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Quantum systems: some examples and applications
LKB Photon Box

Exercise: Quantum Non Demolition (QND) measurement of
photons

Outline of the lectures and reference books



Controlling quantum degrees of freedom

m Nuclear Magnetic Resonance (NMR) applications;
Quantum chemical synthesis;

[ ]
m High resolution measurement devices (e.g. atomic/optic clocks);
m Quantum communication;

|

Quantum computation .

Physics Nobel prize 2012

Serge Haroche David J. Wineland

Nobel prize: ground-breaking experimental methods that enable measuring
and manipulation of individual quantum systems.



Technologies for quantum simulation and computation®

©1BM © Petta ©S. Kuhr

Photons

© OBrien © Blatt & Wineland
Requirement:
Scalable modular architecture
Control software from the very beginning.

3Courtesy of Walter Riess, IBM Research - Zurich.



Quantum computation: towards quantum electronics

D-Wave machine: machines to solve certain huge-dimensional optimization
problems (state space of dimension 2'%).

Major challenge: Fragility of quantum information versus external noise.

Quantum error correction

We protect quantum information by stabilizing a manifold of quantum states.



LKB Photon Box



The LKB Photon box 4

The first experimental realization of a quantum-state feedback:

Theory: |. Dotsenko, ...: Quantum feedback by discrete quantum
non-demolition measurements: towards on-demand generation of
photon-number states. Physical Review A, 2009, 80: 013805-013813.
Experiment: C. Sayrin, ..., S. Haroche:

Real-time quantum feedback prepares and stabilizes photon number
states. Nature, 2011, 477, 73-77.

4Laboratoire Kastler-Brossel (LKB), http://www.lkb.upmc: fr/cqed/



Three quantum features emphasized by the LKB photon box °

Schrédinger (h = 1): wave function |¢) in Hilbert space #,
d .
al’(ﬂ) :—IH‘iﬂ), H = Hy + uH;.

Unitary propagator U solution of %U = —iHU with U(0) = I.
Origin of dissipation: collapse of the wave packet induced by the
measurement of observable O with spectral decomp. >°, A, Py

B measurement outcome p with proba. P, = (¢|P,.|v) depending
on |¢), just before the measurement
B measurement back-action if outcome p = y:

Py[¢)
(V[Py¢)

Tensor product for the description of composite systems (S, M):
B Hilbert space H = Hs @ Hu
m Hamiltonian H = Hs @ Iy + Hipt + 1s @ Hy
H observable on sub-system M only: O = Is ® Oyp.

[P) = )+ =

5S. Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities
and Photons. Oxford Graduate Texts, 2006.



Composite system (S, M): harmonic oscillator ® qubit.

m System S corresponds to a quantized harmonic oscillator:

Hs = {anln

where |n) is the photon-number state with n photons
((n1|n2) = 0py.ny)-
m Meter M is a qubit, a 2-level system:

'(/Jn n=0 € IZ(C)}

Hu = {wg 19) + el€) Vg, e € (C} )
where |g) (resp. |e)) is the ground (resp. excited) state

({(glg) = (ele) =1 and (gle) =
m State of the composite system |W) € Hs @ Hpy:

W) =3 (Vg In) @ 1) + Ve In) @ &)

n>0
= Z\Ung |n> ® ‘g ane |n ® |e \Une, ‘-Ung S C
n>0 n>0

Ortho-normal basis: (|n) ®1(g),|n) @ |€)) -




Quantum trajectories (1)

R
R
2 D

B
V)B \\W)Rz

m When atom comes out B, the quantum state |W) ; of the
composite system is separable: W)z = |¢) @ |g).

m Just before the measurement in D, the state is in general
entangled (not separable):

(W) g, = Usm(|¥) @19)) = (Mglv))) ®|g) + (Melv))) ® |e)

where Ugy = Up,UcUR, is a unitary transformation
(Schrédinger propagator) defining the measurement operators
Mg and M, on Hs. Since Ugy is unitary, M{Mg + MM = .



Quantum trajectories (2)

Just before detector D the quantum state is entangled:
[W)g, = (Mg|y)) ©[9) + (Me|¢)) ® |€)

Just after outcome y, the state becomes separable ©:

_ My
W)= ( T |¢>) o 1),

Outcome y obtained with probability P, = <1/;|M}My|q/;>..
Quantum trajectories (Markov chain, stochastic dynamics):

M |y),  yi = g with probability { x| MyMg|v);
kst) <wk\M}Mng>
k1) = M,

M. ), yk = ewith probability <¢k|MLMe|¢k>;
<¢k\M;MeW’k>

with state |¢x) and measurement outcome yx € {g, e} at time-step k:

SMeasurement operator O = Is ® (|e){e| — |g)(g|).



Exercise: Quantum Non Demolition (QND) measurement of photons 7

Goal [W) s, = Ug,UcUp, (I¥) ® |g)) =7

_ l9)+le) lg)—|e)
R, . Us, =15 (1242 ol + (932 tel)
o %N 120N
Uc=e 2719 (gl+e 2" ®le)e|
B \ where N|n) = n|n),Vn € Nand ¢y € R.
Ve |W>R2 Ug, = Ug,
Show that U, (1) ® |9)) = J5 (1¥) ® ) + [¢) @ |e)) and

UsUn, (1) 3 19) = 25 ( (7% ) o l0)+ (620 ) o 1e).

Show that |W) g, = ((cos(£N)Iw)) @ |g) + (isin(RN)w)) @ [e)
Deduce that Mg = cos(%2N) and Me = —isin(“2N).

Question for Wednesday: write a computer program (e.g. a Scilab or Matlab
script) to simulate over 20 sampling steps the attached Markov chain starting
from |t)) = ﬁ (10) + |1)) with parameter ¢¢ = /3 (Quantum Monte-Carlo

trajectories).

M. Brune, ...: Manipulation of photons in a cavity by dispersive atom-field
coupling: quantum non-demolition measurements and generation of "Schrédinger cat
states . Physical Review A, 45:5193-5214, 1992.



Outline of the lectures and reference books



Outline of the lectures

Monday 1- Introduction (motivating applications; LKB photon-box as prototype of open
quantum system). 2- Spring system (harmonic oscillator, spectral
decomposition, annihilation/creation operators, coherent state and
displacement). 3- Spin system (qubit, Pauli matrices). 4- Composite spin/spring
system (tensor product, resonant/dispersive interaction, underlying PDE’s).

Tuesday 5- Averaging and rotating waves approximation (first/second order perturbation
expansion,) 6-Open-loop control via averaging techniques (resonant control for
qubit and Jaynes-Cummings systems)

Wednesday 7- Discrete-time dynamics of the LKB photon box (density operators,
measurement imperfection, decoherence, quantum filter) 8- Discrete-time
Stochastic Master Equation (SME) (Positive Operator Value Measurement
(POVM), Kraus maps and quantum channels, stability and contractions,
Schrédinger and Heisenberg points of view). 9- Discrete-time Quantum Non
Demolition (QND) measurement (martingales, convergence of Markov
processes, Kushner invariance Theorem) 10- Measurement-based feedback and
Lyapunov stabilization of photons (LKB photon box with dispersive/resonnant
probe atoms, closed-loop Monte-Carlo simulations).

Thursday 11- Continuous-time Stochastic Master Equation (SME) (Wiener processes and
Ito calculus, continuous-time measurement, quantum filtering) 12-
Measurement-based feedback stabilization of a qubit (Lyapunov feedback,
closed-loop Monte-Carlo simulations)

Friday 13- Lindblad master equation (decoherence models for a qubit and an oscillator )
14- Coherent-feedback stabilization (principle, cat-qubit and multi-photon
pumping)



Reference books

Cohen-Tannoudji, C.; Diu, B. & Laloé, F.: Mécanique Quantique Hermann, Paris,
1977, 1& Il (quantum physics: a well known and tutorial textbook)
S. Haroche, J.M. Raimond: Exploring the Quantum: Atoms, Cavities and

Photons. Oxford University Press, 2006. (quantum physics: spin/spring systems,
decoherence, Schrédinger cats, entanglement. )

C. Gardiner, P. Zoller: The Quantum World of Ultra-Cold Atoms and Light 1& II.
Imperial College Press, 2009. (quantum physics, measurement and control)

Barnett, S. M. & Radmore, P. M.: Methods in Theoretical Quantum Optics Oxford
University Press, 2003. (mathematical physics: many useful operator formulae
for spin/spring systems)

)]

B 3

&

E. Davies: Quantum Theory of Open Systems. Academic Press, 1976.
(mathematical physics: functional analysis aspects when the Hilbert space is of
infinite dimension )

Gardiner, C. W.: Handbook of Stochastic Methods for Physics, Chemistry, and
the Natural Sciences [3rd ed], Springer, 2004. (tutorial introduction to probability,
Markov processes, stochastic differential equations and Ito calculus. )

M. Nielsen, |. Chuang: Quantum Computation and Quantum Information.
Cambridge University Press, 2000. (tutorial introduction with a computer science
and communication view point )

]
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Quantum harmonic oscillator: spring model
Summary of main formulae

Exercise: useful operator identities



Quantum harmonic oscillator: spring model



Harmonic oscillator

Classical Hamiltonian formulation of dtzx = —w?x

d_wpM d o _ W2
@ =P= 90 wP = ox H=30 +x).

Electrical oscillator:
Mechanical oscillator

LC oscillator:
- ing: @y — _k
Frictionless spring: Zzx = —7.x. d vV d / a?
&~ Ta'" ¢ G

Quantum regime

ks T < hw : typically for the photon box experiment in these lectures,
w=51GHz and T = 0.8K.



Harmonic oscillator®: quantization and correspondence principle

d, _ __ OH dp_ _ __OH _ 2 2

Quantization: probability wave function |¢); ~ (¥(X, t))xer With
[) ~ (., 1) € L2(R, C) obeys to the Schrédinger equation
(7 = 1in all the lectures)
. d _ o ) 2\ w 82 w 2
/a\w =H|y), H=w(P"+ X°)= ~ 5 9x2 + 5 X
where H results from H by replacing x by position operator
V2X and p by momentum operator V2P = —i2.. His a
Hermitian operator on L?(R, C), with its domain to be given.

H w 2 w
PDE model: i%5(x, 1) = =5 25(x, 1) + §x2(x, 1), X €R.

3Two references: C. Cohen-Tannoudiji, B. Diu, and F. Lalo&. Mécanique
Quantique, volume 1& Il. Hermann, Paris, 1977.
M. Barnett and P. M. Radmore. Methods in Theoretical Quantum Optics.
Oxford University Press, 2003.



Harmonic oscillator: annihilation and creation operators

Average position (X); = (4| X)) and momentum (P), = (| P|t):

[T 2 T L
(X)i=J5 | xolax, (Py=—J5 [ ok

Annihilation a and creation operators a (domains to be given):

0 0
_ ip— 1 Ty _ijp=_1 _
a_X+/P_\/§<x+ax>, a=x /P_\/E<x 8x>

Commutation relationships:

X,Pl=1l [aal=1, H=wPP+X*)=uw ata+ 1)
2 2



Harmonic oscillator: spectral decomposition and Fock states

Spectrum of Hamiltonian H = — 8)(2 +4x2

E. — 1 _ 1 1/4 1 _X2/2H ” B N 2 d" 2
r=wtnig) w0 = (1) e 0, () = (-1)e e

0 2nn!

Spectral decomposition of a'a using [a,a'] = 1:

m If [b) is an eigenstate associated to eigenvalue ), a|v)) and af|¢))
are also eigenstates associatedto A — 1 and A\ + 1.

m a'ais semi-definite positive.

m The ground state |¢y) is necessarily associated to eigenvalue 0
and is given by the Gaussian function o(x) = —5 exp(—x?/2).



Harmonic oscillator: spectral decomposition and Fock states

[a,a’] = 1: spectrum of a'a is non-degenerate and is N.

Fock state with n photons (phonons): the eigenstate of afa associated to the
eigenvalue n (|n) ~ ¥n(x)):

a'aln)=nln), aln)y=+n|n—1), a'ln)=vn+1|n+1).

The ground state |0) is called 0-photon state or vacuum state.

The operator a (resp. a') is the annihilation (resp. creation) operator since it
transfers |n) to |n — 1) (resp. |n+ 1)) and thus decreases (resp. increases)
the quantum number n by one unit.

Hilbert space of quantum system: # = {3, ¢a|n) | (¢n) € P(C)} ~ L%(R,C).
Domain of aand a': {3°, ¢a|n) | (¢a) € h'(C)}.
Domain of H ot a'a: {3, ca|n) | (¢n) € P?(C)}.

