + ε

∂w

∂z
(z, t, ε)

)−1 f(z + εw(z, t, ε), t, ε)− f(z, t, ε)

ε
.

Notice that

f1(z, t, ε) =
∂f

∂z
(z, t, ε)w(z, t, ε)− ∂w

∂z
(z, t, ε)f̄(z, ε) +O(ε).

The second order approximation is then obtained by taking the time-average of f1. Its
justification is still based on a time-periodic change of variables of type z = ζ + ε2�(ζ, t, ε),
i.e., close to identity but up-to second order in ε.

If we adjust c(z, ε) in order to have w of null time-average, then the time-average of ∂w
∂z

is also zero. Thus, up to order one terms in ε, the time-average of f1 is identical to the time
average of ∂f

∂zw. For this particular choice of w, the second order approximation reads

d

dt
x = εf̄ + ε2

∂f

∂x
w

where the symbol ”̄ ”̄ stands for time-average. In the case that the first-order approximation
εf̄ vanishes, the solutions of the oscillating system d

dtx = εf and those of the second order
approximation here above remain close on time intervals of length T

ε2
.

A suggestive manner to compute this second order approximation and very efficient on
physical examples is due to Kapitza [40, page 147]. One decomposes x = x̄ + δx in a
non-oscillating part x̄ of order 0 in ε and an oscillating part δx of order 1 in ε and of null
time-average. One has

d

dt
x̄+

d

dt
δx = εf(x̄+ δx, t, ε).

Since δx = O(ε), we have

f(x̄+ δx, t, ε) = f(x̄, t, ε) +
∂f

∂x
(x̄, t, ε)δx+O(ε2).

Thus
d

dt
x̄+

d

dt
δx = εf(x̄, t, ε) + ε

∂f

∂x
(x̄, t, ε)δx+O(ε3).

Since d
dt x̄ = εf̄(x̄, ε) + O(ε2), identification of oscillating terms of null time-average and of

first order in ε provides
d

dt
(δx) = ε(f(x̄, t, ε)− f̄(x̄, ε)).

This equation can be integrated in time since x̄ is almost constant. The integration constant
is fixed by the constraint on the time-average of δx. Finally,

δx = ε

∫ t

0

(
f(x̄, τ, ε)− f̄(x̄, ε)

)
dτ + εc(x̄, ε)
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is a function of (x̄, t, ε), δx = δx(x̄, t, ε), T -periodic versus t and of null time-average (good
choice of c(x̄, ε)). Let us plug this function δx(x̄, t, ε) into the differential equation for x̄,

d

dt
x̄ = εf̄(x̄, ε) + ε

∂f

∂x
(x̄, t, ε)δx(x̄, t, ε) +O(ε3),

And let us take its time-average. We get

d

dt
x̄ = εf̄(x̄, ε) + ε2f̄1(x̄, ε)

with

εf̄1(x̄, ε) =
1

T

∫ T

0

∂f

∂x
(x̄, t, ε)δx(x̄, t, ε) dt

We recover then exactly the previous second order approximation.

I Single trapped ion and Law-Eberly method

Through this subsection, we study the open-loop laser control of a single trapped ion. The
Hamiltonian is given by

H

�
=

ωeg

2
σz + ωm(a†a+

I

2
) + (u∗(t)σ+ eiη(a+a†) + u(t)σ− e−iη(a+a†)). (91)

The Schrödinger equation i d
dt |ψ〉 = H̃

�
|ψ〉 is equivalent to a system of partial differential

equations on the two components (ψg, ψe):

i
∂ψg

∂t
= ωm

2

(
x2 − ∂2

∂x2

)
ψg − ωeg

2 ψg + u(t)e−i
√
2ηxψe

i
∂ψe

∂t
= ωm

2

(
x2 − ∂2

∂x2

)
ψe +

ωeg

2 ψe + u∗(t)ei
√
2ηxψg,

(92)

where u ∈ C is the control input. In [29] this system is proven to be approximately con-
trollable for (ψg, ψe) on the unit sphere of (L2(R,C))2. The proof proposed in [29] relies on
the Law-Eberly proof of spectral controllability for a secular approximation when u(t) is a
superposition of three mono-chromatic plane waves: first one of frequency ωeg (ion electronic
transition) and amplitude v; second one of frequency ωeg−ωm (red shift by a vibration quan-
tum) and amplitude vr; third one of frequency ωeg + ωm (blue shift by a vibration quantum)
and amplitude vb. With this control, the Hamiltonian reads

H

�
=ωm

(
a†a+

I

2

)
+

ωeg

2
σz +

(
vσ−ei(ωegt−η(a+a†)) + v∗σ+e−i(ωegt−η(a+a†))

)
+

(
vbσ−ei((ωeg+ωm)t−ηb(a+a†)) + v∗bσ+e

−i((ωeg+ωm)t−ηb(a+a†))
)

+
(
vrσ−ei((ωeg−ωm)t−ηr(a+a†)) + v∗rσ+e

−i((ωeg−ωm)t−ηr(a+a†))
)
.

We have the following separation of scales (vibration frequency much smaller than the qubit
frequency and slowly varying laser amplitudes v, vr, vb):

ωm � ωeg,

∣∣∣∣ ddt
∣∣∣∣ � ωm|v|,

∣∣∣∣ ddtvr
∣∣∣∣ � ωm|vr|,

∣∣∣∣ ddtvb
∣∣∣∣ � ωm|vb|.

88



Furthermore the Lamb-Dicke parameters |η|, |ηb|, |ηr| � 1 are almost identical. In the inter-
action frame, |ψ〉 is replaced by |φ〉 according to

|ψ〉 = e−iωt(a†a+ I
2)e

−iωegt

2
σz |φ〉 .

The Hamiltonian becomes

H int

�
= eiωmt(a†a)

(
vσ−e−iη(a+a†) + v∗σ+eiη(a+a†)

)
e−iωmt(a†a)

+ eiωt(a
†a)

(
vbσ−eiωmte−iηb(a+a†) + v∗bσ+e

−iωmteiηb(a+a†)
)
e−iωmt(a†a)

+ eiωmt(a†a)
(
vrσ−e−iωmte−iηr(a+a†) + v∗rσ+e

iωmteiηr(a+a†)
)
e−iωmt(a†a).

With the approximation eiε(a+a†) ≈ 1+ iε(a+a†) for ε = ±η, ηb, ηr, the Hamiltonian becomes
(up to second order terms in ε),

H int

�
= vσ−(1− iη(e−iωmta+ eiωmta†)) + v∗σ+(1 + iη(e−iωmta+ eiωmta†))

+ vbe
iωmtσ−(1− iηb(e

−iωmta+ eiωmta†)) + v∗be
−iωtσ+(1 + iηb(e

−iωmta+ eiωmta†))

+ vre
−iωmtσ−(1− iηr(e

−iωmta+ eiωmta†)) + v∗re
iωmtσ+(1 + iηr(e

−iωmta+ eiωmta†))

The oscillating terms (with frequencies ±ωm and ±2ωm) have zero average. The mean
Hamiltonian, illustrated on Figure 7, reads

H1st
rwa

�
= vσ− + v∗σ+ + v̄baσ− + v̄∗ba

†σ+ + v̄ra
†σ− + v̄∗raσ+

where we have set v̄b = −iηbvb and v̄r = −iηrvr. The above Hamiltonian is ”valid” as soon
as |η|, |ηb|, |ηr| � 1 and

|v|, |vb|, |vr| � ωm,

∣∣∣∣ ddtv
∣∣∣∣ � ωm|v|,

∣∣∣∣ ddtvb
∣∣∣∣ � ωm|vb|,

∣∣∣∣ ddtvr
∣∣∣∣ � ωm|vr|.

To interpret the structure of the different operators building this average Hamiltonian, physi-
cists have a nice mnemonic trick based on energy conservation. Take for example aσ− at-
tached to the control v̄b, i.e. to the blue shifted photon of frequency ωeg + ωm. The operator
σ− corresponds to the quantum jump from |e〉 to |g〉 whereas the operator a is the destruc-
tion of one phonon. Thus aσ− is the simultaneous jump from |e〉 to |g〉 (energy change of
ωeg) with destruction of one phonon (energy change of ωm). The emitted photon has to take
away the total energy lost by the system, i.e. ωeg + ωm. Its frequency is then ωeg + ωm and
corresponds thus to v̄b. We understand why a†σ− is associated to v̄r: the system loses ωeg

during the jump from |e〉 to |g〉; at the same time, it wins ωm, the phonon energy; the emitted
photon takes away ωeg−ωm and thus corresponds to v̄r. This point is illustrated on Figure 7
describing the first order transitions between the different states of definite energy.