H(C)={(c)) € ()| D _nMleaf < o0},  k=1,2.



Harmonic oscillator: displacement operator

Quantization of & x = —w?x — wyv2u, (H = £(p? + x2) + V2uXx)

H=uw (aTaJr ;) +u(a+a).

The associated controlled PDE

Glauber displacement operator D,, (unitary) with o € C:
D, — gra' —a’a _ g2iSaX—2iRaP
From Baker-Campbell Hausdorf formula, for all operators A and B,
e*Be® =B+ [A B]+ L[A [A B] + +IA A A B]]] + ...
we get the Glauber formula* when [A, [A, B]] = [B,[A,B]] =0

A+B

1
e?tB = A of g 2145,

“Take s derivative of A8 and of ¢4 e°8 *?[A Bl



Harmonic oscillator: identities resulting from Glauber formula

With A = aa' and B = —a*a, Glauber formula gives:

2
lof? o]

_ = T o —a*a _ i
Da:e Zeaaea _e+2eaaeaa

D_.aD,=a+al and D_,a'D,=a"+a*l

With A = 2iSaX ~ ivV23ax and B = —2:RaP ~ —v2Ra 2., Glauber
formula gives®:

D — e RaSa giv2Sax g—V2Raf;
=

( ‘w>) g iRaSa ’f‘mxw(X \f%a t)

—rd/ox

5Note that the operator e corresponds to a translation of x by-r.



Harmonic oscillator: lack of controllability

Take |¢) solution of the controlled Schrédinger equation
i%ly) = (w(afa+ L)+ u(a+ ah))|y). Set (a) = (v|al). Then
d
dt
From a = X + iP, we have (a) = (X) + i (P) where
(X) = (Y| Xy € Rand (P) = (¢|P|y) € R. Consequently:
d d
G X =wP), (P =—wX)-u

Consider the change of frame |¢) = e—"afD<a>[ [x) with

(@) = —iw (@) — iu.

t
0; = / (w| (a) |2 + U@?((&})) , D<a>t = e(ﬂ%a*—(a)fa’
0
Then |x) obeys to autonomous Schrédinger equation
. d
i &|X> =w(a'a+1)[x).
The dynamics of |¢)) can be decomposed into two parts:

m a controllable part of dimension two for (a)
m an uncontrollable part of infinite dimension for |x).



Harmonic oscillator: coherent states as reachable ones from |0)

Coherent states

|a|2 +oo

o) =Daf0) =€~ 2 ) &%ym, aeC

n=0

are the states reachable from vacuum set. They are also the
eigenstate of a: ala) = o|«).

A widely known result in quantum optics®: classical currents
and sources (generalizing the role played by u) only generate
classical light (quasi-classical states of the quantized field
generalizing the coherent state introduced here)

We just propose here a control theoretic interpretation in terms
of reachable set from vacuum.

8See complement By, page 217 of C. Cohen-Tannoudji, J. Dupont-Roc,
and G. Grynberg. Photons and Atoms: Introduction to Quantum
Electrodynamics. Wiley, 1989.



Summary for the quantum harmonic oscillator

m Hilbert space:
H={ S taln), (n)nzo € P(C)} = L3(R,C)
m Quantum state space:
D ={peL(H),p' =pTr(p)=1,p>0}. — )

m Operators and commutations:
aln) = +/n|n-1),af|n) = v/n+1in+1);
N = a'a, N|n) = n|n);

[a,al] = 1, af(N) = f(N + )a; y —|2)
D, = e ', vy e |
a= X+IP——(X+ ax) [X,P]=1/2. ’1>
m Hamiltonian: H/h = w.a'a + uc(a+ at). o, !
(assomated classical dynamics: 0)
LZ;,( = WeP, dt = —weX — V2U).
m Classical pure state = coherent state |«)
- (x—V2Ra)?
aeC: la)=>" (e lo®/2 o, ) |n); |y = #e“/ﬁ“ae— 2

ala) = ala), Da|0) = |a).



Exercise: useful operator identities

Set X, = § (¢e7*a+ e*a") for any angle . Show that

[XA,XA%] — i,

NI~

Prove that, for any «, 8, € € C, we have
o B f”
Da+5 =e 2 DQDQ

D...D_,= (1 n u) I+ eal —ea+ O(le?)
d ada*—a d =
(EDQ)D,Q:(im 7 >’+( a)a - (Go') a
Show formally that for any operators A and B on an Hilbert-space H:

1
eMtB — e e / e** Bel'"94ds + O(c?).
0

Deduced that for any C' time-varying operator A(t) , one has

d A _ /1 SA(t) (1—8)A(t)
i€ ; (t) e ds.
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Spin-1/2 system: qubit
Bloch sphere description

Exercise: propagator for a qubit



2-level system (spin-1/2)

e) The simplest quantum system: a ground
state |g) of energy wy; an excited state |e) of

U energy we. The quantum state |¢) € C?is a
linear superposition [¢) = 1b4|g) + ve|€) and

|9)

obey to the Schrédinger equation (g and e

depend on t).
Schrédinger equation for the uncontrolled 2-level system

(h=1):

zaW) = Holy)) = (wele) (el + wglg)(gl) [¥)

where Hj is the Hamiltonian, a Hermitian operator H(T) = H,.
Energy is defined up to a constant: Hy and Hy + w(t)l (w(t) € R
arbitrary) are attached to the same physical system. If |) satisfies
i) = Hol) then [x) = e~ O]y) with 49 = = obeys to

i4|x) = (Ho + wl)|x). Thus for any ¥, [¢) and e~"?|¢) represent the
same physical system: The global phase of a quantum system |[¢))
can be chosen arbitrarily at any time.



The controlled 2-level system

Take origin of energy such that wg (resp. we) becomes —=°5*¢
(resp. “5*) and set weg = we — wg
The solution of ig|¢) = Hohb) = 52 (le)(el — lg){gN)lv) is

—iwegt

()t = tgoe 2 1) + e 2 |€).

With a classical electromagnetic field described by u(t) € R,
the coherent evolution the controlled Hamiltonian

H(t) = “0 X 0 = 259 16) el 1) )+ A 1e) (01 +0) )

The controlled Schrédinger equation i%w) = (Ho + u(t)Hy)|y)
readS'

576 9 )
g 2 \0 -1 g 2 1.0/ \Wg/)"
The 3 Pauli Matrices®

ox = |e)(gl+19)(el, oy = —ile)(gl+ilg){el, oz = |e)(e] —|g)(g]

3They correspond, up to multiplication by /, to the 3 imaginary quaternions.




Pauli matrices and some formula

ox = |e)(g| + 19)(el, oy = —ile)(g| + i|g)(el, oz = |e)(e| — |9)(9|

ox?> =1, oxoy =ioy, [ox,0y]=2ioy, circular permutation ...

m Since for any 6 € R, €9 = cos ¢ + isin oy (idem for oy
and oz), the solution of i & |¢) = “2oy|y) is

) = e_iﬁeg’az|¢>0 — <cos <w29t> I—isin (w;-,,t) Uz) 110

m Foroa,B8=x,y,z, a # 5 we have

. . . -1 ) 1 .
Ou eleo’g — e*lgo'ﬁ Oa, <e/aaa) — (eleaa> — efIHO'a.
and also

0 0 ) )
9_%00‘ O_Be%aa _ e—l@aa o5 = age’e"‘*



Density matrix and Bloch Sphere

We start from |+) that obeys i%]z@ = H|y). We consider the
orthogonal projector on |¢), p = |¢)(v|, called density operator.
Then p is an Hermitian operator > 0, that satisfies Tr(p) = 1,
p? = p and obeys to the Liouville equation:

d .
gt = ~H.pl.
For a two level system |¢)) = 1¢|g) + ¥e|€) and

1+ xox + yoy + 2oy
N 2

where (x,y,z) = (2R(¢g15), 23(1gpe), tel* — [1hg[?) € R
represent a vector M = xi + yj+ zk, the Bloch vector, that
evolves on the unite sphere of R3, S? called the the Bloch
Sphere since Tr (p?) = x2 + y? + 22 — 1. The Liouville equation
with H = 520, + Jox reads

S



Summary: 2-level system, i.e. a qubit (spin-half system)

m Hilbert space:
Han = C2 = {4glg) + bele), v, v € C}.

m Quantum state space:
D={pecL(Hm),p' =p,Tr(p)=1,p>0}.

m Operators and commutations:

o. =g)(e|, oo = a.T = |e)(9g] q 0
ox = 0.+ 0, = |g)(e] + [€)(gl; Wy O
oy = lo. — io, = i|g)(e| —ile)(gl; Y

oz = o.o. — a0, = |e)(e] — [9)(gl;
ox® = 1, oxoy = ioy, [ox, 0y] = 2ioy, ...

m Hamiltonian: Hy = wq0z/2 4 Ugox.

m Bloch sphere representation:
D= {%(I—i—xa'x—‘rydy—i-ZO'z) | (x,y.2) ER3, X2+ y2 + 22 < 1}



Exercise: propagator for a qubit

Consider H = (uox + Voy + woy)/2 with (u, v, w) € R3.
For (u, v, w) constant and non zero, compute the solutions of

d . d . .
o0 = —iHl), LU= —iHU with Uo = I

in term of [¢)o, o0 = (Uox + Voy + woz)/V u? + v2 + w? and
w = VU2 + v2 + w2. Indication: use the fact that o2 = I.

Assume that, (u, v, w) depends on t according to
(u, v, w)(t) = w(t)(a, v, w) with (T, v, w) € R®/{0} constant of
length 1. Compute the solutions of
d

d . )
a|¢> = —iH(t)[4), EU— —iH(t)U with Uy =1

in term of |¢))o, & = Doy + Voy + Woz and 6(t) = [ w.

Explain why (u, v, w) colinear to the constant vector (u, v, w) is
crucial, for the computations in previous question.
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Spin/spring systems

Exercise: the Jaynes-Cummings propagator



Spin/spring systems



Composite system: 2-level and harmonic oscillator

Weg

2-level system lives on C2 with Hy = “2o;
oscillator lives on L2(R, C) ~ 2(C) with

We 82 We 2 !
a Ho= 5 ga t X ~we(N+3)

N=afaanda=X+iP~ %(XJF%)
The composite system lives on the tensor product
C? ® L2(R,C) ~ C2 ® 2(C) with spin-spring Hamiltonian

with the typical scales Q < we, weg aNd |we — weg| K we, Weg-
Shortcut notations:

H="20,+ws (N+1)+ilox(a — a)
——
Hq Hc Hmt




The spin-spring PDE

The Schrédinger system
w | ,
G = (Foute (N+ 3 ) +igontal — ) 10

corresponds to two coupled scalar PDE’s:

0 o " o2 Q a
Pe - pomy, + g <x2 - ) e —

"ot ox? f ax
i9%q _ ey y o (2 P vo—iL O,
"ot gr 2 ox2) "9 fax

since N = a'a, a= 5 (x + &) and [¢) = (Ye(X, 1), Yg(x, 1)),
Yg(- 1), ve(, 1) € L*(R,C) and [[¢g]|? + [[ve|® = 1.

Exercise: write the PDE for the controlled Hamiltonian

o, +we (N+ 1) +iZox(al — a) + uc(a + at) + ugox
where uc, ug € R are Iocal control inputs associated to the oscillator
and qubit, respectively.



The spin-spring ODE’s

The Schrédinger system

d

i&m = (“oy +we (N+ %) +ifox(a’ — a)) |¥)

corresponds also to an infinite set of ODE’s

.d ,

’aﬂ)e,n = ((n+1/2)wc + weg/2)1e,n + /% <ﬁ¢g,n—1 -vn+1 1/)g,n+1)
.d .

’ad}g,n =((n+1/2)we — Weg/2)¢g,n + /% (\/ﬁ¢e,n—1 —vn+1 1/’e,n+1>

where W}> = 28 q/’g,n|gv n> + ¢e,n|ev n>7 ¢g,n7we,n eC.

Exercise: write the infinite set of ODE’s for

290, +we (N+ %) + iox(a’ — a) + uc(a+a') + ugox
where ug, Ug € R are local control inputs associated to the oscillator
and qubit, respectively.



Dispersive case: approximate Hamiltonian for Q < |we — weg].