The dynamics i d
dt |φ〉 = H1st

rwa
�

|φ〉 depends linearly on 6 scalar controls: it is a drift-
less system of infinite dimension (non-holonomic system of infinite dimension). The two
underlying partial differential equations are

i
∂φg

∂t
=

(
v +

v̄b√
2

(
x+

∂

∂x

)
+

v̄r√
2

(
x− ∂

∂x

))
φe

i
∂φe

∂t
=

(
v∗ +

v̄∗b√
2

(
x− ∂

∂x

)
+

v̄∗r√
2

(
x+

∂

∂x

))
φg
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Figure 7: a trapped ion submitted to three mono-chromatic plane waves of frequencies ωeg,
ωeg − ωm and ωeg + ωm.

We write the above dynamics in the eigenbasis, {|g, n〉 , |e, n〉}n∈N, of the operator ωm

(
a†a+ I

2

)
+

ωeg

2 σz:

i
d

dt
φg,n = vφe,n + v̄r

√
nφe,n−1 + v̄b

√
n+ 1φe,n+1

i
d

dt
φe,n = v∗φg,n + v̄∗r

√
n+ 1φg,n+1 + v̄∗b

√
nφg,n−1

with |φ〉 = ∑+∞
n=0 φg,n |g, n〉+ φe,n |e, n〉 and

∑+∞
n=0 |φg,n|2 + |φe,n|2 = 1.

Law and Eberly [41] illustrated that it is always possible (and in any arbitrary time T > 0)
to steer |φ〉 from any finite linear superposition of {|g, n〉 , |e, n〉}n∈N at t = 0, to any other
finite linear superposition at time t = T (spectral controllability). One only needs two controls
v and v̄b (resp. v and v̄r): v̄r (resp. v̄b) remains zero and the supports of v and v̄b (resp. v
and v̄r) do not overlap. This spectral controllability implies approximate controllability.

Let us detail now the main idea behind the Law-Eberly method to prove spectral control-
lability. Take n > 0 and denote by Hn the truncation to n-phonon space:

Hn = span {|g, 0〉 , |e, 0〉 , . . . , |g, n〉 , |e, n〉}
We consider an initial condition |φ(0)〉 ∈ Hn and T > 0. Then for t ∈ [0, T2 ] the control

v̄r(t) = v̄b(t) = 0, v(t) = 2i
T arctan

∣∣∣φe,n(0)
φg,n(0)

∣∣∣ ei arg(φg,n(0)φ∗
e,n(0))

ensures that φe,n(T/2) = 0. For t ∈ [T2 , T ], the control

v̄b(t) = v(t) = 0, v̄r(t) =
2i

T
√
n
arctan

∣∣∣∣ φg,n(
T
2 )

φe,n−1(
T
2 )

∣∣∣∣ ei arg(φg,n(
T
2 )φ∗

e,n−1(
T
2 )

)

ensures that φe,n(t) ≡ 0 and that φg,n(T ) = 0. Thus with this two-pulse control, the first one
on v and the second one on v̄r, we have |φ(T )〉 ∈ Hn−1.

After n iterations of this two-pulse process |φ(nT )〉 belongs to H0. Then for t ∈ [nT, (n+
1
2)T ], the control

v̄r(t) = v̄b(t) = 0, v(t) = 2i
T arctan

∣∣∣φe,0(nT )
φg,0(nT )

∣∣∣ ei arg(φg,0(nT )φ∗
e,0(nT ))
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guaranties that
∣∣φ (

(n+ 1
2)T

)〉
= eiθ |g, 0〉.

Up to a global phase, we can steer, in any arbitrary time and with a piecewise constant
control, any element of Hn to |g, 0〉. Since the system is driftless (t �→ −t and (v, v̄b, v̄r) �→
−(v, v̄b, v̄r) leave the system unchanged) we can easily reverse the time and thus can also steer
|g, 0〉 to any element of Hn. To steer |φ〉 form any initial state in Hn to any final state also in
Hn, it is enough to steer the initial state to |g, 0〉 and then to steer |g, 0〉 to the final state. To
summarize: on can always steer, with piecewise constant controls and in an arbitrary short
time, any finite linear superposition of (|g, ν〉 , |e, ν〉)ν≥0 to any other one.

J Cirac-Zoller two-qubit gate

In this appendix, we apply the open-loop control tools of appendix I to introduce a two-qubit
entangling gate implementation proposed by Cirac and Zoller [23]. This implementation
proposed for trapped ions is a central ingredient of a quantum computer based on trapped
ions. Indeed such a C-phase gate (controlled-phase gate), in combination with the single-qubit
gates discussed in Subsection 5.1.2, provides a universal set of logical gates. This means
that by combining such single-qubit and two-qubit gates, one can perform any arbitrary
unitary operation on a multi-qubit quantum computer (see [47] for a detailed discussion of
universal quantum gates). Such a C-phase gate corresponds to the following two-qubit unitary
operation:

UC-phase = |gc〉 〈gc| ⊗ It + |ec〉 〈ec| ⊗ σz
t. (93)

Here the superscripts c and t stand for control and target qubits (t not to be confused with the
time). This unitary operation can be understood as follows: we apply the identity operation
on the target qubit if the control qubit is in the ground state |g〉, and we apply the Pauli
σz operation on the target qubit, if the control qubit is in its excited state |e〉. This is an
entangling gate, as starting from the separable state (|gc〉+ |ec〉)⊗(

∣∣gt〉+ ∣∣et〉)/2 and applying
the C-phase unitary, we reach the state

1

2
|gc〉 ⊗ (

∣∣et〉+ ∣∣gt〉) + 1

2
|ec〉 ⊗ (

∣∣et〉− ∣∣gt〉)
which cannot be written as the tensor product of two local states on the control and target
qubits.

In Cirac and Zoller’s proposal for realizing such a gate with trapped ions, one considers
two ions out of a string of trapped ions. The vibrational degree of freedom of the center of
mass of the string is used as a quantum bus to transfer information from one qubit to the other
and to perform such a two-qubit unitary operation without any direct interaction between the
ions. This vibrational degree of freedom being modelled as a quantum harmonic oscillator,
we are again in presence of a spin-spring system with a single harmonic oscillator (frequency
ωm) coupled to two qubits (frequencies ωc

eg and ωt
eg). Another ingredient of this gate is a

third auxiliary energy level of the ion that gets populated throughout the gate operation,
even though at the final time it remains unpopulated. More precisely, we consider a third
energy level f with a transition frequency ωfg between the levels |g〉 and |f〉. Therefore the
free Hamiltonian in absence of driving lasers is given by

H0

�
= ωm(a†a+

I

2
) + ωc

eg |ec〉 〈ec|+ ωc
fg |f c〉 〈f c|+ ωt

eg

∣∣et〉 〈
et
∣∣+ ωt

fg

∣∣f t
〉 〈

f t
∣∣ .
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Note that, compared to the previous subsection, here we have redefined the origin of energy
such that the energy value of |0m〉 ⊗ |gc〉 ⊗ ∣∣gt〉 is 0. This is why the Hamiltonian ωeg/2σz is
replaced by ωeg |e〉 〈e|.

Now, in order to perform a C-phase gate between the two qubits, we apply individual
laser fields on the two ions. On the control ion, we apply a laser field at frequency ωc

eg −m
with a real amplitude vc, and on the target ion, we apply a laser field at frequcny ωt

fg − m

with a real amplitude vt. The total Hamiltonian is given byHtot(τ) = H0 +Hc(τ) +Ht(τ)
(note that in this subsection, we denote time by τ to avoid confusion with the superscript t
standing for the target qubit). Here, the interaction Hamiltonians are defined as follows

Hc(τ)

�
= vc(|gc〉 〈ec| ei((ωc

eg−ωm)τ−ηc(a+a†)) + |ec〉 〈gc| e−i((ωc
eg−ωm)τ−ηc(a+a†)))

Ht(τ)

�
= vt(|gc〉 〈f c| ei((ωt

fg−ωm)τ−ηt(a+a†)) +
∣∣f t

〉 〈
gt

∣∣ e−i((ωt
eg−ωm)τ−ηt(a+a†)))

Following a similar analysis to the previous subsection, after going to the rotating frame of
the Hamiltonian H0 and performing a first-order rotating-wave approximation, we obtain the
Hamiltonian

H1st
rwa

�
= v̄c(|gc〉 〈ec|a† + |ec〉 〈gc|a) + v̄t(

∣∣gt〉 〈
f t

∣∣a† +
∣∣f t

〉 〈
gt

∣∣a).
The control sequence to perform a C-phase gate is as follows:

1. We let the laser amplitude vt to be zero and turn on a constant non-zero vc . By
applying this laser field on the control qubit over a time duration T = π/2vc, we apply
a unitary operation

U c = exp(−iπ/2(|gc〉 〈ec|a† + |ec〉 〈gc|a)).

2. Next, we turn off the laser field on the control qubit and turn on the one on the target.
We apply a constant non-zero amplitude vt over a time duration T = π/vt, which gives
the unitary operation

U t = exp(−iπ(
∣∣gt〉 〈

f t
∣∣a† +

∣∣f t
〉 〈gc|a)).

3. Finally, we turn on the laser on the control qubit and turn off the one target, performing
the same exact unitary operation as in step 1.