Hszisp:%Uerwc(NJré)f O'Z(N+%) Withxzz(ﬂi2

we—eg)

X
2
The corresponding PDE is :

3¢e Weg Xy/,2

3t = +7¢e ( - E)(X - W)we
1o} e 1 b2
’%: wg%ﬂL (Wc+>2<)(x *W)wg

The propagator, the t-dependant unitary operator U solution of
i4U = HU with U(0) = I, reads:

U(t) = e“="2exp (—i(we + x/2)t(N + 1)) ® |g) (g
+ e eal/2exp (—i(we — x/2)H(N + 1)) @ |e)(e|

Exercise: write the infinite set of ODE’s attached to the dispersive
Hamiltonian Hygsp.



Resonant case: approximate Hamiltonian for we = weg = w.

The Hamiltonian becomes (Jaynes-Cummings Hamiltonian):
| ;
Hx~Hy = %0z +w (N—|— 2) +i$(oa’ - o,a).
The corresponding PDE is :
awe _ w w 2 82 :Q 8
ot = TVt X~ gr)ve — iz (Xt gx ) Ve

61[)9 o w W, o 82 . Q 0
ot~ Vet g — galvet iz |\ X g ) ve

Exercise: Write the infinite set of ODE’s attached to the
Jaynes-Cummings Hamiltonian H.



Exercise: the Jaynes-Cummings propagator

For Hyc = %0z + w (N + }) + i%(o.a" — o,a) show that the
propagator, the t-dependant unitary operator U solution of
i4U = HycU with U(0) = I, reads

Ciwt( 2 1
Ut =e ' t< 2tz ) F(@a'-2a) where for any angle 0,
e/(=a'~a) _ |g)(g| ® cos(6v/N) + |e) (6| ® cos(6v/N + I)
_ 6. 9 aSNOVN) sin(6v/'N) fow sin(6v/'N) 4t
VN VN

Hint: show that

[Z+N,ca —oc,a =0
(—1) (1) (gl & N* + [e) (el @ (N + D))
(—1) (o: @ Na' — o, © aNk)

(o'_aJr - 0'+a) 2k

(cr_aT B 0_+a)2k+1

and compute de series defining the exponential of an operator.



Quantum Control’
International Graduate School on Control
WWW.eecl—1gsc.eu

Pierre Rouchon?

Lecture 5
Chengdu, July 9, 2019

'An important part of these slides gathered at the following web page
have been elaborated with Mazyar Mirrahimi:
http://cas.ensmp.fr/~rouchon/Chengduduly2019/index.html

2Mines ParisTech, INRIA Paris



Averaging and quasi-periodic control
First and second order averaging recipes

Exercise: resonant control of a qubit



Averaging and quasi-periodic control



Bilinear Schrddinger equation

Un-measured quantum system — Bilinear Schrédinger equation
.d
i) = (Ho + u(t)Hs)|),

m [)) € H the system’s wavefunction with H|¢>HH =1;

m the free Hamiltonian, Hy, is a Hermitian operator defined
onH,;

m the control Hamiltonian, H, is a Hermitian operator
defined on H;

m the control u(t) : R* — R is a scalar control.

Here we consider the case of finite dimensional H.



Almost periodic control

We consider the controls of the form

r
U(t) =€ (Z ujerth + u}fel'w]l’)

=

m ¢ > 0 is a small parameter;

B cu; is the constant complex amplitude associated to the
pulsation w; > 0;

m r stands for the number of independent frequencies
(w/' # Wi fOI’j # k).

We are interested in approximations, for e tending to 0™, of
trajectories t — |[1)¢); of

d ! . .
i (Ao+6 (Z “/e’w’t+"76’“f’) A1) |1be)

j=1
where Ay = —iHy and Ay = —iH are skew-Hermitian.



Rotating frame

Consider the following change of variables
|1;Z)e>f = eA0t|¢e>2‘-

The resulting system is said to be in the “interaction frame”

d
a‘¢e> - EB(t)‘¢e>

where B(t) is a skew-Hermitian operator whose
time-dependence is almost periodic:

r
B(t) — Z ujelefeontA‘l ert + ujfefleteonl‘A1 erf.

Main idea
We can write d
B(t) = B+ Eé(t),

where B is a constant skew-Hermitian matrix and E(t) is a
bounded almost periodic skew-Hermitian matrix.



Multi-frequency averaging: first order

Consider the two systems

d d 4
Glod =B+ B0) o,
and

a| e > -
initialized at the same state [¢!*)o = |¢¢)o.

Theorem: first order approximation (Rotating Wave

Approximation)

Consider the functions |¢.) and |¢25t) initialized at the same
state and following the above dynamics. Then, there exist
M > 0 and n > 0 such that for all € €]0, n[ we have
t
max {[lge)e — 91| < Me
te [0%}



Multi-frequency averaging: first order

Proof’s idea
Almost periodic change of variables:

Xe) = (1 = eB(1)) )

well-defined for ¢ > 0 sufficiently small.
The dynamics can be written as

;’t|xe> = (B + EF(c, 1)) xe)

where F(e, t) is uniformly bounded in time.



Multi-frequency averaging: second order

More precisely, the dynamics of |x.) is given by

Gl = (eB-+ BB - 2B B + CE(.0)) o)

m E(e, 1) is still almost periodic but its entries are no more linear
combinations of time-exponentials;

] §(t)%§(t) is an almost periodic operator whose entries are
linear combinations of oscillating time-exponentials.

We can write

B(t) = %6(0 and E(t)%g(t) =D+ %E(t)

where C(t) and D(t) are almost periodic. We have
d v (B _2p.29 (1B &P 3
G = (B-@D g (1B.60] - D) + E(e.D) )

where the skew-Hermitian operators B and D are constants and the
other ones C, D, and E are almost periodic.



Multi-frequency averaging: second order

Consider the two systems
d d
G100 =< (B+ 5B 100,

and ;
~1¢?) = (eB — &D)|¢?"),

initialized at the same state [¢2™)o = |6e)o.

Theorem: second order approximation

|

Consider the functions |¢.) and |¢>§n ) initialized at the same
state and following the above dynamics. Then, there exist
M > 0 and n > 0 such that for all € €]0, [ we have

max H|¢6>f 2nd
te {0,1}

€

H<I\/Ie



Multi-frequency averaging: second order

Proof’s idea
Another almost periodic change of variables

&) = (1— ¢ (1B, €0 - D()) ) Ixe)-
The dynamics can be written as
;‘5€> - (EB — D+ EF(e, t)) )

where eB — €D is skew Hermitian and F is almost periodic and
therefore uniformly bounded in time.



First and second order averaging recipes



The Rotating Wave Approximation (RWA) recipes

Schrodinger dynamics i) = H(t)[1), with

m r
H(t) = Hy + Z uk(t)Hg, ug(t) = Z uk’jeiwjt + u;:,je_iwjt'
k=1 j=1

The Hamiltonian in interaction frame

Hin(t) =Y (ux;€™" + ui jo~"") e Hye™ Mot
k’j

We define the first order Hamiltonian

st
H; wa = Hint = “m -,-/ Hini(1)

and the second order Hamiltonian
nd st . N R
Hi?wa = H:wa - ’(Hint - Hint) (/[(Hint - Hint))

Choose the amplitudes uy ; and the frequencies w; such that the

st nd
propagators of H}\,, or H2,, admit simple explicit forms that are used
to find t — u(t) steering |¢) from one location to another one.



Exercise: resonant control of a qubit

Inidp) = (“2oz + Yox) [¢), take a resonant control u(t) = ue/wea! + u*e~/weal

with u slowly varying complex amplitude ‘ ) < weglU|. Set Hy = eg oz and
eHy = U'X
iwegt
Consider |¢) = e~ 2 “|¢) and show that i%|¢) = Hjntl¢) with
o=|e)(g| o=|g) el
u(t) jjweqt Ox T oy weqt 9% — 1Oy
Hini = ()el ot 5 +()e/ gt . ) t
Show that up to second order terms one has i%|¢) = H}f\,a\qs) with
st * o U
Hiva = 252 |
Take constant control u = Qe for t € [0, T], T > 0. Show that |$) is solution
Q(cos Oay+sin 0
01 (£): ig]g) = M=)
;= . ,
Set © 2 r T. Show that the solution at T of the propagator U; € SU(2)
I'%U _ Qr(COS 90-;+sm oy) U, Uy = Iis given by
Ur =cos©,l — isin ©, (cos fox + sinboy) ,
Take a wave function |¢). Show that exist Q, and @ such that Ur|g) = €'“|a),

where « is some global phase.

Prove that for any given two wave functions |¢a) and |¢,) exists a piece-wise
constant control [0,2T] 3 t — u(t) € C such that the solution of (X) with
|$)o = |¢a) satisfies |¢) T = €F|¢p) for some global phase 3.
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The Rotating Wave Approximation (RWA) recipes

Schrodinger dynamics i) = H(t)[1), with

m r
H(t) = Hy + Z uk(t)Hg, ug(t) = Z uk’jeiwjt + u;:,je_iwjt'
k=1 j=1

The Hamiltonian in interaction frame

Hin(t) =Y (ux;€™" + ui jo~"") e Hye™ Mot
k’j

We define the first order Hamiltonian

st
H; wa = Hint = “m -,-/ Hini(1)

and the second order Hamiltonian
nd st . N R
Hi?wa = H:wa - ’(Hint - Hint) (/[(Hint - Hint))

Choose the amplitudes uy ; and the frequencies w; such that the

st nd
propagators of H}\,, or H2,, admit simple explicit forms that are used
to find t — u(t) steering |¢) from one location to another one.



Averaging of spin/spring systems
m The spin/spring model
m Resonant interaction (Jaynes-Cummings system)
m Dispersive interaction

Exercise: control of the Jaynes-Cummings system



Averaging of spin/spring systems
m The spin/spring model
m Resonant interaction (Jaynes-Cummings system)
m Dispersive interaction



The spin/spring model

The Schrédinger system
P91y = (“50y + o (alat L) + 12oy(al
at - Oz T We 2 2 Ox ) |¢>

corresponds to two coupled scalar PDE’s:

2
iawe+“egwe+<x —a)we L2,

ot 2 X JBox"e
.awg o (.Ueg We 2 82 Q a
ot T2 Vet \ X Tk ) Ve GaxY

since a = \if (x + 2) and [1) corresponds to (Ye(X, 1), Yg(X, 1))
where (., 1), 9g(., 1) € L*(R,C) and [|yse||? + [[g]1 = 1.



Resonant case: passage to the interaction frame

2] <« w. Then H = Hy + ¢Hy where ¢ is a small parameter and

0 _ t |
H .
6?1 = iZox(a' — a).

—iwt

Hi is obtained by setting |¢) = e~!(a'a+2) =5 ) in
ing|y) = H|y) to get ihg|é) = Hingl¢) with

% _ I% (efiwto__ + eiwto,+) (eiwtaT o efiwta)

where we used

3o axe*g"’ — e 0 + €', gif(a'ary) g g—if(a'aty) _ o-if g



Resonant spin/spring Hamiltonian and associated PDE

The secular terms in Hj; are given by (RWA, first order
t
approximation) H;:,a/h = i$(c.a" — o,a) . Since quantum state
) = ett(a'atz) g ¥!e ) obeys approximatively to
t
ih|¢) = H;\f,a|¢>, the original quantum state |¢)) is governed by

.d | .
Iah/;) = <°2’0'z +w (a*a+ 2) + I%(o:aJr - o'+a)) [4)
The Jaynes-Cummings Hamiltonian (weq = we = w) reads:
I )
Hyc/h= 507 +w (a*a + 2) + I%(aaT — o;,a)

The corresponding PDE is :

.0 w w o2 . 0
: gf =tpvet 3 (¢ - palve T30 (" - ax) Vo
a'lpg _ w w 2 62 . Q 8
o T 2vet a T glve tiag (X gy ) Ve



Dispersive case: passage to the interaction frame

H— g, tuw(ala+ ) +idox(al — a)
W|th |Q| < |wsg — Wc| < CUeg,Wc.
Then H = H, + eH{ where ¢ is a small parameter and

% = %207 + we (aTa+ '), e’;; = ﬂJ’x(aJf — a).

H,nt is obtained by settlng ) = e fwet(a'ats) o=

o) in
ingly) = H|y) to get in|) = Hin|¢) with
Hint _ ig(efiwegto_ + eiwegto_ )(eiwctaT 7 efiwcta)
h 2 i *
_ i% (ei(wc—weg)taa‘r _ g lwemweo)ty g 4 gilwetwe)ty gt _

st
Thus H}\ya = Hint = 0: no secular term. We have to compute

n - — —
waa = Hint - ’(Hint - Hint) (f;(Hint - Hint)) Whereft(Hint -

o i(wetweg)t o a)

Hit/h

corresponds to
Q [ eilwe—weg)t + e~ i(we—weg)t gl(wetweg)t + e
2 ( We—Weg o.a + We—Weg o.a we+weg o,a +

WetWweg

—i(we+weg)t
c eg aa)



Dispersive spin/spring Hamiltonian and associated PDE

. nd
The secular terms in HZ,, are

Q° 02
T(wo—teg) (O’.O’.,_aTa — 0'+0'.aaT) + m( —o.0.a aT + O'ZO'aTa)

Since |Q] < |weg — we| K weg, we, We have 4(%+zw 5 <7

We— Weg)
ond I I
Hpya /b~ — (GZ(N+§)+§)'

gtiwet(N+3) o™

4(we—weg)

Since quantum state |¢) = "’Z|1/1> obeys

nd
approximatively to ik Z|¢) = waa|¢) the original quantum state |} is
governed by i %|y) = (H"’s" - ) 1) with

B(wc—weg)

Hdisp/h = %O‘Z + we (NJr %) — % oz (NJr %) and X = 2(w92

c—Weg)

The corresponding PDE is :

8'1,[13 o CUeg 1 . K 2

/ or +— e + 2(‘*’0 2)(X T Ox2 We
Oy | Weg Xy, 0 07

! ot - wg ( +§)(X - axz)wg



Exercise: control of the Jaynes-Cummings system



Exercise: control of the Jaynes-Cummings system

Consider the spin-spring model with Q < |w|:
H

H- Yo tw (aTa+ %) +i$ox(a’ —a) + u(a+ a')
with a real control input u(t) € R:

Show that with the resonant control u(t) = ue—"“! + u*e™! with complex
amplitude u such that |u| < w, the first order RWA approximation yields to the
following dynamics in the interaction frame

ig1¢) = (i%(ca — ova) + ual + ura) v)

Set v € C solution of %v = —ju and consider the following change of frame
|¢) = D_vy|v) with the displacement operator D_y = e~va'+v*a_ ghow that, up
to a global phase change, we have, with &1 = i%v,

i419) = (£ (cal — na) + (iion + i) |9)

Take the orthonormal basis {|g, n), |e, n)} with n € N being the photon number
and where for instance |g, n) stands for the tensor product |g) ® |n). Set
|#) = X", dg,nlg, N + de,nle, n) with ¢g,n, pe,n € C depending on t and
> 169,02 + |pe,nl? = 1. Show that, for n > 0

1G9 ni1 = IGVNF Tpen+ U doni1, IGden=—iFVN+ 1dgni1 + Udgn
and "%%,o = a*¢e70.

Assume that |¢)o = |g, 0). Construct an open-loop control [0, T] > t — @(t)
such that |¢) T = |g, 1) (hint: use an impulse for t € [0, €] followed by 0 on [e, T]
with e < T and well chosen T).

Generalize the above open-loop control when the goal state |¢) 1 is |g, n) with
any arbitrary photon number n.
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Discrete-time dynamics of the LKB photon box
m General structure based on three quantum features
m Dispersive probe qubits
m Resonant probe qubits
m Density operator to cope with measurement imperfections

Exercise: Markov process including detection errors



Three quantum features emphasized by the LKB photon box 3

Schrédinger (k = 1): wave function |¢) in Hilbert space H,

d .
aW’) = —iH|¢y), H = Ho+ uH;.
Unitary propagator U solution of %U = —iHU with U(0) = .
Origin of dissipation: collapse of the wave packet induced by the
measurement of observable O with spectral decomp. >, A, Py
H measurement outcome p with proba. P, = (¢|P,|¢) depending
on |v), just before the measurement
B measurement back-action if outcome p = y:

Py|¢)
(¥|Py[¢)

Tensor product for the description of composite systems (S, M):
m Hilbert space H = Hs @ Hu
m Hamiltonian H=Hs® Iy + Hipt + 1s @ Hy
B observable on sub-system M only: O = Is @ Op.

[¥) = )y =

3S. Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities
and Photons. Oxford Graduate Texts, 2006.



Composite system built with a harmonic oscillator and a qubit.

m System S corresponds to a quantized harmonic oscillator:

HS = Hc = {i Cn’n>

n=0

(Cn)nzo € /Z(C)} 7

where |n) represents the Fock state associated to exactly n
photons inside the cavity

m Meter M is a qubit, a 2-level system: #, = H, = C2, each
atom admits two energy levels and is described by a wave
function ¢,4|g) + cel€) with |c4|? + |Cel? = 1;

m State of the full system |V) € Hs @ Hpy = He @ Ha:

+oo
W) = Z Cng|N) ® [g) + Cne|N) @ [€),  Cne, Cng € C.

n=0

Ortho-normal basis: (|n) ® |g), |n) ® |€))nen.



Markov model (1)

R
2 D

s/
V)B \‘W>R2

m When atom comes out B, |V)g of the full system is separable
V)s = 1) ®9).

m Just before the measurement in D, the state is in general
entangled (not separable):

(V)R = Usu(|v) @19)) = (Mglv)) @ |g) + (Melv)) @ |e)

where Ugy is a unitary transformation (Schrédinger propagator)
defining the linear measurement operators My and M, on Hs.
Since Ugy is unitary, MiMg + MM, = I.



Markov model (2)

Just before D, the field/atom state is entangled:

My|y) @ |g) + Me|) © |e)

Denote by 1 € {g, e} the measurement outcome in detector D: with
probability P, = <1/z\MLM,L|z/;> we get p. Just after the measurement
outcome p = y, the state becomes separable:

|W>D:ﬁ(”’}’|w>)®‘y (\/W > ®‘y>

Markov process: [1x) = [)i—kar, k € N, At sampling period,

Mgt with y, = g, probability Py = (i | MLM, |1y ):
_ (x| M Mg|v) Ye= 9P Y% <wk| 9 g|¢k>’
o) =0 " gy

, B . B :
(o My Mo ) with yx = e, probability Pe = <1/’k|MeMe|¢k>.



Dispersive case

Up, - ("” fe e g (S 19) g

Uc =2V g)(g| + &N le) (el

where ¢g and ¢ are constant parameters.
The measurement operators My and M. are the following
bounded operators:

My = cos (7‘1)’?*2%”) , M =sin <7¢”+2¢°N)

up to irrelevant global phases.
Exercise: prove the above formulae for My and Me.



Resonant case: Usy = Ug,UcUR,

U _e IZay_COS (?1)+S|n (?1) (|g><e|—|e><g|) and URz =1
and

Uc = |g)(g| cos (%m) + |e)(e| cos (%\/W)

in( £ sin <)
+1g)(el (%m)) a' —|e)(gla (%m))

The measurement operators My and M, are the following bounded
operators:

Mg = cos (%) cos (%W) —sin (%) (W) a'

sy

M, = —sin (%) cos (9\/7) ~cos(%)a (W)

Exercise: Show that MMy + MM, = I.



Markov process with detection inefficiency

m With pure state p = |¢)(¢|, we have

P =) (W] = M,.pM',

——
Tr (M, pM},)
when the atom collapses in 1 = g, e with proba. Tr (MuPMD-

m Detection efficiency: the probability to detect the atom is
n € [0, 1]. Three possible outcomes for y: y = g if detection in g,
y = eif detection in e and y = 0 if no detection.

The only possible update is based on p: expectation p, of [¢,) (1|
knowing p and the outcome y € {g, e, 0}.

MgPM; ; "
W if y=9, pl’obablllty nTr (Mgng)
= MepM} . -
Py W if y = e, probability n Tr (MepMe)

MgpM], + MepM, it y =0, probability 1 —

Forn=0:p, = MgpM; + MopM., = K(p) = E (py | p) defines a
Kraus map.



Several operator spaces

m H separable Hilbert space. Pure states |¢)) are unitary vectors of
‘H also called (probability amplitude) wave functions.

m L(H) is the space of linear operators from # to #: it contains
the spaces of

m bounded operators (Banach space B(#) with sup-norm)

B compact operators (space K°(H))

m Hilbert-Schmidt operators (Hilbert space K?(#H) with the
Frobenius norm)

m trace class operators (Banach space K'(#) with the trace
norm).

m the most general quantum state p is non negative Hermitian
trace class operator of trace one. p live in a closed convex
subset of K'(H).

If Tr (p2) = 1 then p = [¢) ()| where [¢) is pure state.

For H of finite dimension, these operator spaces coincide. For H of
infinite dimension, they are all different:

dmH =00 = K'(H)S K3 (H)SK(H) S BH) S LH).



LKB photon-box: Markov process with detection errors (1)

m With pure state p = |[¢) (|, we have
1

e (b0 M,.pM;

m

Py = [V ) (P4 | =

when the atom collapses in . = g, e with proba. Tr (MMpML).

m Detection error rates: P(y = e/ = g) = ng € [0, 1] the
probability of erroneous assignation to e when the atom
collapses in g; P(y = g/ = €) = ne € [0, 1] (given by the
contrast of the Ramsey fringes).

Bayesian law: expectation p, of |4, ) (14| knowing p and the
imperfect detection y.
(1*779)M9PM;+77eMePMZ
T((1—719) MgpM+1neMopMY)
ngMgPM;vL“*We)MePMZ
Tr(ngMgpMy+(1 —ne)MepM} )

if y = g, prob. Tr ((1 — ng)MgpM}, + neMepML);
Py =

if y = e, prob. Tr (ngmgpmg T(1- ne)MepML).

p.. does not remain pure: the quantum state p, becomes a mixed
state; ;) becomes physically irrelevant.



LKB photon-box: Markov process with detection errors (2)

We get
(1 *ng)MgPM;+77eMePMl
Tr((1 —Wg)MgPM;-HIeMePML) ’

TIgMgPM;+(1 _ne)MePMl
Tr(ﬁgMgPM;‘FU —Ue)MePMl)

with prob. Tr ((1 — ng)MgpM}, + neMepML);
Py =

with prob. Tr (ngMgpM_I, +(1- ne)Meng).

Key point:
Tr (1 = ng)MgpM., + neMepM.) and Tr (1gMypM, + (1 — ne)Mop M
Ng)MigpM g = Tjele PV NgMgpM g Ne)MepVl,

are the probabilities to detect y = g and e, knowing p.
Reformulation with quantum maps : set

Kg(p) = (1-ng)MgpM}+neMepM},  Ko(p) = 1gMgpM+(1—ne)MepMp.

_ Ky(p)
Py =T &, (p)) when we detect y
The probability to detect y knowing p is Tr (K, (p)).

We have the following Kraus map:
E(p) | p) = Kg(p) + Ke(p) = K(p) = MgpM{, + MopM},.



Exercise: Markov process including detection errors

Consider a set of N bounded operators M, on an Hilbert space H such that Eu MLMM = I. Take the ideal

+

My, pM

Markov process py 1 = ”4’7"“‘4[— and ideal measurement outcomes p € {1, ..., N} of probability
T (MM}, )

Tr (MquML)- Assume that the real measurement process provides Ny different values y € {1, ..., Ng}

correlated to the ideal measurement . via the following conditional classical probabilities P (y | ) = ny,,, € [0, 1]
where 7 is a left stochastic matrix (Zy Ny, = 1foreach p).

Denote by p the expectation value of pj knowing pg and the real measurement outcomes yg, . . ., yx—1 at steps
0, ..., k — 1. Consider the un-normalized ideal quantum state
— Il I
gy = My - MygpoMy, . M

associated to the ideal outcomes pg, ..., pk-

Show that B (g, - - ik | £0) = Tt (&g g )-

Using Bayes law, prove that

N N
P(Yo, - Yk [ PO)= D o D Mygoug - Mo T (ﬁuo,m,uk) .

pg=1 =1
Using Bayes law, prove also that

Moo - Wieong 10 (Euo,m,uk)
P(¥o, - Yk | po)

P(pos - -tk | Yoo - -5 Yks PO) =

Sy My My B M,
Tr(zﬁ:1 Wyz,uMuﬁzM“)
P(yelYor--->Ye—1,pP0) =Tt (Eﬁ:1 "ye«#MLal Mu) (hint: use the un-normalized estimate

§y0,~-~,yz colinear to py1).

and that

Provefor £ =1,...,k —1that py 1 =
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Exercise: cooling with resonant qubits in |g)



Quantum measurement and filtering
m Projective measurement
m Positive Operator Valued Measurement (POVM)
m Stochastic process attached to POVM
m Quantum Filtering



Projective measurement

For the system defined on Hilbert space #, take
m an observable O (Hermitian operator) defined on H:

0=> AP,

where \,’s are the eigenvalues of O and P, is the projection
operator over the associated eigenspace.

m a quantum state given by the wave function |¢) in H.