Exercice 22. For HJC = ω (σz ⊗ Ic/2 + Iq ⊗N + Iq ⊗ Ic/2)+ iΩ2 (σ−⊗a†−σ+⊗a) show

that the propagator, the t-dependant unitary operator U solution of i d
dtU = HJCU with

U(0) = I, reads U(t) = e
−iωt

(
σz⊗Ic

2 +Iq⊗N+
Iq⊗Ic

2

)
e
Ωt
2 (σ−⊗a†−σ+⊗a) where for any angle θ,

eθ(σ−⊗a†−σ+⊗a) = |g〉 〈g| ⊗ cos(θ
√
N) + |e〉 〈e| ⊗ cos(θ

√
N + I)

− σ+ ⊗ a
sin(θ

√
N)√

N
+ σ− ⊗ sin(θ

√
N)√

N
a†
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where

exp(iθ(
σz ⊗ Ic

2
+ Iq ⊗N +

Iq ⊗ Ic

2
) = eiθ/2(eiθ/2 |e〉 〈e|+ e−iθ/2 |g〉 〈g|)⊗

∞∑
n=0

eiθn |n〉 〈n| ,

cos(θ
√
N) =

∞∑
n=0

cos(θ
√
n) |n〉 〈n|

cos(θ
√
N + I) =

∞∑
n=0

cos(θ
√
n+ 1) |n〉 〈n|

sin(θ
√
N)√

N
=

∞∑
n=0

sin(
√
nθ)√
n

|n〉 〈n| .

Show then that

U c = |gc〉 〈gc| ⊗ cos(π
√
N/2) + |ec〉 〈ec| ⊗ cos(π

√
N + I/2) + |f c〉 〈f c| ⊗ I

− i |ec〉 〈gc| ⊗ a
sin(π

√
N/2)√
N

− i |gc〉 〈ec| ⊗ sin(π
√
N/2)√
N

a†

U t =
∣∣gt〉 〈

gt
∣∣⊗ cos(π

√
N) +

∣∣et〉 〈
et
∣∣⊗ I +

∣∣f t
〉 〈

f t
∣∣⊗ cos(π

√
N + I)

− i
∣∣f t

〉 〈
gt

∣∣⊗ a
sin(π

√
N)√

N
− i

∣∣gt〉 〈
f t

∣∣⊗ sin(π
√
N)√

N
a†

Whenever the harmonic oscillator is initialized in its vacuum state |0〉, the above com-
bination of unitary operations U cU tU c performs effectively a C-phase unitary on the two
qubits. This can be seen by following the action of the above unitary operations on the four
basis states of the two-qubit system. Indeed, we have

|gc〉 ∣∣gt〉 |0〉 Uc−→ |gc〉 ∣∣gt〉 |0〉 U t−→ |gc〉 ∣∣gt〉 |0〉 Uc−→ |gc〉 ∣∣gt〉 |0〉
|gc〉 ∣∣et〉 |0〉 Uc−→ |gc〉 ∣∣et〉 |0〉 U t−→ |gc〉 ∣∣et〉 |0〉 Uc−→ |gc〉 ∣∣et〉 |0〉
|ec〉 ∣∣gt〉 |0〉 Uc−→ −i |gc〉 ∣∣gt〉 |1〉 U t−→ i |gc〉 ∣∣gt〉 |1〉 Uc−→ |ec〉 ∣∣gt〉 |0〉
|ec〉 ∣∣et〉 |0〉 Uc−→ −i |gc〉 ∣∣et〉 |1〉 U t−→ −i |gc〉 ∣∣et〉 |1〉 Uc−→ − |ec〉 ∣∣et〉 |0〉 .

Thus whenever the harmonic oscillator is initialized in |0〉, and the state of the two ions are
spanned by the computational basis elements |g〉 and |e〉, by linearity, the unitary operation
U cU tU c effectively acts as a C-phase unitary operation on the two-qubit state.

K Pontryaguin Maximum Principe

This appendix is a summary of the necessary optimality conditions called Pontryaguin Max-
imum Principle (PMP) for finite dimensional systems (for tutorial exposures see [16] or [2]).

Take a control system of the form d
dtx = f(x, u), x ∈ R

n, u ∈ U ⊂ R
m with a cost

to maximize of the form J =
∫ T
0 c(x, u)dt (T > 0), initial condition x(0) = xa and final

condition x(T ) = xb. The functions f ∈ R
n and c ∈ R are assumed to be C1 functions of

their arguments. If the couple [0, T ] � t �→ (x(t), u(t)) ∈ R
n × U is optimal, then there exists
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a never vanishing and absolutely continuous function8 [0, T ] � t �→ p ∈ R
n and a constant

p0 ∈]−∞, 0] such that:

(i) with H(x, p, u) = p0c(x, u) +
∑n

i=1 pifi(x, u), x and p are solutions of

d

dt
x =

∂H

∂p
(x, p, u),

d

dt
p = −∂H

∂x
(x, p, u),

(ii) for almost all t ∈ [0, T ]

H(x(t), p(t), u(t)) = H(x(t), p(t)) where H(x, p) = max
v∈U

H(x, p, v).

(iii) H(x(t), p(t)) is independent of t and its value h̄, depends on T if the final time is fixed
to T or h̄ = 0 if T is free (as for minimum time problem with U bounded and c = −1).

Conditions (i), (ii) and (iii) form the Pontryaguin Maximum Principle (PMP). Couples [0, T ] �
t �→ (x(t), u(t)) satisfying these conditions are called extremals: if p0 = 0 the extremal is called
abnormal; if p0 < 0 the extremal is called normal. Strictly abnormal extremals are abnormal
((x, p) satisfies (i), (ii) and (iii) with p0 = 0) and not normal ((x, p) never satisfies (i), (ii)
and (iii) for p0 < 0). Abnormal extremals do not depend on the cost c(x, u) but only on the
system itself d

dtx = f(x, u): they are strongly related to system controllability (for driftless
systems where f(x, u) is linear versus x, see [14]).

Assume that we have a normal extremal (x, u), i.e. satisfying conditions (i), (ii) and (iii)
with p0 < 0. Assume also that u �→ H(x, p, u) is differentiable, α concave, bounded from
above, infinite at infinity and that U = R

m. Then condition (ii) is then equivalent to ∂H
∂u = 0.

Replacing p by p/p0, PMP conditions (i), (ii) and (iii) coincide with the usual first order
stationary conditions ( † means transpose here):

d

dt
x = f,

d

dt
p = −

(
∂f

∂x

)†
p−

(
∂c

∂x

)†
,

(
∂f

∂u

)†
p+

(
∂c

∂u

)†
= 0 (94)

with the boundary condtions x(0) = xa, x(T ) = xb. From static equations in (94) we can
express generally u as a function of (x, p), denoted here by u = k(x, p). Then H(x, p) =
H(x, p, k(x, p)) and the first order stationary conditions form an Hamiltonian system

d

dt
x =

∂H

∂p
(x, p),

d

dt
p = −∂H

∂x
(x, p)

since ∂H
∂p = ∂H

∂p + ∂H
∂u

∂k
∂p = ∂H

∂p because ∂H
∂u ≡ 0 (idem for ∂H

∂x ). In general, this Hamiltonian
system is not integrable in the Arnol’d-Liouville sense and numerical methods are then used.

These first order stationary conditions can be obtained directly using standard variation
calculus based on the Lagrange method. The adjoint state p is the Lagrange multipliers

8An absolutely continuous function [0, T ] � t �→ z ∈ R
m satisfies, by definition, the following condition: for

all ε > 0, there exits η > 0 such that, for any ordered sequence 0 ≤ t1 ≤ . . . ≤ tk ≤ T of arbitrary length k
fulfilling

∑k−1
i=1 |ti+1 − ti| ≤ η, we have

∑k−1
i=1 |z(ti+1) − z(ti)| ≤ ε. Such functions are differentiable versus t,

for almost all t ∈ [0, T ] and, moreover we have z(t) = z(0) +
∫ t

0
z(s)ds.
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associated to the constraint d
dtx = f(x, u). Assume T given and consider the Lagrangian

L(x, ẋ, p, u) = c(x, u) +
∑n

i=1 pi(fi(x, u)− ẋi) associated to

max
u, x

f(x, u)− d
dtx = 0

x(0) = xa, x(T ) = xb

∫ T

0
c(x, u)dt.

The first variation δL of L =
∫ T
0 L(x, ẋ, p, u)dt should vanish for any variation δx, δp and δu

such that δx(0) = δx(T ) = 0:

� δL = 0 for any δp yields to d
dtx = f(x, u);

� δL = 0 for any δx with δx(0) = δx(T ) = 0 yields to d
dtp = −

(
∂f
∂x

)†
p− (

∂c
∂x

)†
� δL = 0 for any δu yields to ∂c

∂u +
∑

i pi
∂fi
∂u = 0

We recover the stationary conditions (94).
It is then simple to show that the stationary conditions for

max
u, x

f(x, u)− d
dtx = 0

x(0) = xa

∫ T

0
c(x, u)dt+ l(x(T )),

where the final condition x(T ) = xb is replaced by a final cost l(x(T ) (l a C1 function), remain
unchanged except for the boundary conditions that become

x(0) = xa, p(T ) =

(
∂l

∂x

)†
(x(T )).