Projective measurement of the physical observable O =" A, P, for
the quantum state |¢):
The probability of obtaining the value )\, is given by
P, = (¢|P,|¢); notethat Y~ P, =1as >, P, = Iy (Iy
represents the identity operator of #).

After the measurement, the conditional (a posteriori) state |, )
of the system, given the outcome )., is

Pl/ |w>
VP,

(collapse of the wave packet).

[v4) =




Positive Operator Valued Measurement (POVM) (1)

System S of interest (a quantized electromagnetic field) interacts with
the meter M (a probe atom), and the experimenter measures
projectively the meter M (the probe atom). Need for a Composite
system: Hs ® Hy where Hg and Hy, are Hilbert spaces of S and M.
Measurement process in three successive steps:

Initially the quantum state is separable

Hs @ Hum > |V) = [tbs) @ |Ym)

with a well defined and known state |y) for M.

Then a Schrédinger evolution during a small time (unitary
operator Us y) of the composite system from |¢s) ® |m) and
producing Us u(|vs) ® |¢m)), entangled in general.

Finally a projective measurement of the meter M:
Oy =Is® (X, A\ P,) the measured observable for the meter.
Projection operator P, is a rank-1 projection in #y over the
eigenstate |£,) € Hu: P, = 1£,)(&)-



Positive Operator Valued Measurement (POVM) (2)

Define the measurement operators M, via

Vjgs) € Hs,  Usm(lvs) @ [em) =D (Mulvs)) ®16).

Then S, M{M, = Is. The set {M,} defines a Positive
Operator Valued Measurement (POVM).

In Hs ® Hy, projective measurement of Oy = Is ® (ZV )\VPV)
with quantum state Ug y(|vs) @ [¢¥m)):

The probability of obtaining the value A, is given by
P, = (Ys|MIM,|¢s)

After the measurement, the conditional (a posteriori) state
of the system, given the outcome v, is

m,
Vs, 4) = \/I%s)



Stochastic processes attached to a POVM

m To the POVM (M,) on Hs is attached a stochastic process of quantum
state |y)

_ M) " _ t
[y ) = Nl with probability P, = ()| M, M, |1))

m For any observable A on g, its conditional expectation value after the
transition knowing the state |)

E ({0 Aws) | 0)) = I3 MLAM,)|w) = Tr (A K (1) ()

with Kraus map K (p) = 3, M, pM], with p = |1) (1| density operator
corresponding to [¢).

m Imperfection and errors described by left stochastic matrix (.. ) where
Ny, is the probability of detector outcome y knowing that the ideal
detection v (Zy ny,» = 1). Then Bayes law yields

__K(p)
]E(P+‘Pa}’) 7-|—I‘(K7y?’»)

with completely positive linear maps Ky (p) = 3, ny,. M, pM},
depending on y. Probability to detect y knowing p is Tr (K, (p).



Stochastic Master Equation (SME) and quantum filtering

Discrete-time models are Markov processes
yk (Pk)

Pk+1 = Ky (on))” with proba. Py, (pk) = Tr (Ky, (pk))

where each K, is a Ilnear completely positive map depending on the
measurement outcomes. K =3 K|, corresponds to a Kraus maps
(ensemble average, quantum channel)

E (pk+1lox) = K(pk) = ZKy(pk)

Quantum filtering (Belavkin quantum filters)
data: initial estimation py of the quantum state p at step k = 0, past
measurement outcomes y; for / € {0,...,k —1};
goal: estimation px of p at step k via the recurrence (quantum filter)

PN K}’I(ﬁ/)
== |=0,...,k—1.
P T (K ()

stability If the initial estimate po of p differs from po, then pi, the
quantum-filter state at step k tends to converge to pi (the
fidelity F(p, p) = Tr (/\/pP+/P) between p and p is a
sub-martingale °).
3PR: Fidelity is a Sub-Martingale for Discrete-Time Quantum Filters. IEEE
Transactions on Automatic Control, 2011, 56, 2743-2747.




Convergence issues with Schrédinger and Heisenberg
pictures



General structure of Markov model in discrete time

m Any open model of quantum system in discrete time is
governed by a Markov chain of the form

_ K,Vk(pk)
PRt = T Ky, (px))

with the probability Tr (K, (px)) to have the measurement
outcome yx knowing pk_1.

m The structure of the super-operators K, is as follows. Each
K, is a linear completely positive map (a quantum
operation, a partial Kraus map*) and >y Ky(p) =K(p)isa
Kraus map, i.e. K(p) = 3_, K,.pK|, with 3> KI,K, = 1I.

*Each K, admits the expression
Ky(p) = Z Ky,uPK;,u
I

where (K,,,) are bounded operators on H.



Schrddinger view point of ensemble average dynamics

m Without measurement record, the quantum state px obeys to the
master equation

Pri1 = K(pk)-
since E (pk+1 | pk) = K(py) (ensemble average).

m K is always a contraction (not strict in general ) for the following
two such metrics. For any density operators p and p’ we have

IK(p) —K(p)llt < llp = p'[l1 and F(K(p),K(p")) > F(p,p")

where the trace norm || e ||; and fidelity F are given by

o= o/l 2 Te(lp = p') and F(p. ) 2 T (\/Vom' )



Properties of the trace distance D(p, p’) = Tr(|p — p'|) /2.

Unitary invariance: for any unitary operator U (UTU = 1),
D(UpU', Up'U') = D(p, p').
For any density operators p and p/,

D(p,p') = max T (P(p— ")) -
Psuch that
0<P=P <]
Triangular inequality: for any density operators p, p’ and p”

D(p, ") < D(p, p') + D(¢', p").



Complement: Kraus maps are contractions for several "distances"®

For any Kraus map p — K(p) = >, Mu.pM}, (3=, MiM,, = 1)
d(K(p), K(0)) < d(p, o) with

m trace distance: dy(p, o) = § Tr(|p — o).

m Bures distance: dg(p, o) = /1 — F(p, o) with fidelity
F(p,0) =Tr (\/\/po/p).

m Chernoff distance: d¢(p,0) = /1 — Q(p, o) where

Q(p, 0') = min0§s§1 Tr (p50'1 S).

m Relative entropy: ds(p, o) = +/Tr (p(log p — log 7)).

m >-divergence: d,2(p,0) = \/Tr ((p — U)a*%(p — a)g*%)_

m Hilbert’s projective metric: if supp(p) = supp(o)
1 1 1
dh(p, o) = log (Hp‘wp‘z OO)

otherwise dh(p, o) = +o0.
5A good summary in M.J. Kastoryano PhD thesis: Quantum Markov Chain
Mixing and Dissipative Engineering. University of Copenhagen, December
2011.

1 —
o)




Complement: non-commutative consensus and Hilbert's metric® ’

The Schrédinger approach dy(p, o) = log (Hp—%ap—% Hoo Ha—%pa—% Hoo)
K(p) =) MM}, > MM, =1

Contraction ratio: tanh (%) with A(K) = max,, »~o dn(K(p), K(0))
The Heisenberg approach (dual of Schrédinger approach):

K*(A)=>_ MiAM,, K*()=1.
"Contraction of the spectrum™:

Amin(A) < /\min(K*(A)) < /\max(K*(A)) < Amax(A)-

5R. Sepulchre et al.: Consensus in non-commutative spaces. CDC 2010.
D. Reeb et al.: Hilbert’s projective metric in quantum information theory.
J. Math. Phys. 52, 082201 (2011).



Heisenberg view point of ensemble average dynamics

m The "Heisenberg description” is given by iterates Ax;1 = K*(Ak) from
an initial bounded Hermitian operator A, of the the dual map K*
characterized as follows: Tr (AK(p)) = Tr (K*(A)p) for any bounded
operator Aon H. Thus

K*(A) = > K} AK, whenK(p Z K,.pK},.
I3

K* is an unital map, i.e., K*(I) = I, and the image via K* of any
bounded operator is a bounded operator.

m When # is of finite dimension, we have, for any Hermitian operator A:

>\min(A) S Amin(K* (A)) S Amax(K* (A)) S )\max(A)

where Amin and A\max correspond to the smallest and largest
eigenvalues®.

m If A=K*(A), then Tr (ka) =Tr (pOZ) is a constant of motion of p.

8R. Sepulchre et al.: Consensus in non-commutative spaces. Decision
and Control (CDC), 2010 49th IEEE Conference on,2010, 6596-6601.



Convergence in Schrédinger and Heisenberg pictures

Take a Kraus map K and its adjoint unital map K*. When H is
of finite dimension, the following two statements are equivalent :

m Global convergence towards the fixed point p = K(p) of
Pr+1 = K(pg): for any initial density operator py,
liMk+00 px = p for the trace norm || e ||;.

m Global convergence of Ax. 1 = K*(Ak): there exists a
unique density operator p such that, for any initial bounded
operator Ay, limg., 1o Ax = Tr (Aop) I for the sup norm on
the bounded operators on H.



Exercise: cooling with resonant qubits in |g).

Consider the quantum channel p,,, = K(p,) 2 Mgp, M}, + Mop, M}, with
Kraus operators given by

M, = cos (%W) . M.=a (Sm(?\m))

VN

where a is the annihilation operator, N = a'a and © > 0 is a parameter. Take
the Fock basis (|n))sen. The density operator p is said to be supported in the
subspace {|n)}""y when, for all n > ™, p|n) = 0.

Verify that M{Mg + MM, = I.

Show that

Tr (Npy,1) = Tr (Npy) — (sm (@\F) pk)

Assume that for any integer 0 < n < n™*, ©y/n/x is not an integer.
Then prove that p, tends to the vacuum state |0) (0| whatever its initial
condition with support in {|n)}7"g .

When ©+/n/x is an integer for some 0 < 1 < ™, describe the
possible Q-limit sets for p, for any initial condition p, with support in

pmax

{Inm}h=o-
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QND measurements of photons
m Monte Carlo simulations and experiments
m Martingales and convergence of Markov chains
m QND martingales for photons



LKB photon box : open-loop dynamics ideal model

R, C

R
2 D

»
|w>B \‘w>R2

Markov process: |1x) = |[¥)i=kat, kK € N, At sampling period,

—_Mslv) _ \ith y, = g, probability Py = (1| MEMg|ux );
|w >7 <1l1k|M;MgW;k> Yk g.p y g <1/1k| g g|'l/)k>,
Ty D Mol

with yx = e, probability Pe = MM ,
CHe s with yi— e, probabilty Po = (v Mol

with
Mg = cos (%) , Mg = sin (%) _



QND measurement of photons

Markov process: density operator px = |1x) (x| as state.

e, ith yx = ility Py = i)
et = Tr(n;gi,wj;) with yx = g, probability Py = Tr (MngMg),
% with yx = e, probability P = Tr (MepkML),

with
M, = cos (74"’”2*‘1’”) , M =sin (L"’;W) :
Quantum Monte Carlo simulations:

Matlab script: TdealModelPhotonBox.m
Experimental data

Quantum Non-Demolition (QND) measurement

The measurement operators My . commute with the photon-number
observable N: photon-number states |n)(n| are fixed points of the
measurement process. We say that the measurement is QND for the
observable N.



Asymptotic behavior: numerical simulations

100 Monte-Carlo simulations of Tr (p,|3)(3|) versus k

Fidelity between pPK and the Fock state &3

1+

0.9F
0.8 J‘T‘\‘w“ |
07k &

o6 A ‘U w

05F |

: 'J\l‘m ‘

L

L L L L L L
50 100 150 200 250 300 350 400
Step number




Some definitions (see e.g. C.W. Gardiner: Handbook of stochastic methods . . . [3rd ed], Springer, 2004)

Convergence of a random process

Consider (Xx) a sequence of random variables defined on the probability space
(22, F,P) and taking values in a metric space X'. The random process X is said to,

converge in probability towards the random variable X if for all e > 0,

lim P(|Xk — X| >¢€) = lim P(w € Q| |Xk(w) — X(w)| >€) =0;
k— oo n—oo

[ Deterministic analogue with measurable real-valued functions X(w) and Xi(w) of w € Q = R and
p(w) > 0 a probability density versus the Lebesgue measure dw ( [ p(w)dw = 1):
Mk 4 oo Sg le(|Xk(w) — X(w)|)p(w)dw = 0 with I (x) = 1 (resp. 0) for [x| > e (resp. |x| < e). ]

converge almost surely towards the random variable X if
P(Iim Xk:X):IP<weQ| lim Xk(w):X(w)):1;
k— o0 k— o0

[VW € R/W with W C R of zero measure ([, p(w)dw = 0), we have lim, , | . Xk(w) = X(w). }

converge in mean towards the random variable X if limy_, o E (|Xx — X|) = 0.
[ o0 i [X4() = X() o) = 0]



Some definitions

The sequence (Xx)z24 is called a Markov process, if for all k and ¢ satisfying
k > ¢ and any measurable function f(x) with sup, |f(x)| < oo,

E(f(Xe) | X1, ..., Xe) = E(F(X) | Xe).

Martingales

The sequence (Xx)i2; is called respectively a supermartingale, a
submartingale or a martingale, if E (| Xk|) < oo fork =1,2,---, and

E(Xk | Xi,...,X) < X, (P almost surely), k>¢

or
E(Xk | X1,...,Xe) > Xe (P almost surely), k>¢,

or finally,

E(Xc | X1,...,Xe) = Xe (P almost surely), k>



Martingales asymptotic behavior

H.J. Kushner invariance Theorem

Let { Xk} be a Markov chain on the compact state space S. Suppose that
there exists a non-negative function V(x) satisfying

E (V(Xk+1) | Xk = x) — V(x) = —o(x), where o(x) > 0 is a positive
continuous function of x. Then the w-limit set (in the sense of almost sure
convergence) of X is included in the following set

I={X|o(X)=0}.

Trivially, the same result holds true for the case where
E(V(Xkt+1) | Xk = x) — V(x) = o(x) with o(x) > 0 and V(x) bounded from
above (V(Xk) is a submartingale),.

Stochastic version of Lasalle invariance principle for Lyapunov function of
deterministic dynamics.



Asymptotic behavior

Theorem
Consider for My = cos (%) and M, = sin (LN;W)

Mgp M} . - . B i\

Pers = (Mo, M) ] ) with y, = g, probability Py = Tr (MngMg>,
Mop M, ] o

m with yx = e, probability P, = Tr (MepkMTe),

with an initial density matrix p, defined on the subspace

span{|n) | n=0,1,---,n™®}. Also, assume the non-degeneracy
assumption Vn# m € {0,1,--- , "™}, cos?(pm) # cos?(¢,) where
_ $on+ér
®n = 5 -
Then
m forany ne {0,...,n"&}, Tr(p,|n)(n|) = (n|pk|n) is a martingale

B p, converges with probability 1 to one of the n™@ + 1 Fock state
[n)(n| with n € {0, ..., nm&}.

m the probability to converge towards the Fock state |n)(n| is given
by Tr (po|n)(n[) = (nlpo|m).



Proof based on QND super-martingales

m For any function f, Vi(p) = Tr (f(N)p) is a martingale:
E (Vi(px+1) | o) = Vi(px).

m V(p) =3 ,.n v (nlpln) (m|p|m) is a strict super-martingale:

E (V(pk+1) | )

= (1cos ¢nCOS ¢m| + | SiN ¢n SN Gml) v/ (Nl k| N) (M px[m)

n#m
< rV(px)

with r = maxnm (| COS ¢n COS dm| + | Sin ¢ SiN Pm|) and r < 1.
m V(p) > 0and V(p) = 0 means that exists n such that p = |n)(n|.

Interpretation: for large k, V(p«) is very close to 0, thus very close to [n)(n|
(“pure state” = maximal information state) for an a priori random n.
Information extracted by measurement makes state “less uncertain” a
posteriori but not more predictable a priori.



Exercise: QND measurement of photons

We consider QND measurement of photons: detection y € {e, g} and Kraus operators
Mg = cos(2N), Me = sin(LN)
with ¢y parameter.
_ My i t
Take py, 1 = Tr(MykpkM}k) with yx € {g, e} of probability Tr (MykpkMyk>.
Take ¢ = 7/4 and assume that py|n) = 0 for n > 4. Prove the almost

sure convergence towards one of the Fock state |n), for n < 4.

More generally, under which condition on ¢y do we have, for any p such
that pg|n) = 0 for n > n™@ almost sure convergence towards one of the
Fock state |n), for n < nmax,

Take n™@ = 4 photons and ¢y = w/4. Write a computer program (e.g. a
Scilab or Matlab script) to simulate over 100 sampling steps the Markov

process starting from pg = % zgiﬁ,‘ |n){n|. Check via the statistics over
1000 realizations that the probability to converge to |n)(n| is close to 1/5
forne€ {0,1,2,83,4}.

Re-consider the above three questions with the Markov process
(1=1)Mgpyc M} +nMe py M}

Tt ((1=m)Mgpi M +Mepy M)’
nMgpkM;+(1—n)Meple

Tr("IMngM;JFU —n)Meple)

with y, = g of probability Tr ((1 — 0)Mgpi M} + nMepkM;);
Pr+1 =

with y, = e of probability Tr (nMgpkM; +(1 = n)MepkML).

including a symmetric detection error rate n = 1/10.
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Feedback stabilization of photon number states



Feedback stabilization of photon number states



Measurement-based feedback

system

\

-~ -
classical world

4
~~quantum world P

——‘

y

controller j—

Measurement-based feedback:
controller is classical; measurement
back-action on the system S is
stochastic (collapse of the
wave-packet); the measured output y
is a classical signal; the control input
u is a classical variable appearing in
some controlled Schrédinger
equation; u(t) depends on the past
measurements y(7), 7 < t.

Nonlinear hidden-state stochastic
systems: convergence analysis,
Lyapunov exponents, dynamic output
feedback, delays, robustness, ...

Short sampling times limit feedback complexity



Quantum state feedback

Question: how to stabilize deterministically a single photon-number state | 1) (n|?
Markov chain with classical control input u:

Mg, u pkM;uk
T’(Mg,uk PkMg,uk)
Me,u; PkMe,uk
Tt (Me,uy oMY, )

if yi = g, probability Tr (Mg,uk pkM;uk)
Pyt =
if y = e, probability Tr (Me,uk pkM;uk)

where the Kraus operators depend on the control input u 3 (¢, ¢g, 9) constant
parameters.
dispersive interaction for u = 0:

My o = cos (¢0 2+¢R> and Mg o = sin (w) ,

resonant interaction with atom prepared in |e) for u = 1:
sin (90 \/N>
Mo1 = — o
resonant interaction with atom prepared in |g) for u = -1:
sin (%0 W)
VN
3Zhou, X.; Dotsenko, |.; Peaudecerf, B.; Rybarczyk, T.; Sayrin, C.; S. Gleyzes, J. R.; Brune, M.; Haroche, S.

Field locked to Fock state by quantum feedback with single photon corrections. Physical Review Letter, 2012, 108,
243602.

aTandMe1_cos< N+I>

My = cos (GZ—OW) and M. .1 = —a




Lyapunov function and quantum-state feedback

Coefficients f(n) of the control Lyapunov function

Idea: open-loop martingale il , , , , é)
V(p) = T (of(N)) U N B DU

with f : [0, +oo[— [0, o0 strictly 0d? o

decreasing on [0, A, strictly o

increasing on [N, +oo[ and o4O

f(n) = 0 as candidate of 0al o °

closed-loop super-martingale with

uk function of py. % —0— : .

photon number n

ux = T(py) : = argmin {]E (V(pks1) | oK, ux = u) }
ue{-1,0,1}

— argmin {Tr ((Mg,upkM;u + Me,upkM;u) f(N)) }
ue{-1,0,1}

Closed-loop simulations TdealFeedbackPhotonBox .m: truncation
to nMa = 7 photons of the Hilbert space, 1 = 3, f(n) = (n — N)?,

_ _ _ 27
(250—71'/7, ¢R*0s 00* /nmax 1



Cavity decoherence: cavity decay, thermal photon(s)

Three possible outcomes:
m zero photon annihilation during AT: Kraus operator
Mo=1—ATLY L o — ATLiL,, probability ~ Tr (Mong) with back
. . Mopm}
action p, a7 = 7Tr(M0ng) .

m one photon annihilation during AT: Kraus operator M_y = vVATL_4,
M71ptM1;1
Tr(M,1pML)

m one photon creation during AT: Kraus operator My = /ATLy,
:
probability ~ Tr (M1 oM} ) with back action p,. 5y ~ - 7ie™:

Tr(M1 pr)
— S g — ) 0n gt
L_1 Teav 1 Teav

are the Lindbald operators associated to cavity decoherence : T¢a the
photon life time, AT < Tcay the sampling period and ny, is the average of
thermal photon(s) (vanishes with the environment temperature)

(£ ~ 5 x 10~*, ny ~ 0.05 for the LKB photon box).

probability ~ Tr (M,1 pMT_1) with back action p,, o7

where



LKB photon-box: controlled Markov process with errors and decoherence

Transition model with control ux from p, to p, ¢ via Py 11 measurement back-action
2
(n € [0, 1] detection error probability and 7 € [0, 1] detection efficiency)

(1=m)Mg,uy PkMg,uK +nMe,uy pkM;,uk

_ t T .
Tr((1 TR o PkM_j; o +nMg o PKMZ ) ’ prOb- Nt TF ((1 W)nguk PkMg,uk + nMe,uk PkMe,uk)r
B Uk s Uk

T T
= Mg,y Mg,y +(1—1)Me,u Pk M,
pk+% 9, uy g%uk ug e%uk prob. ngys Tr (WMg,uk PkM;uk + (1 = nMe,u, PkMg,uk)
Tr(nngUkpkMg,uk+(1*n)MG,UkPkMe,uk)
ngukpkMgT],uk + Me,ukpkML,uk prob. (1 — ner)

is completed by cavity decoherence during the small sampling time AT:
Pr+1 = M'1pk+%MT1 + Mopk+%Mg) + M pk+%M;{'

Model used in simulation to test the robustness of the Lyapunov feedback ux = '(py)

with n = 1/10, ey = 4/10, £L ~ 5 x 10=* and ny, ~ 0.05



Closed-loop experimental results

Zhou et al. Field
locked to  Fock
state by quantum
feedback with single
photon corrections.

Physical Review
Letter, 2012, 108,
243602.

See the closed-loop quantum Monte Carlo simulations of the Matlab
script: RealisticFeedbackPhotonBox.m.
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Reminder: discret-time stochastic master equation

Time-continuous stochastic master equations



Discrete-time Stochastic Master Equations (SME)

Trace preserving Kraus map K, depending on the classical control input u:

Ku(p) =D My,pM}, with > M M, =I.
w Iz
Take a left stochastic matrix [1y,.] (ny,. > 0and 3> #y,. =1, Vu) and set
Kuy(p) =3, ny,uMu.pM, .. The associated Markov chain reads:

K . -
Prit = Ko () easurement yi with probability Tr (Ky, y, (Px)) -

Tr (Kuy,y (i)

Classical input u, hidden state p, measured output y.
Ensemble average given by K, since E (py_1 | px, k) = Ky, (py)-
Markov model useful for:

Monte-Carlo simulations of quantum trajectories (decoherence,
measurement back-action).

quantum filtering to get the quantum state p, from p, and (yo, ..., Yk—1)
(Belavkin quantum filter developed for diffusive models).

feedback design and Monte-Carlo closed-loop simulations.



Time-continuous stochastic master equations



Markov process under continuous measurement

Vi

[ ] #
Inverse setup of photon-box: photons read out a qubit.

Two major differences

m measurement output taking values from a continuum of possible
outcomes

dyi = i T ((L + LT)p,) at + dW,.

m Time continuous dynamics.



Stochastic master equation: Markov process under continuous measurement

i 1
dp; = <_h[H’ pil + Z LpL} - E(Lj,l-yp; + PthT/Lu)> dt

+ Z Vil (Ll’pt +pL} —Tr ((Lu + LDPt) Pt) aw, s,

where W, ; are independent Wiener processes, associated to
measured signals

Ayt =adW, ¢+ /n, Tr ((Lu + LI)p,) dt.
Wiener process W;:
m W, =0;
m t — W; is almost surely everywhere continuous;

mFor0<s <t <s<b W,— W, andW,;, — W;, are
independent random variables satisfying W; — Ws ~ N(0, t — s).

Average dynamics: Lindblad master equation

dE (p) =
(~HIH.E(p)] + X, LE(p) L] — H(LILE(p) + E(p) L}L,)) .




[t0 stochastic calculus

Given a SDE
aX; = F(X;, ydt + ) G, (X, )aW,.,

we have the following chain rule:

Defining f; = f(X;) a C? function of X, we have

o - (if
X

Furthermore

F(Xi, 1) + 1 5‘X2‘ (G (X0, 1), G (Xe, ))> dt

+ Z G, (X, H)dW, ;.