L Open-loop optimal control and monotone algorithms

Take the n-level system i d
dt |ψ〉 = 1

�
(H0 +

∑m
k=1 ukHk) |ψ〉, initial and final states |ψa〉 and

|ψb〉 and a transition time T > 0 (〈ψa|ψa〉 = 〈ψb|ψb〉 = 1). We are looking for optimal

controls [0, T ] � t �→ u(t) minimizing
∫ T
0 (

∑m
k=1 u

2
k) and steering |ψ〉 from |ψa〉 at t = 0 to

|ψb〉 at t = T (assuming the system to be controllable, we consider only the cases where such
a control exists). Thus we are considering the following problem

min
uk ∈ L2([0, T ],R), k = 1, . . . ,m

i d
dt |ψ〉 = 1

�
(H0 +

∑m
k=1 ukHk) |ψ〉 , t ∈ (0, T )

|ψ(0)〉 = |ψa〉 , | 〈ψb|ψ〉 |2t=T = 1

1
2

∫ T

0

(
m∑
k=1

u2k(t)

)
dt (95)

for given T , |ψa〉 and |ψb〉 (〈ψa|ψa〉 = 〈ψb|ψb〉 = 1). Notice that | 〈ψb|ψ〉 |2 = 1 means that
|ψ(T )〉 = eiθ |ψb〉 where θ ∈ R is an arbitrary global phase.
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Since the initial and final constraints are difficult to satisfy simultaneously from a nu-
merical point of view, we will consider also the second problem where the final constraint is
relaxed

min
uk ∈ L2([0, T ],R), k = 1, . . . ,m

i d
dt |ψ〉 = 1

�
(H0 +

∑m
k=1 ukHk) |ψ〉 , t ∈ (0, T )

|ψ(0)〉 = |ψa〉

1
2

∫ T

0

(
m∑
k=1

u2k(t)

)
dt+ α

2 (1− |〈ψb|ψ(T )〉|2)

(96)
with the positive penalization coefficient α > 0. Notice that for α large this problem tends
to the original one (95).

L.1 First order stationary condition

Pontryaguin’s Maximum Principle (PMP) introduced in Appendix K provides necessary opti-
mality conditions. In our case, these necessary conditions are given as follows. Notice that the
adjoint state can be seen as a Ket, denoted by |p〉 ∈ C

n (of constant norm but not necessarily
1 in general) since it satisfies the same Schrödinger equation as |ψ〉.

For problem (95), the first order stationary conditions read:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i d
dt |ψ〉 = 1

�
(H0 +

∑m
k=1 ukHk) |ψ〉 , t ∈ (0, T )

i d
dt |p〉 = 1

�
(H0 +

∑m
k=1 ukHk) |p〉 , t ∈ (0, T )

uk = −1
�
�
(
〈p|Hk|ψ〉

)
, k = 1, . . . ,m, t ∈ (0, T )

|ψ(0)〉 = |ψa〉 , | 〈ψb|ψ(T )〉 |2 = 1

(97)

For the relaxed problem (96), the first order stationary conditions read:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i d
dt |ψ〉 = 1

�
(H0 +

∑m
k=1 ukHk) |ψ〉 , t ∈ (0, T )

i d
dt |p〉 = 1

�
(H0 +

∑m
k=1 ukHk) |p〉 , t ∈ (0, T )

uk = −1
�
�
(
〈p|Hk|ψ〉

)
, k = 1, . . . ,m, t ∈ (0, T )

|ψ(0)〉 = |ψa〉 , |p(T )〉 = −α 〈ψb|ψ(T )〉 |ψb〉 .

(98)

These optimality conditions differ only by the boundary conditions at t = 0 and t = T : the
common part

i d
dt |ψ〉 = 1

�
(H0 +

∑m
k=1 ukHk) |ψ〉 , t ∈ (0, T )

i d
dt |p〉 = 1

�
(H0 +

∑m
k=1 ukHk) |p〉 , t ∈ (0, T )

uk = −1
�
� (〈p|Hk|ψ〉) , k = 1, . . . ,m, t ∈ (0, T )

is a Hamiltonian system with |ψ〉 and |p〉 being the conjugate variables. The underlying
Hamiltonian function is given by : H(|ψ〉 , |p〉) = minu∈Rm H(|ψ〉 , |p〉 , u) where

H(|ψ〉 , |p〉 , u) = 1
2

(
m∑
k=1

u2k

)
+

1

�
�

(〈
p

∣∣∣∣∣H0 +
m∑
k=1

ukHk

∣∣∣∣∣ψ
〉)

. (99)

Thus for any solutions (|ψ〉 , |p〉 , u) of (97) or (98), H(|ψ〉 , |p〉 , u) is independent of t. Notice
that

H(|ψ〉 , |p〉) = �
(〈

p

∣∣∣∣H0

�

∣∣∣∣ψ〉)
− 1

2

(
m∑
k=1

�
(〈

p|Hk

�
|ψ

〉)2
)
.
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L.2 Monotonic numerical scheme

For the relaxed problem (96), there exists a general monotonic iterative scheme to find the
solution. Defining the cost function

J(u) = 1
2

∫ T

0

(
m∑
k=1

u2k(t)

)
dt+ α

2 (1− |〈ψb|ψu(T )〉|2)

where |ψu〉 denotes the solution of i d
dt |ψ〉 = 1

�
(H0 +

∑m
k=1 ukHk) |ψ〉 starting from |ψa〉, and

starting from an initial guess u0 ∈ L2([0, T ],Rm), this scheme generates a sequence of controls
uν ∈ L2([0, T ],Rm), ν = 1, 2, . . ., such that the cost J(uν) is decreasing, J(uν+1) ≤ J(uν).

This scheme does not guaranty in general the convergence to an optimal solution. But
applied on several examples, with a correct tuning of the penalization coefficient α, it produces
interesting controls with |ψ(T )〉 close to |ψb〉. Such monotonic schemes have been proposed
for quantum systems in [61] (see also [74] for a slightly different version). We follow here the
presentation of [11] which also provides an extension to infinite dimensional case. See also
[18] for much earlier results on optimal control in infinite dimensional cases.

Take u, v ∈ L2([0, T ],Rm), denote by P = |ψb〉 〈ψb| the orthogonal projector on |ψb〉, then

J(u)− J(v) = −
α

(
〈ψu − ψv|P |ψu − ψv〉T + 〈ψu − ψv|P |ψv〉T + 〈ψv|P |ψu − ψv〉T

)
2

+

∫ T

0

∑m
k=1(uk − vk)(uk + vk)

2
.

Denote by |pv〉 the adjoint associated to v, i.e. the solution of the backward systems

i
d

dt
|pv〉 = 1

�

(
H0 +

m∑
k=1

vkHk

)
|pv〉 , |pv(T )〉 = −αP |ψv(T )〉 .

We have

i
d

dt
(|ψu〉 − |ψv〉) = 1

�

(
H0 +

m∑
k=1

vkHk

)
(|ψu〉 − |ψv〉) + 1

�

(
m∑
k=1

(uk − vk)Hk

)
|ψu〉 .

We consider the Hermitian product of this equation with the adjoint state |pv〉:〈
pv

∣∣∣d(ψu−ψv)
dt

〉
=

1

�

〈
pv

∣∣∣H0+
∑m

k=1 vkHk

i

∣∣∣ψu − ψv

〉
+

1

�

〈
pv

∣∣∣∑m
k=1(uk−vk)Hk

i

∣∣∣ψu

〉
.

An integration by parts yields∫ T

0

〈
pv

∣∣∣d(ψu−ψv)
dt

〉
= 〈pv|ψu − ψv〉T − 〈pv|ψu − ψv〉0 −

∫ T

0

〈
dpv
dt

∣∣∣ψu − ψv

〉
= −α 〈ψv|P |ψu − ψv〉T +

1

�

∫ T

0

〈
pv

∣∣∣H0+
∑m

k=1 vkHk

i

∣∣∣ψu − ψv

〉
since |ψv(0)〉 = |ψu(0)〉, |pv(T )〉 = −αP |ψv(T )〉 and d

dt 〈pv| = −1
�
〈pv|

(
H0+

∑m
k=1 vkHk

i

)
. We

get:

−α 〈ψv|P |ψu − ψv〉T =
1

�

∫ T

0

〈
pv

∣∣∣∑m
k=1(uk−vk)Hk

i

∣∣∣ψu

〉
.
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Thus α� (〈ψv|P |ψu − ψv〉T ) = −1
�

∫ T
0 � (〈pv |

∑m
k=1(uk − vk)Hk|ψu〉). Finally we have

J(u)− J(v) = −α
2 (〈ψu − ψv|P |ψu − ψv〉)T

+ 1
2

m∑
k=1

(∫ T

0
(uk − vk)

(
uk + vk +

2

�
� (〈pv |Hk|ψu〉)

)
dt

)
.

If each uk satisfies uk = −1
�
� (〈pv |Hk|ψu〉) for all t ∈ [0, T ) we have

J(u)− J(v) = −α
2 (〈ψu − ψv|P |ψu − ψv〉)T − 1

2

m∑
k=1

(∫ T

0
(uk − vk)

2

)
and thus J(u) ≤ J(v).

These computations suggest the following iterative scheme. Assume that, at step ν, we
have computed the control uν , the associated quantum state |ψν〉 = |ψuν 〉 and its adjoint
|pν〉 = |puν 〉. We get their new time values uν+1,

∣∣ψν+1
〉
and

∣∣pν+1
〉
in two steps:

1. Imposing uν+1
k = −1

�
� (〈

pν |Hk|ψν+1
〉)

as a feedback, one get uν+1 just by a forward
integration of the nonlinear Schrödinger equation,

i
d

dt
|ψ〉 = 1

�

(
H0 −

m∑
k=1

�
(〈

pν
∣∣∣∣Hk

�

∣∣∣∣ψ〉)
Hk

)
|ψ〉 , |ψ(0)〉 = |ψa〉 ,

that provides [0, T ] � t �→ ∣∣ψν+1
〉
and the m new controls uν+1

k .

2. Backward integration from t = T to t = 0 of

i
d

dt
|p〉 = 1

�

(
H0 +

m∑
k=1

uν+1
k (t)Hk

)
|p〉 , |p〉T = −α

〈
ψb|ψν+1(T )

〉 |ψb〉

yields to the new adjoint trajectory [0, T ] � t �→ ∣∣pν+1
〉
.

M Markovian feedback of diffusive quantum systems

M.1 Single-Input/Single-Output case (SISO)

Take a single input ut and single output yt system governed by the general stochastic master
equation

dρt = −i[H0 + uH1, ρt]dt+
(
LρL† − 1

2L
†Lρ− 1

2ρL
†L

)
dt

+
√
η

(
Lρt + ρtL

† − Tr
(
(L+ L†)ρt

)
ρt

)
dWt (100)

with detection efficiency η ∈ [0, 1] and ẏtdt =
√
ηTr

(
(L+ L†)ρt

)
dt+ dWt. Consider a simple

proportional controller of gain g
u = ū+ gẏt (101)

where ū is some constant. During the infinitesimal time [t, t + dt] we measure first yt and
then apply this feedback law. We neglect the delay. Due to the singular nature of ẏt (it
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is not a bounded time function), the closed-loop equation is not obtained by just plugging
udt = ūdt + g

√
ηTr

(
(L+ L†)ρt

)
dt + gdWt in (100). The correct closed-loop equation has

been derived in [70] and recalled in [68]. It admits the following form (Wiseman-Milburn
stochastic master equation)

dρt = −i
[
H0 + ūH1 +

g
√
η

2 (H1L+ L†H1), ρt

]
dt+∑

s=1,2

(
LsρL

†
s − 1

2L
†
sLsρ− 1

2ρL
†
sLs

)
dt+

√
ηs

(
Lsρt + ρtL

†
s − Tr

(
(Ls + L†

s)ρt

)
ρt

)
dW s

t (102)

with two Lindblad operators L1 = L − ig
√
ηH1 and L2 = −ig

√
1− ηH1, with efficiencies,

η1 = η and η2 = 1− η, but with a single Wiener process W 1
t = W 2

t = Wt. We see a constant

shift in the closed-loop Hamiltonian,
g
√
η

2 (H1L+ L†H1), appearing when writing the closed-
loop equation this way. It could be possibly pre-compensated by an initial modification of
H0 through additional constant control inputs.

Thus the evolution of the ensemble average of ρ, i.e. ρ̄(t) = E (ρt | ρ0) obeys to the
following deterministic closed-loop Lindblad master equation

d

dt
ρ̄ = −i

[
H0 + ūH1 +

g
√
η

2 (H1L+ L†H1), ρ̄
]
+

∑
s=1,2

(
Lsρ̄L

†
s − 1

2L
†
sLsρ̄− 1

2 ρ̄L
†
sLs

)
(103)

with initial condition ρ̄(0) = ρ0.
The above closed-loop equation (102)comes from the following direct computations ex-

ploiting the Ito rules. In closed-loop the correct value of dρt is given by the following formula
coding the fact that the control u at time t is applied just after the measurement outcome yt
and corresponds to the unitary operation e−iudtH1 with udt = ūdt+ g

√
ηTr

(
(L+ L†)ρt

)
dt+

gdWt:

dρt = e−iudtH1

{
ρt − i[H0, ρt]dt+

(
LρL† − 1

2L
†Lρ− 1

2ρL
†L

)
dt

+
√
η

(
Lρt + ρtL

† − Tr
(
(L+ L†)ρt

)
ρt

)
dWt

}
eiudtH1 − ρt.

Via the Baker-Campbell-Hausdorff formula,

eABe−A = B + [A,B] + [A, [A,B]]/2 +O(‖A‖3),
we get, with A = −i

(
ūdt+ g

√
ηTr

(
(L+ L†)ρt

)
dt+ gdWt

)
H1 and

B = ρt−i[H0, ρt]dt+
(
LρL† − 1

2L
†Lρ− 1

2ρL
†L

)
dt+

√
η

(
Lρt+ρtL

†−Tr
(
(L+ L†)ρt

)
ρt

)
dWt,

the following computations up to O(dt3/2)

[A,B] = −i

[
(ū+ g

√
ηTr

(
(L+ L†)ρt

)
)H1 , ρt

]
dt− ig

[
H1 , ρt

]
dWt

− ig
√
η

[
H1 , Lρt + ρtL

† − Tr
(
(L+ L†)ρt

)
ρt

]
dt+O(dt3/2)

= −iū
[
H1 , ρt

]
dt− ig

√
η
[
H1 , Lρt + ρtL

†]dt− ig
[
H1 , ρt

]
dWt +O(dt3/2)
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Remember that according to Ito rules, dWt = O(
√
dt), dW 2

t = dt and dtdWt = O(dt3/2).
Similarly we get

[A, [A,B]] = −g2
[
H1,

[
H1, ρt

]]
dt+O(dt3/2).

Since ‖A‖3 = O(dt3/2), we have, neglecting O(dt3/2) terms according to Ito rules,

dρt = −i[H0 + ūH1, ρt]dt+
(
LρL† − 1

2L
†Lρ− 1

2ρL
†L

)
dt

− ig
√
η
[
H1, Lρt + ρtL

†]dt− g2

2

[
H1,

[
H1, ρt

]]
dt

+
√
η

(
Lρt + ρtL

† − Tr
(
(L+ L†)ρt

)
ρt

)
dWt − ig

[
H1, ρt

]
dWt

= −i[H0 + ūH1 +
g
√
η

2 (LH1 +H1L
†), ρt]dt+ L

(
L− ig

√
ηH1, ρt

)
dt

+
√
η

(
(L− ig

√
ηH1)ρt + ρt(L

† + ig
√
ηH1)− Tr

(
(L+ L†)ρt

)
ρt

)
dWt

+ L
(
− i

√
1− ηgH1, ρt

)
dt− ig(1− η)[H1, ρt]dWt

where L(L, ρ) = LρL† − 1
2L

†Lρ− 1
2ρL

†L. We recover (102) with the two Lindbladian terms
associated to L1 and L2.

M.2 Multi-Input/Multi-Output case (MIMO)

The above computations based on Ito rules and Baker-Campbell-Hausdorff formula provide
directly the multi-input/multi-output extension of such static output feedback scheme (see [22]
for a more elaborate derivation). Consider the m inputs (uμ) and the p outputs (yν) of the
system governed by

dρt = −i

⎡⎣H0 +
m∑

μ=1

uμHμ , ρt

⎤⎦ dt

+

p∑
ν=1

(
LνρL

†
ν − 1

2L
†
νLνρ− 1

2ρL
†
νLν

)
dt

+
√
ην

(
Lνρt + ρtL

†
ν − Tr

(
(Lν + L†

ν)ρt

)
ρt

)
dW ν

t (104)

where γν ≥ 0, ην ∈ [0, 1] and (W ν
t ) are p independent Wiener processes and

ẏνt dt =
√
ην Tr

(
(Lν + L†

ν)ρt

)
dt+ dW ν

t .