SE(f) =E (g—;xﬂ Xot)+ 2 axz\ (G (X, 1), GulX: ))>.



Link to partial Kraus maps (1)

i 1
dp; = <_h[H’ pil + Z Lp.L} — §(LlLuPt + p,L,tL,,)) at
+ Z Vi (Lupt +pLl, —Tr ((Lu + LLT/)Pt) Pt) aw, s,

equivalent to

My, p M}y, +3,(1 = n,)L,p, L} dt
Tr (Md}’tptMLy, + Zy“ - nV)LthLidt)

Ptiyat =

with
Mgy, = 1 + (——H - fU )dt + Z NG X

Moreover, defining dy, ; = s, V/dt:

P(st € [[lsv,s0 + dsu] | py) = (Tr (Ms\/Ep'MI\/E) +>0 - n,/)Tr( l,ptLT) dt)

v

t:1
ﬁm
3

¢



Link to partial Kraus maps (2)

m P defines a probability density up to a correction of order dt?:

[ e (s, e [Tiso s + 5.1 | p,> [Tds. =1+ O(d?).

(oo}

m Mean value of measured signal
/ / s, P (s, €[[lsv. s +ds.] | p,) [Ids = v ((LU + L,T/)p,) Vat+0(dt?/?).
— 00 — 00 v v
m Variance of measured signal

oo (oo}
/ / s2P <s, € [Ils,s0 +ds.] | pt> [1ds. =1+ O(at).

Compatible with dy,.; = s, +Vdt = dW,,; + /5, Tr ((L,, + Lf,)pt) at.



Link to partial Kraus maps (3)

i 1
dp; = <_h[H’ pil + Z LpL} - E(LlLuPt + PtLIT/LV)> dt

+ Z Vi (LuPt +plLl, —Tr ((Lu + LDPt) Pr) aw, s,
equivalent to
My p MYy, + 3, (1 = m)Lp, L]t
Tr (Md}’[ptMijt +2,(1- nV)LthL:r/dt)

Ptiyat =

m Indicates that the solution remains in the space of semi-definite
positive Hermitian matrices;

m Provides a time-discretized numerical scheme preserving
non-negativity of p.

Theorem

The above master equation admits a unique solution in
{peCVN . p=pl p>0, Tr(p) =1}.



Complements: SME driven by Wiener and Poisson processes

The quantum state p; is usually mixed and obeys to (measurement outcomes in blue)

dpt = (—i[H, ol + 3 Lupill, = YW L pr + et L) + ViepVE = SV Vs + oy V) vu)) dt

v

+> Ve (Lupt +pld - ((Lu + L,T,)Pr) Pt) aw,,
v

G0 + w, VupVE _
S 2ot My Vet Vi ot | [aNu® = (B0 + 37, 0 T (VoroVT,) )
_ + g H 20 I3 m

m 9H+Zu/nu,u’Tr(Vu’prul) o

where n,, € [0, 1], Eu,ﬁu ! > 0 with Myt = Eu My, < 1 are parameters modelling measurements
imperfections.

7 - T
Oupt+ 300 My Vi PtV

— P
Op + 32,0 My 0 T (VM/pIV“,)

If, for some i, Ny, (t + dt) — N, (t) = 1, we have p g =

When V., dN,,(t) = 0, we have

May, peMYy, -+ 50, (1 = nu)Lypelldt + 52, (1 = 7,)Vupe Vi ot
Pttt =
T (Mdy:PtM;y, + 3,00 = m)lypilhat + 5,1 = 7,0 Vpe Vi)

with My, =/ + (—iH i L+, (% ™ (vﬂp,v‘j) 1—vf VM)) dt+ 3, Ao dy,il, and
where dy,,,¢ = /Ty Tr ((LU + Ll)pt) dt + dw,, ;.
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QND measurement of a qubit and asymptotic behavior

Exercise: continuous-time QND measurement



QND measurement of a qubit and asymptotic behavior



Dispersive measurement of a qubit

(=]

Inverse setup of photon-box: photons read out a qubit.

Approximate model

Cavity’s dynamics are removed (singular perturbation techniques) to
achieve a qubit SME:

i r
dpf = _ﬁ[H, pf]dt = Tm(azptaz - pt)dt

T
+ %(Uzpt + pioz — 27T (0zp;) p;) AW,

dyr = dW; + /nl i Tr (ozp;) dit.



Quantum Non-Demolition measurement

r
dpy = — [H pildt + (UthUz pr)at
vl
+ ¥ 2 (0zp¢ + proz — 2Tt (azp;) pr) AW,

2

Uncontrolled case: H/k = wegoz/2.

Interpretation as a Markov process with Kraus operators

Mgy, =1 — ( w;g + —I) dt + Zrmazdyt,
= maiL = Y = nmet —2n)rmd oz.

QND measurement

Kraus operators Mgy, and /(1 — n)dtL commute with observable o:
qubit states |g)(g| and |e)(e| are fixed points of the measurement
process. The measurement is QND for the observable o.



QND measurement: asymptotic behavior

Theorem
Consider the SME

i r
dp, = 7E[H, pldt + Tm(a'zptaz — py)at

.
4+ %(Uzm + poz — 27Tt (0zp,) p;) AW,

with H = %Uz and n > 0.
m For any initial state p,, the solution p, converges almost surely as
t — oo to one of the states |g)(g| or |e)(e|.

m The probability of convergence to |g)(g| (respectively |e)(e|) is given by
Py = Tr(|g)(glp,) (respectively Tr (|e)(elpy)).

m The convergence rate is given by nl'y/2.

Proof based on the Lyapunov function V(p) = \/Tr(azzp) — Tr? (ozp) with

TR V(o) = - TME(V(p)

Matlab open-loop simulations: RealisticModelQubit.m



Quantum feedback

Question: how to stabilize deterministically a single qubit state |g)(g|
or |e)(e|?
Controlled SME:

i r
dpi = —5H.pldt + 2 (ozpioz — po)olt

vnl'm
2

+ (02p1 + proz — 27Tt (02p) p1) AW,

with

u(py) v(p;)
H: 2t 0'x+ 2t O'y,

u = g sign(Tr (pay))(1 = Tr(poz)), v = —g sign(Tr (pox))(1 — Tr (poz))

stabilizes with gain g > 0 large enough the target state p,q = |€)(e€|
(based on the control Lyapunov function 1 — Tr (poz)).

Matlab closed-loop simulations: RealisticFeedbackQubit.m



Exercise: continuous-time QND measure

Take a finite dimensional Hilbert space # = C" with the Hermitian operator L of spectral decomposition
L= Eg:1 Ak My where Aq, ... \q are the distinct (d < n), real eigenvalues of L with corresponding orthogonal
projection operators My, ..., My resolving the identity, i.e. Zg:1 My = I. Assume that the density operator p obeys
to

dp = (LpL — (LPp + pL®)/2)dt + \/i(Lp + pL — 2T (Lp) p)dW
with diffusive measurement dy = 2,/7 Tr (Lp) dt + dW and n > 0.

For each k, set px(p) = Tr (pM). Show that

d
dp =27 (Ak -> Ak/pk/) pdW

k'=1
Deduce that &, = /Pi obeys to
dey = —In( — @(€)2exdt + V(A — w(€))EcdW,

with o (€) = S°9_4 Axe2
Prove that

d(xxr) == — 3k — Mt P Egr €kt + /Mg + Ar — 200(€))ExE s AW

Set V(p) = Sy <<k <a v/P(p)y/Pyr (o). Show that

BV | p) = =3 5 Swr ek Ok = Mo P &g at < =3 (mings s Ok = 2 )?) V(p)ett.

_ B conclude that E(V(p) | pg) < V(pg)e=" with r > 0 to be defined.

3G. Cardona, A. Sarlette,PR: Exponential stabilization of quantum systems under continuous non-demolition
measurements. https://arxiv.org/abs/1906.07403
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Lindblad master equation
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Driven and damped qubit
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Driven and damped harmonic oscillator

[~

Complements
m Oscillator with thermal photon(s)
m Wigner function



Lindblad master equation



The Lindblad master differential equation (finite dimensional case)

d )
S = HH A+ 3T LopLl = J(LLLup + LY L) £ £(p)
where

m H is the Hamiltonian that could depend on ¢ (Hermitian operator on the
underlying Hilbert space #)

m the L,’s are operators on # that are not necessarily Hermitian.
Qualitative properties (# of finite dimension):

Positivity and trace conservation: if pg is a density operator, then p(t) remains a
density operator for all t > 0.

For any t > 0, the propagator e'£ is a Kraus map: exists a collection of
operators (M, ¢) such that 3>, M| M, 1 = Iwith &£ (p) = 3=, My, (oM, ,
(Kraus theorem characterizing completely positive linear maps).

Contraction for many distances such as the nuclear distance: take two
trajectories p and p’; forany 0 < t; < to,

Tr (Ip(t2) — ' (82)]) < Tr (Ip(ty) — o' (1)])

where for any Hermitian operator A, |A| = v'A2 and Tr (JA|) corresponds to the
sum of the absolute values of its eigenvalues.



Link between Lindblad differential equation and Kraus map

Pri1 =Y _ M,p M, with > MM, =1
I Iz

GiP = ~HH.el+ S Lot~ H(LLp+ pliL,)
Take dt > 0 small. Set
Mgto =1 — dt <£H+ > Lj,L,,) , Mg, =VdtiL,.
Since p(t + dt) = p(t) + dt (Zp(t)) + O(dt?), we have
p(t+ dt) = Mo op(YMYy, o+~ Mar, p()MY, , + O(dt?).
Since MLI,OMdf)O +>, MZ/t,det,v = | 4 0(dt?) the super-operator
p— Mdt,OpMLt,o + Z Mdt,upMIﬁW

can be seen as an infinitesimal Kraus map.



Driven and damped qubit



Driven qubit with dephasing and relaxation decoherence

Controlled Lindblad master equation

d . "
i = 2oz, ] +luon U, ]

3 (0p0n — Yenop + pen) + i (oz00z — p)
with

m Coherent drive of complex amplitude u at a pulsation weg + A
detuned by A with respect to the qubit pulsation weg.

m T life-time of the excited state |e).
m T, dephasing time destroying the coherence (e|p|g).
Exercise: For u = 0 show that lim;, 1 p(t) = |9)(g|.



Driven and damped harmonic oscillator



The driven and damped classical oscillator

Dynamics in the (x’, p') phase plane with w > &, /U2 + u2:

d , d , , , .
th =wp', ap = —wX' — kP — 2uy sin(wt) + 2up cos(wt)

Define the frame rotating at w by (x’, p’) — (x, p) with
x' = cos(wt)x + sin(wt)p, p = —sin(wt)x + cos(wt)p.

Removing highly oscillating terms (rotating wave approximation), from

%x = —rsin®(wt)x + 2u; sin®(wt) + (kP — 2uz) sin(wt) cos(wt)

gtp_ —k cos?(wt)p + 2up cos?(wt) + (kX — 2uy) sin(wt) cos(wt)

we get, with a = x + ipand u = uy + iug:
Pt —za+U.

With X' + ip’ = o/ = e~™!a, we have Ga’ = —(§ + iw)a’ + ue™"!



Driven and damped quantum oscillator (ny, = 0)

m The Lindblad master equation:

d .
5P = [ua’ — u*a,p] + « (apa’ — a'ap — Lpa'a).

m Consider p = Dz£D_5 with @ = 2u/k and Dy = €53 —3°a_ We
get
d
= (ata' — 1a'a¢ — 1¢ata)
since D_zaDyz = a+@.
m Informal convergence proof with the strict Lyapunov function
V(£) = Tr (EN):

S V€)= —rV(E) = V(D) = ViEe ™
Since &(t) is Hermitian and non-negative, £(t) tends to |0)(0|
when t — +o0.



The rigorous underlying convergence result

Theorem
Consider with u € C, x > 0, the following Cauchy problem

%p = [ua' — u*a,p] + « (apa' — La'ap — Spa'a), p(0)= p,.
Assume that the initial state p, is a density operator with finite energy
Tr (pgN) < +00. Then exists a unique solution to the Cauchy problem
in the Banach space K'(H), the set of trace class operators on H. It
is defined for all t > 0 with p(t) a density operator (Hermitian,
non-negative and trace-class) that remains in the domain of the
Lindblad super-operator

p— ua' — u*a, p] + r (apa’ — Ja'ap — Lpa'a).