Consider the static output feedback

uμ = ūμ +

p∑
ν=1

gμν ẏ
ν
t

100



with a m×p proportional gain matrix (gμν). Then the closed-loop stochastic master equation
reads

dρt = −i

⎡⎣H0 +

m∑
μ=1

ūμHν +
1
2

p∑
ν=1

√
ην(H̃νLν + L†

νH̃ν), ρt

⎤⎦ dt+

p∑
ν=1

∑
s=1,2

(
Lν,sρL

†
ν,s − 1

2L
†
ν,sLν,sρ− 1

2ρL
†
ν,sLν,s

)
dt

+
√
ην,s

(
Lν,sρt + ρtL

†
ν,s − Tr

(
(Lν,s + L†

ν,s)ρt

)
ρt

)
dW ν

t (105)

with H̃ν =
∑m

μ=1 gμνHμ, Lν,1 = Lν − i
√
ην

∑m
μ=1 gμνHμ and Lν,2 = −i

√
1− ην

∑m
μ=1 gμνHμ,

with efficiencies, ην,1 = ην and ην,2 = 1− ην .
The ensemble average dynamics for ρ̄(t) = E (ρt | ρ0) reads then:

d

dt
ρ̄ = −i

⎡⎣H0 +
m∑

μ=1

ūμHν +
1
2

p∑
ν=1

√
ην(H̃νLν + L†

νH̃ν), ρ̄

⎤⎦+

p∑
ν=1

∑
s=1,2

(
Lν,sρ̄L

†
ν,s − 1

2L
†
ν,sLν,sρ̄− 1

2 ρ̄L
†
ν,sLν,s

)
. (106)

The first experimental realization of such a multi-input multi-output Markovian feedback
on a super-conducting qubit has been done in [17].

N Adiabatic elimination of a low-Q harmonic oscillator

This section is mainly based on [7] relying on coordinate free setting due to Fenichel [30] of
singular perturbations for deterministic dynamical systems. For a summary of such coordinate
free setting see appendix O.

Take a small parameter 0 < ε � 1. Consider the following composite system made of
subsystem A with an arbitrary Hilbert space HA and subsystem B with the Hilbert space of
a quantum harmonic oscillator HB = span{|nb〉 | nb ∈ N} (usual called buffer mode b):

d

dt
ρ = L0(ρ) + εL1(ρ) (107)

where

� L0(ρ) = κb
(
bρb† − (b†bρ + ρb†b)/2) with κb > 0 and b the annihilation operator on

harmonic oscillator B;

� L1(ρ) = −i [H int , ρ] + LA(ρ) with LA a Lindbladian dynamics of form (31) on sub-
system A only, with an interaction Hamiltonian H int =

∑m
k=1Ak ⊗Bk, with Ak and

Bk Hermitian operators on HA and HB respectively.

The general theory is presented below consider any finite sum for H int. When

H int = LAb
† +L†

Ab = A1 ⊗B1 +A2 ⊗B2,

101



i.e., when H int contains two terms like

A1 = LA +L†
A, A2 =

LA −L†
A

i
, B1 =

b+ b†

2
, B2 =

b− b†

2i
.

it yields to a simple approximation for the slow evolution associated to A, i.e., for ρA = TrB (ρ)

d

dt
ρA = εLA(ρA) +

4ε2

κb

(
LAρAL

†
A − 1

2L
†
ALAρA − 1

2ρAL
†
ALA

)
(108)

corresponding to the adiabatic elimination of mode B converging very rapidly to an almost
vacuum state. A detailed proof of this approximation is given at the end of this section. It is
based on the general calculation described here below.

The solution ρ̄B = |0b〉 〈0b| of L0(ρ) = 0 corresponds to vacuum in mode b. The slow
manifold is directly connected to ρA = TrB (ρ), the partial trace of ρ versus sub-system B.
In particular it has the dimension of the space of density operators on sub-system A. We are
looking for a parametrization preserving the fact that ρA remains always a density operator
and including first order terms in ε attached to possible entanglement between A and B. We
add thus to the series expansions (120) of appendix O

d

dt
ξ = εF1(ξ) + ε2F2(ξ) + . . . and ρ = K0(ξ) + εK1(ξ) + ε2K2(ξ) + . . .

the following constrains:

� εF1 + ε2F2 has to be of Lindblad form, up-to O(ε3) corrections;

� K0 + εK1 + ε2K2 has to be a Kraus map up-to O(ε3) corrections.

Here ξ is an operator on sub-system A parameterizing ρA via the Kraus map

ξ �→ TrB
(K0(ξ) + εK1(ξ) + ε2K2(ξ) + . . .

)
= ρA.

It is important to notice here that ξ does not coincide in general exactly with TrB (ρ).
Then (121) reads here

(L0 + εL1)
(K0(ξ) + εK1(ξ) + ε2K2(ξ) + . . .

)
=

(K0 + εK1 + ε2K2 + . . .
) (

εF1(ξ) + ε2F2(ξ) + . . .
)
.

It is clear that for ε = 0, order 0 term L0(K0(ξ) = 0 implies that

K0(ξ) = ξ ⊗ |0b〉 〈0b|
when we impose that ξ and TrB (ρ) coincides when ε = 0.

Since all the maps are linear, identifying terms of order one give an equation satisfied by
F1 and K1:

L0(K1(ξ)) + L1(K0(ξ)) = K0(F1(ξ)). (109)

Since TrB (L0(ρ)) ≡ 0 for any operator ρ on HA ⊗HB,

L1(K0(ξ)) = −i

[
m∑
k=1

Ak ⊗Bk, ξ ⊗ |0b〉 〈0b|
]
+ LA(ξ)⊗ |0b〉 〈0b|
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and K0(F1(ξ)) = F1(ξ)⊗ |0b〉 〈0b|, taking the partial trace versus sub-system B gives

F1(ξ) = −i

[ ∑
k

βkAk , ξ

]
+ LA(ξ) with βk = 〈0b|Bk |0b〉 ∈ R.

With such F1(ξ), (109) becomes

L0(K1(ξ)) = −i

[
m∑
k=1

Ak ⊗ (Bk − βk), ξ ⊗ |0b〉 〈0b|
]

(110)

The equation
L0(X) = B |0b〉 〈0b|

for the unknown operator X on B and the given operator B on HB operator admits solutions
if, and only if, Tr (B |0b〉 〈0b|) = 〈0b|B |0b〉 = 0. Then its general solution reads

X = − 2
κb
(b†b)−1B |0b〉 〈0b|+ g |0b〉 〈0b|

where (b†b)−1 is the Moore-Penrose inverse of b†b and g is any complex number. This
comes from the identity b†b(b†b)−1 = (b†b)−1b†b = IB − |0b〉 〈0b|. Similarly by Hermi-
tian conjugation, the solution of L0(X) = |0b〉 〈0b|B when 〈0b|B |0b〉 = 0 reads X =
|0b〉 〈0b|B(b†b)−1 + g |0b〉 〈0b|.

Notice that (110) reads

L0(K1(ξ)) =

m∑
k=1

−iAkξ ⊗ (Bk − βk) |0b〉 〈0b|+ iξAk ⊗ |0b〉 〈0b| (Bk − βk).

Since βk = 〈0b|Bk |0b〉 for each k, it admits the following general solution

K1(ξ) = G(ξ)⊗ |0b〉 〈0b|+ 2i

κb

m∑
k=1

Akξ ⊗ (b†b)−1Bk |0b〉 〈0b| − ξAk ⊗ |0b〉 〈0b|Bk(b
†b)−1

= G(ξ)⊗ |0b〉 〈0b|+ 2i

κb

[∑
k

Ak ⊗
(
(b†b)−1Bk +Bk(b

†b)−1
)
, ξ ⊗ |0b〉 〈0b|

]

where G(ξ) is any operator on HA, a gauge degree of freedom depending on ξ, and where we
have used (b†b)−1 |0b〉 = 0 = 〈0b| (b†b)−1. We have

K0(ξ) + εK1(ξ) = eiεW 1
(
ξ ⊗ |0b〉 〈0b|

)
e−iεW 1 + εG(ξ)⊗ |0b〉 〈0b|+O(ε2) (111)

where

W 1 =
2

κb

m∑
k=1

Ak ⊗
(
(b†b)−1Bk +Bk(b

†b)−1
)

(112)

is Hermitian.
In the sequel we choose G(ξ) = 0 in order to have ξ = TrB (ρ)+0(ε2) in the corresponding

first order reduced model:

d

dt
ξ = −iε

[ ∑
k

βkAk , ξ

]
+ εLA(ξ), ρ = eiεW 1

(
ξ ⊗ |0b〉 〈0b|

)
e−iW 1 .
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where eiεW 1 is unitary on HA ⊗HB close to identity.
The second order corrections F2 and K2 are solution of

L0(K2(ξ)) + L1(K1(ξ)) = K0(F2(ξ)) +K1(F1(ξ)). (113)

Taking the trace versus B, we get F2(ξ) = TrB (K1(F1(ξ))− L1(K1(ξ))). We have directly
TrB (K1(F1(ξ))) = 0. Since

L1(K1(ξ)) =
2

κb

[∑
k

Ak ⊗Bk ,
∑
k′

Ak′ξ ⊗ (b†b)−1Bk′ |0b〉 〈0b| − ξAk′ ⊗ |0b〉 〈0b|Bk′(b
†b)−1

]

+
2i

κb

∑
k′

LA(Ak′ξ)⊗ (b†b)−1Bk′ |0b〉 〈0b| − LA(ξAk′)⊗ |0b〉 〈0b|Bk′(b
†b)−1,

the partial trace versus B yields to

κb
2

TrB (L1(K1(ξ))) =
∑
k,k′

〈0b|Bk(b
†b)−1Bk′ |0b〉 AkAk′ξ−〈0b|Bk′(b

†b)−1Bk |0b〉 AkξAk′

−
∑
k,k′

〈0b|Bk(b
†b)−1Bk′ |0b〉 Ak′ξAk − 〈0b|Bk′(b

†b)−1Bk |0b〉 ξAk′Ak.