This means that t — p(t) is differentiable in the Banach space K'(H).
Moreover p(t) converges for the trace-norm towards |a)(a| when t
tends to +oco, where |@) is the coherent state of complex amplitude

2

a =<4,
K



Link with the classical oscillator

Consider with u € C, k > 0, the following Cauchy problem

d x
GiP= [ua' — u*a, p] + x (apa’ — ;a'ap - 3pa'a), p(0) = po.

for any initial density operator p, with Tr (pyN) < +oc0, we have
Ga =—5(a—@) where a = Tr(pa) and & = 2.

Assume that p, = | o) (o] where By is some complex amplitude.
Then for all t > 0, p(t) = |8(t))(B(t)| remains a coherent state of
amplitude (t) solution of the following equation:

%3 = —5(B — a) with 3(0) = So.

Statement 2 relies on:

alg) = Blp). B —e z

e10) 1) = (~3(5+ 8 + fa) 13).



Lindblad master equation
Driven and damped qubit
Driven and damped harmonic oscillator

Complements
m Oscillator with thermal photon(s)



Driven and damped quantum oscillator with thermal photon(s)

Parameters w > &, |u| and ny, > 0:

d .
5P = [ua’ — u*a, p] + (1 + mn)x (apa’ — La'ap — Jpa'a)

+ nnr (a'pa — Jaa'p — Lpaa') .

Key issue: lim, 1o p(t) = ?.
With @ = 2u/k, we have
1

%p = (1+mn)s ((a—a)p(a—a)t - j(a—a)'(a—a)p - zp(a—a)'(a—a))

+nnr ((a— @) p(a—a) - H(a—a)a—a)ip - hp(a—a)a—-a)).

Using the unitary change of frame & = D_;pD5 based on the
displacement D; = e33'~3'a e get the following dynamics on &

d

Eﬁ =(1+nn)x (ata' — Ja'a¢ — J¢ata)

+ nnrk (a'€a— Jaa'¢ — J¢aa')

sincea+a = D_zaD;,.



Asymptotic convergence towards the thermal equilibrium

N
The thermal mixed state &, = - (12?%) is an equilibrium of

%5 =r(1+ny) (ata’ — Ja'a¢ — j¢a'a)

+kny (a'€a— Jaa'¢ — S¢aa')

with Tr (N€,) = ny. Following 2, set ¢ the solution of the Sylvester

equation: &n,¢ + C&p =€ — & Then V(&) =Tr (gthCZ) is a strict
Lyapunov function. It is based on the following computations that can
be made rigorous with an adapted Banach space for &:

G V(€)= (1 -+ ) T (IC. aléC. al)
— i T ([¢, aléw[¢, @']") < 0.

When % V =0, ¢ commutes with a, af and N. It is thus a constant
function of N. Since &, + (& = & — &, We get € = &y,

3PR and A. Sarlette: Contraction and stability analysis of steady-states for open quantum systems described
by Lindblad differential equations. Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on, 10-13 Dec.
2013, 6568-6573.
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Driven and damped quantum oscillator with thermal photon

Parameters w > &, |u| and ny, > 0:

e =[ua' — u*a,p] + (1 + )k (apa’ — sa'ap — Jpa'a)

+ i (a'pa— Jaa'p — Jpaat) .

Key issue: limy .o p(t) = 2.
The passage to another representation via the Wigner function:

m Since D,e""ND_,, bounded and Hermitian operator (the dual of
K'(H) is B(H)),

WPt (x,p) = 2 Tr (pD.€™D_,) with a=x+ipeC,
defines a real and bounded function |W1F}(x, p)| < 2.
m For a coherent state p = |5) (8| with g € C:

WUAEIY (x, p) = 220~ (i),



The partial differential equation satisfied by the Wigner function (1)

With D, = g®@ g="@g—aa’/2 — g-a’agaa’ gaa”/2 e pave:
t o orai *a —aal
%W{p}(a,a*):Tr (peaa e @ aeITrNea ag—aa )

where o and o* are seen as independent variables:

9 _1(0_ ;9 9 _41(0 ;0
oa 2\ox 'op) e " 2\ax " 'op
We have 7 &2 Wi} (a,a*) = Tr ((pa' — a'p)D,e&™D_,) Since
a'D.e™ND_, =D,e™D_,(2a* — a'), we get
0

e WP (o, o) = 20 WP} (o, ) — 2WIE' P} (o, ")
(0%

|—

Thus Wia'e} a,a*) = a*WiPt(a, o) — 12 WPt (o, a*), ie.
da

wie}.

Pl

i * 1
W{a"}_<a -1



The partial differential equation satisfied by the Wigner function (2)

Similar computations yield to the following correspondence rules:

wiear — (a -1 9 ) wirr  wiaet = (a+ ;5;) wie}

2 9o

wiea's — (a* + ;880) wier  wia'e} = (a* _ ;(9) wiet.

da

Thus

d .
5P = [ua’ — u*a, p] + (1 + mn)r (apa’ — ta'ap — Jpa’a)

+ i (a'pa— jaa'p — Jpaat) .
becomes

9
ot

da

O S (N
w 2<8a(a a)+ —(a a)+(1+2nth)6a6a*

) wie}



Solutions of the quantum Fokker-Planck equation

Since the Green function of

%W{p} — g((% ((x _y)W{p}) + gp((p_ﬁ)w{p})

+ 1+2n 0 wieh + aZW{p} )
4 ox? op?

is the following time-varying Gaussian function

it 2 wt 2
(X*Yf(Xon)e_ 2 > +<pfﬁf(prﬁ)e_7>

(Mt 5)(1—e—*1)

exp

GX’ 7t7X7 -
(x,p 0, Po) W(nth+%)(1 P

we can compute W, *} from W1*} for all t > 0:
t 0

Wi (x.p) = [ WA )G, .t X' 1) o



Asymptotics of the quantum Fokker-Planck equation

Combining
W{”} (X,P) = Jpe W{”} (X', p)G(x,p,t,x',p') dx'dp’.
m G uniformly bounded and

Moy yo0 GO P, X P) = —1g exp( >+<1p—p>)
m( th+2) (Mn+7)

m WP in L' with [[o, WP =1
m dominate convergence theorem

shows that all the solutions converge to a unique steady-state
Gaussian density function, centered in (X, p) with variance % + n:

W(x.p) B2 lim WP (x.p)= —1—exp (- ¥ X)° +(p—P)°
( p) t——+o0 t ( p) Tr(nth+1§) p (nth i 2)
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Coherent feedback stabilisation

Slow measurement-based feedback



Coherent feedback stabilisation



Coherent (autonomous) feedback (dissipation engineering)

Quantum analogue of Watt speed governor: a dissipative
mechanical system controls another mechanical system 3

dassicalworld - " Optical pumping (Kastler 1950), coherent
A N population trapping (Arimondo 1996)
s 4 dleiEEe ) y Dissipation engineering, autonomous
Uc VV/ ¢ feedback: (Zoller, Cirac, Wolf, Verstraete,
_H —‘—> Devoret, Schoelkopf, Siddiqi, Lloyd, Viola,
4 “1 system 1 Ticozzi, Leghtas, Mirrahimi, Sarlette, ...)
1 | u) 1 (S,L,H) theory and linear quantum
I TR ] systems: quantum feedback networks
| |y> y based on stochastic Schrédinger equation,
controller | Heisenberg picture (Gardiner, Yurke,
1 N - X4 Mabuchi, Genoni, Serafini, Milburn,
1 vi P s Wiseman, Doherty, Gough, James,
decoherence ¢ A Petersen, Nurdin, Yamamoto, Zhang,
\~ - - = - Dong, ...)

Stability analysis: Kraus maps and Lindblad propagators are always
contractions (non commutative diffusion and consensus).

3J.C. Maxwell: On governors. Proc. of the Royal Society;No.100, 1868.



Coherent feedback underlying the cat-qubit (1) 4

System: high quality oscillator with annihilation operator a:

d ,
= —iwala’a, p] + ka (apa* — Ha'ap+ paTa)) .

Controller: low quality oscillator k5 < xp with annihilation operator b with resonant
drive

% p = —iwp[b b, p] + [—ue™t!bt + u*e= bl p| + £y (bpr — 3(b'bp + prb)) )

Coupling Hamiltonian term g[a2b’ — (a')2b, p] yields to the closed-loop Lindblad
equation

d ) ; ;
7= —i[waa®a + wpbt b] + [—ue™“bibt + u*etiwvlh, p] + gla®b’ — (a)?b, p]

+ ra (apa’ — J(a'ap+ pa'a)) + rp (bpb! — 5(bTbp+ pb'b))

“M. Mirrahimi, Z. Leghtas, ..., M.H. Devoret: Dynamically protected
cat-qubits: a new paradigm for universal quantum computation.New Journal
of Physics,2014, 16:045014.



Coherent feedback underlying the cat-qubit (2)

e For wp = 2wz one gets in the the frame rotating at w, for mode a and wy, for mode b
(unitary transformation: pog = e—wata'a—iwptb'b,  gicatal atipth’by.

& o=@ 2t — (@7~ L),

at
+ Ka (apaT - %(a’fap + paTa)) + Kp (bpr — %(bpr + prb)) .

o If we neglect k4 in front of kp, any g of the form g = pa ® |0p) (0p| With pa density
operator on mode a with support in span{|«), |-a) } where a = \/g €C,isa
steady-state of the above Lindbald equation with k5 = 0.

e |f additionally, g < p, the strongly damped mode b can be eliminated via singular
perturbation techniques (quasi-static or adiabatic approximation) to get the following
slow Lindblad equation on mode a only:

d 2
Ep = % (LpLT — %(LTLp—i- pLTL)) + Ka (apaJr — %(atap—i- paTa))

with Lindblad operator L = a2 — o?.



Coherent feedback underlying the cat-qubit (3)

o If g > | /kakp then we can still neglect x5. Any solution of

d

=P (L Lt — 3(LTLp+ pLTL))

converges to a steady state p, with support in span{|a), |-«)} (use the Lyapunov
function V(p) = Tr (LpL') 5).

o For Gp =" (’-PU - 3(LTLp+ pLTL)) + Ka (apaT — l(atap+ pa'a )) with

g > \/Kakp, a reducnon to the sub-space span{|a), |-a)} is possible to describe the
very slow evolution due to k5. With the orthonormal basis,

ety = —2tl)  (gvencat) and |c),) = ——2=IY_ (odd cat),
2(1+e—2lal?) 2(1—e—2lal?)

define the swap operator X; = |ct){(c,| + |c;, )(c+| Since alc) = a|c,,) and
alc,,) = alc}), the reduced dynamics on H¢ = span{|c}), |c,,)} reads

d
apc = Ha\a|2(xcpcxc - pc)

where p¢ a density operator on Hc.

5R. Azouit, A. Sarlette, and PR: Well-posedness and convergence of the Lindblad master equation for a
quantum harmonic oscillator with multi-photon drive and damping. ESAIM: COCV; 2016, 22(4):1353 —1369.



Slow measurement-based feedback



Final slow measurement-based feedback stabilisation

Assume that one can continuously and weakly measure the parity ei™'a of mode a
with a rate v4 > ka|a|?. Then we have the following stochastic master equation
(Ze = leg)(ed] —lea)(ca )

dpec = Ha|a‘2(XCPCXC—Pc)dt'i‘“Ya(ZcPch—Pc)dt"r\/ neva(ZepctpcZe—2Tr (Zepc) pe)dW

with continuous-time measurement output y. of efficiency n > 0 and given by
dyc = 21 /MNcYa Tr (ZCPC) dt -+ dw.

One can stabilize either |c})(ct| or [ca )(ca | if we have at our disposal a classical
input signal u¢ attached to an Hamiltonian H¢ on #H¢ independent of Zc.
Exercise: design a measurement-based feedback stabilizing |c){ct| with He = Xc

and based on the Lyapunov function Ve(pc) = 1/ (cd|pc|cd) for ka = 0. Analyse the
impact of x5 > 0 with closed-loop Monte-Carlo simulations.



Quantum feedback engineering

-

' System S ) 7deC0herence
CLASSICAL WORLD I Hilbert space )
Hilbert space

l A.quantur_n H=H;&He.
interaction v

. uantum

classical JunRut? > (c]ontroller
| ) .

controller Hilbert space .

classical
reference classical |

decoherence

\
1
1
|

quantum measurement

]

\
classical 4 QUANTUMWORLD ¢
outputf ~ -

To stabilize the quantum information localized in system S:

m fast decoherence addressed by a quantum controller
(coherent feedback);

m slow decoherence and perturbation tackled by a classical
controller (measurement-based feedback).
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