With Gram matrix of entries

Gkk′ = 〈0b|Bk(b
†b)−1Bk′ |0b〉 =

+∞∑
nb=1

(
1√
nb

〈nb|Bk |0b〉
)∗ (

1√
nb

〈nb|Bk′ |0b〉
)

(114)

and its Cholesky factorization G = Λ†Λ, one gets

κb
2

TrB (L1(K1(ξ))) =
∑

k,k′,k′′
Λ∗
k′′kΛk′′k′

(
AkAk′ξ + ξAkAk′ − 2Ak′ξAk

)
since Gkk′ =

∑
k′′ Λ

∗
k′′kΛk′′k′ . Set

Lk =
m∑

k′=1

Λk,k′Ak′ (115)

Then κb
2 TrB (L1(K1(ξ))) =

∑
k

(
L†

kLkξ+ξL†
kLk−2LkξL

†
k

)
. Finally, one obtains with gauge

G(ξ) = 0 for K1,

F2(ξ) =
4

κb

(∑
k

LkξL
†
k − 1

2

(
L†

kLkξ + ξL†
kLk

))
(116)

To conclude, the slow dynamics of ρ governed by (107) can be approximated by the
following trace and positivity preserving reduced model of state ξ a density operator on HA

d

dt
ξ = −iε

[ ∑
k

βkAk , ξ

]
+ εLA(ξ)

+
4ε2

κb

(∑
k

LkξL
†
k − 1

2

(
L†

kLkξ + ξL†
kLk

))
+O(ε3) (117)
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Figure 8: Model reduction seen as restriction of the dynamics to an invariant attractive sub-
manifold of the state manifold

with ρ = eiεW 1
(
ξ ⊗ |0b〉 〈0b|

)
e−iεW 1 + O(ε2) as completely positive and trace preserving

output map providing the physical quantum state ρ on HA⊗HB. Here βk = 〈0b|Bk |0b〉, the
Lindblad operators Lk are given by (115) and the Hermitian operator by (112). Notice that
ξ coincides with TrB (ρ) up to second-order correction in ε.

To obtain (108), the above asymptotic expansion is applied with

A1 = LA +L†
A, A2 =

LA −L†
A

i
, B1 =

b+ b†

2
, B2 =

b− b†

2i
.

According to (112), W 1 = 0 and to (114)

G = 1
4

(
1 −i
i 1

)
= 1

4

(
1 0
i 0

)(
1 −i
0 0

)
.

With Λ = 1
2

(
1 −i
0 0

)
we get, using (115), L1 = α2 − a2 and L2 = 0. Finally the following

slow evolution of mode A is given by (108).

O Model reduction and singular perturbations

This appendix is based on [30], a geometric and coordinates free approach for singularly
perturbed differential equations describing systems with two time-scales: a fast and converging
one and a slow one (converging, diverging, . . . ). This Appendix is directly inspired from
section 3 of [28] and is related to the following more general issue: what is model reduction ?

O.1 Attractive invariant manifold

For dynamical system, d
dtx = v(x), x ∈ R

n displayed on figure 8, reduction is possible with
an attractive invariant manifold Σ. A sub-manifold Σ is invariant versus v, if v is tangent
to Σ, i.e., if any trajectory starting on Σ remains on Σ. Σ is called (locally) attractive if
any trajectory starting near Σ tends to Σ as time increases. Reduction corresponds then to
restriction of the dynamics to Σ. Such restriction is well defined since Σ is invariant.

It seems then natural to approximate trajectories of the complete system ẋ = v(x) by
trajectories on Σ. In fact, such an approximation is proved to be valid when, roughly speaking,
the dynamics transverse to Σ (the dynamics that are neglected) are faster and converge to
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Figure 9: Tikhonov normal form when the vector-field v = (vs, vf ) is quasi vertical in the
x = (xs, xf ) coordinates.

Σ. The main difficulty is thus to obtain the equations of Σ or, at least, good approximations
of them, from the knowledge of v.

Efficient approximations can be obtained by asymptotic expansion versus the small param-
eter 0 < ε � 1 attached to the time-scale difference ensuring the existence of such invariant
attractive manifold Σε depending smoothly on ε.

O.2 Tikhonov normal form

Assume that modeling coordinates yield to a state those components can be decomposed into
two subsets of components x = (xs, xf ) with the following form called Tikhonov form

d

dt
xs = ε vs(xs, xf , ε),

d

dt
xf = vf (xs, xf , ε) (118)

where 0 < ε � 1. Very often, such systems are written with the time-scale τ = εt:

dxs
dτ

= vs(xs, xf , ε), ε
dxf
dτ

= vf (xs, xf , ε).

The terminology singular perturbations’ comes from the fact that the small parameter ε
multiplies the highest derivative (here dxf/dτ). More details on this classical standpoint can
be found, e.g., in [64]. In the sequel we always consider the time-scale t and approximations
of trajectories for t ∈ [0, 1/ε] and with ε > 0 but close to 0.

Assume that the fast part is hyperbolically stable, i.e., that the sub-system d
dtxf =

vf (xs, xf , ε) with xs fixed, admits (locally) an equilibrium with characteristic exponents

(eigenvalues of
∂vf
∂xf

at this equilibrium) having a strictly negative real part. Then the slow

approximation is obtained by the quasi-steady-state method:{
d
dtxs = εvs(xs, xf , ε)

0 = vf (xs, xf , ε).

The algebraic equations, vf = 0, correspond here to an approximation up to terms of order
1 in ε, of Σε equations. These coordinates (xs, xf ) where the quasi-steady-state method
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Figure 10: Coordinate free setting of dynamical system d
dtx = v(x, ε) with two time-scales:

fast asymptotically stable dynamics with slow ones.

applies, and where the vector field v is quasi-vertical (see figure 9) in the (xs, xf ) coordinates
are clearly very specific.

O.3 Coordinate free setting

Since we are interested in developing a reduction method that do not assume such special
Tikhonov coordinates (xs, xf ), a coordinate free point of view is required. A first geometric
definition of singularly perturbed systems due to Fenichel [30] is as follows.

Consider the dynamical system

ẋ = v(x, ε), x ∈ R
n, 0 ≤ ε � 1. (119)

This system is said to have two time-scales, a fast and asymptotically stable one and a slow
one, if, and only if, the following two assumptions are satisfied

A1 for ε = 0, (119) admits an equilibrium manifold of dimension ns, 0 < ns < n, denoted
by Σ0.

A2 for all x0 ∈ Σ0, the Jacobian matrix,
∂v

∂x

∣∣∣∣
(x0,0)

admits nf = n − ns eigenvalues with a

strictly negative real part (the eigenvalues are counted with their multiplicities).

This definition is illustrated in figure 10. Assumption A1 implies that the velocity v(x, ε)
is large everywhere excepted for x in a neighborhood of Σ0 where v is small and of order 1 in
ε.

A1 and A2 imply that, for x0 ∈ Σ0, the kernel, Ec
0(x0), of the linear operator

∂v

∂x

∣∣∣∣
(x0,0)

coincides with the tangent space of Σ0 at x0. The linear space Es
0(x0) corresponding to the

eigenvalues with real negative part satisfies:

Es
0(x0)⊕ Ec

0(x0) = R
n.

The trajectories of the perturbed system are captured by a trapping region around Σ0 and
enter with a direction nearly parallel to Es

0(x0).
Fenichel [30][ part of theorem 9.1] proves the following result. It asserts, for ε small enough,

the existence of a slow invariant attractive manifold Σε for the perturbed system (119).
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Theorem 8 (Fenichel, 1979). Consider (119) satisfying A1 and A2. Then, for every open
and bounded subset Ω0 of Σ0, there exists an open neighborhood V0 of Ω0 in R

n, such that,
for ε positive and small enough, the perturbed system (119) admits an attractive invariant
sub-manifold Σε contained in V0 and close to Σ0.

We are interested in approximations, up to terms of order 1 in ε, of slow trajectories for
t ∈ [0, 1/ε]. Thus we need an approximation up to terms of order 2 for the slow dynamics:
errors like ε2 integrated over t ∈ [, 1/ε] will produce for t = 1/ε, distortions of magnitude less
than or equal to ε (ε2 × (1/ε) = ε). This means that an approximation, up to terms of order
2 in ε, of Σε equations is needed.

O.4 Approximation based on center manifold techniques

This section generalizes [28] where, in local coordinates x, a subset of ns components of x,
say xs, are used as local coordinates on Σε. As in [28] we exploit center manifold techniques
used in bifurcation theory [21, 33].

Set
v(x, ε) = v0(x) + εv1(x) + ε2v2(x) + . . .

Under assumptions A1 and A2, assume that z ∈ R
ns parameterizes Σ0. This means that

we have a smooth function h0 : Rns �→ R
n such that the image of h0 belongs to Σε. Thus

v0(h0(z)) = 0 for all z. Moreover the rank of Dzh0 is maximum and equal to ns. Consequently
Dxv0(h0(z))Dzh0(z) ≡ 0 and the range of Dzh0(z) corresponds to the kernel of Dxv0(h0(z)),
i.e. the eigenspace with 0 eigenvalue. Since the other eigenvalues of Dxv0(h0(z)) have a
strictly negative real part, exists P0(z) an invertible n × n matrix such that Dxv0(h0(z)) =
P0(z)Δ0(z)P

−1
0 (z) where Δ(z) is a block matrix

Δ0(z) =

(
0ns,ns 0ns,nf

0nf ,ns Λnf ,nf

)
and Λnf ,nf

is a nf × nf matrix with eigen-values of strictly negative real parts.
We are looking for the following description of the slow dynamics on Σε:

d

dt
z = w0(z) + εw1(z) + ε2w2(z) + . . . with x = h0(z) + εh1(z) + ε2h2(z) + . . . . (120)

This means that if z(t) is a solution of the above differential equation of size ns, then x(t)
obtained with the above static mapping is automatically a solution of the initial system
staying on Σε. This implies the following invariance condition

v0

(
h0(z) + εh1(z) + ε2h2(z) + . . .

)
+ εv1

(
h0(z) + εh1(z) + ε2h2(z) + . . .

)
+ ε2v2

(
h0(z) + εh1(z) + ε2h2(z) + . . .

)
+ . . . =

Dzh0(z)
(
w0(z) + εw1(z) + ε2w2(z) + . . .

)
+ εDzh1(z)

(
w0(z) + εw1(z) + ε2w2(z) + . . .

)
+

+ ε2Dzh1(z)
(
w0(z) + εw1(z) + ε2w2(z) + . . .

)
+ . . . (121)

based on the time derivative of x = h0(z) + εh1(z) + . . . with d
dtx = v0(x) + εv1(x) + . . ..
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Carr approximation lemma [21] of the center manifold Σε says that if one fulfills (121) up
to ordre k in ε then we have an approximation of Σε and of its dynamics in z up to order k
in ε.

For approximations up to order 2, we have to find w0, w1 and h1 such that the zero order
and first order terms in (121) cancels. Thus w0(z) = 0 and (w1, h1) are given by

Dxv0(h0(z))h1 + v1(h0(z)) = Dzh0(z)w1.

Multiplying on the left by Dxv0(h0(z)) = P0(z)Δ0(z)P
−1
0 (z) yields(

Dxv0(h0(z))
)2

h1 = −Dxv0(h0(z))v1(h0(z)).

that reads (
0ns,ns 0ns,nf

0nf ,ns Λ2
nf ,nf

)
P0(z)

−1h1 = −
(
0ns,ns 0ns,nf

0nf ,ns Λnf ,nf

)
P0(z)

−1v1(h0(z)).

Since Λnf ,nf
is invertible, it admits many solutions h1 unique up to an arbitrary element in

the kernel Dxv0(h0(z)), a gauge degree of freedom. With such h1, Dxv0(h0(z))h1 + v1(h0(z))
is unique, does not depends on such gauge degrees of freedom and belongs automatically to
kernel of Dxv0(h0(z)), i.e. to the range of Dzh0(z) which is of maximum dimension ns. Thus

it admits a unique left inverse
(
Dzh0(z)

)−1

left

yielding to

w1(z) =
(
Dzh0(z)

)−1

left

(Dxv0(h0(z))h1 + v1(h0(z))) .

When x = (xs, xf ) and
d
dtx = v(x, ε) reads

d

dt
xs = vs(xs, xf , ε),

d

dt
xf = vf (xs, xf , ε)

with
∂vf
∂xf

(x, 0) is invertible at point x such that when v(x, 0) = 0, one recovers the formulae

given in [28]. They correspond to the following differential algebraic system:

d

dt
xs =

(
1 +

∂vs
∂xf

(
∂vf
∂xf

)−2 ∂vf
∂xs

)−1

(xs,xf ,ε)

· vs(xs, xf , ε), vf (xs, xf , ε) = 0.

O.5 Classical analysis of the cat-qubit stabilization

For simplicity sakes, we consider here the following classical Hamiltonian encoding similar
drives and weak nonlinearities as those of the ATS-circuit considered in [42, appendix]:

H(qa, pa, qb, pb, t) =
ωa
2 (q2a + p2a)+

ωb
2 (q2b + p2b)+2g cos

(√
2φaqa+

√
2φbqb+(2ωa−ωb)t

)
(122)

where (qa, pa) and (qb, pb) are the canonical phase-space variables attached to oscillators a
et b respectively. Here ωa 	= ωb are their pulsations, g the coupling parameter is small, i.e.
|g| � ωa, ωb, and the positive parameters φa, φb � 1. The dynamics read

d

dt
qa = ωapa,

d

dt
pa = −ωaqa + 2ig

√
2φa sin

(√
2φaqa +

√
2φbqb + (2ωa − ωb)t

)
d

dt
qb = ωbpb,

d

dt
pb = −ωbqb − κbpb + 2ig

√
2φb sin

(√
2φaqa +

√
2φbqb + (2ωa − ωb)t

)
+ v cosωbt+ w sinωbt

109



where we have added on oscillator b a weak damping rate (0 < κb � ωb) and a resonant
input drive with |v|, |w| � ωb.

With complex variable za = (qa + ipa)/
√
2 and zb = (qb + ipb)/

√
2, one gets

d

dt
za = −iωaza + 2igφa sin

(
φa(za + z∗a) + φb(zb + z∗b ) + (2ωa − ωb)t

)
d

dt
zb = −iωbzb − κb

2 (zb − z∗b ) + 2igφb sin
(
φa(za + z∗a) + φb(zb + z∗b ) + (2ωa − ωb)t

)
+ ue−iωbt − u∗eiωbt

with (w + iv)/2
√
2 = u ∈ C.

The time-varying change of variables za = z̄ae
−iωat and zb = z̄be

−iωbt yields to

d

dt
z̄a = 2igφae

iωat sin
(
φa(z̄ae

−iωat + z̄∗ae
+iωat) + φb(z̄be

−iωbt + z̄∗b e
+iωbt) + (2ωa − ωb)t

)
d

dt
z̄b = −κb

2 (z̄b − z̄∗b e
2iωbt) + u− u∗e2iωbt

+ 2igφbe
iωbt sin

(
φa(z̄ae

−iωat + z̄∗ae
+iωat) + φb(z̄be

−iωbt + z̄∗b e
+iωbt) + (2ωa − ωb)t

)
.

First order averaging based on asymptotic expansion up-to order 3 versus φa, φb � 1 (weak

non-linearity) gives with g2 =
gφ2

aφb

2

d

dt
z̄a = 2g2z̄

∗
az̄b,

d

dt
z̄b = u− g2z̄

2
a − κb

2 z̄b.

This nonlinear system on C
2 admits 2 stable steady-states (z̄a, z̄b) = (±α, 0) with α2 = u/g2

and an unstable one (0, 2u/κb).
When κb � |g2|, z̄b relaxes rapidly to 2(u− g2z̄

2
a)/κb: the slow evolution of z̄a obeys to

d

dt
z̄a = −4g22

κb
z̄∗a(z̄

2
a − α2) (123)

where we have replaced in d
dt z̄a equation, z̄b by its value given by the usual quasi-static

approximation 0 = u− g2z̄
2
a − κb

2 z̄b (Tikhonov normal form, see sub-section O.2).
This reduced system on C derives from the potential (Lyapunov function) (see [42,

appendix])

V (z̄a, z̄
∗
a) =

4g22
2κb

((z̄∗a)
2 − α2)(z̄2a − (α∗)2) = 4g22

2κb
|z̄2a − α2|2

since the above slow dynamics reads

d

dt
z̄a = − ∂V

∂z̄∗a
.

It admits three steady states, the three critical points of V : two exponentially stable steady-
states ±α where V reaches its minimum, one exponentially unstable steady-state 0 corre-
sponding to a saddle point for V . Since the critical points of V are non degenerate (Hessian
of V with rank 2), these steady-states are all hyperbolic, either locally exponentially stable or
unstable. Moreover V is infinite at infinity. Thus the solutions of this slow model are defined
for any positive time t. Almost of them converge either to α or -α except those converging to 0
and located on the straight line passing to the origin with direction iα. This line corresponds
to the stable manifold (here a straight line) of the saddle steady-state. It is also the frontier
between the attraction domains of locally exponentially stable steady-states α and -α.
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