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Exercise 1

Consider the tensor product H = H3 ® H. where Hz ~ C? admits (|g), |e),|f)) as Hilbert
basis and H. ~ L*(R,C) ~ [?(C) admits (|n)),>0 as Hilbert basis (Fock basis). Take the
following Hamiltonian on H (wg, we,wy,we, X real parameters)

H = (wglg)(g] + wele)le| + wyl F)(fI) @ L+ we Is @ (N + &)
+x(9 1+ 1) gl + ) fI+ 1) el) © (N + %)

where I3 and I. are identity operators on M3 and M., N = a'a is the photon number
operator on H.. We consider the Schrédinger equation 4|y) = —iH|[¢)) where [1)) € H.

1. Witha = 5 (¢ + ) and |1) ~ (g, e, ¥y) € L3R, C) x L*(R, C) x L*(R, C) give the

partial differential formulation of the Schrédinger equation.

2. With [¢) = 37 50 %gnlg) @ [n) + Yenle) @ [n) + Ypalf) @ [n) give the infinite set of
ordinary differential equations satisfied by (vg.n,%en, ¥ fn)n>0-

Exercise 2

Consider the 3-level system of Hilbert space H ~ C3 with (|g),|e), |f)) as Hilbert basis with
the following Hamiltonian

H(t) = wele){e[+wy| ) (fl+u(t) (uge(lg><e\+\e)(9!)+uef(\6>(f!+!f><€!)+ufg(\f><g!+\g><f!)>

where ¢t — u(t) € R is the control input and (we,wy, ftge, ftef, ffg) are constant real pa-
rameters. Consider the Schrédinger equation %W)) = —iH(t)|¢)) with wy > we > 0 and

0 < |pgels |perls lppgl < min(we, wy — we).

1. Take the passage to the interaction frame |¢)) — |¢) = e (cele)el-+eor )1 1) |v) and com-
pute the interaction Hamiltonian H,;(t) governing the Schrédinger dynamics of |¢):

L1¢) = —iH ine(t)| ).

2. Assume that u(t) = ae~ st + u*e™st of constant amplitude @ € C/{0} with |u| < 1.
Justify that one can approximate the time evolution of ¢ by %]gb) = —iH|¢p) where H
is a constant Hamiltonian and provide its explicit expression.



3. We assume now that the state |f) is unstable and relaxes towards |g) or |e) with rates
Kg, ke > 0 much smaller that min(we,ws—we). This open quantum quantum is described
by the Lindbald master equation for the density operator p in the interaction frame:

d

P = —i[ﬁ, p } +hg (LgpLL — 3(LiLgp+ pLng))+/‘€e (Lele — 3(LiLep+ leLe)>

with Ly = |g)(f| and L. = |e)(f|. Show that for any initial density operator pg = p(0),
the limit of p(¢) when ¢ tends to +oo is the pure state |e)(e| (Hint: use the Lyapunov
function V(p) = 1 — (e|ple) and LaSalle’s invariance principle).

Problem

We consider a quantum harmonic oscillator defined on the Hilbert space

He = {chm | (cn) € lQ((C)}
n=0

where |n) corresponds to the Fock state with n photon(s). Driving it at its resonance, the
Hamiltonian in the interaction frame is given by

H.=i(a'a — ua').

where u € C is a complex amplitude and a is the photon annihilator operator. As illustrated
in the course, this Hamiltonian generates during 7" > 0 a unitary evolution Ur = D, =
e~iTHe — oa'—a’a with o = Tq.

Through this problem, we will study the situation where this Hamiltonian evolution is
accompanied by frequent measurements of a certain observable O; = |1)(1|. Indeed, we will
assume that this dynamics is performed in m steps of length 7'/m and labeled from k& = 0
to k = m — 1, together with a measurement after each step. In this aim, we consider the
measurement operators M, = I—|1)(1|, M. = |1)(1|. The dynamics of the system is modeled
by the Markov chain of state |1;) € H. and measurement outcomes yi € {g, e} at step k:

rr1/2) = D = [U),
Mg|Ygi1/2)

\/<¢k+1/2|M}L;Mg|¢k+1/2>
’wk+1> = M| y1/2)

\/<¢k+1/2|MZMeWk+1/2>

with gy, = g, probability (g1 /oM M|ty /2);

with yi = e, probability (¢g1/2| MIM |ty 41/2).

Furthermore, we assume the initial state to be given by |¢9) = |0). Physically |¢,) corre-
sponds then to the wave function at time 7.

1. Show that the operators M, and M, represent an eligible Kraus map. Show that this
measurement is quantum non-demolition for an observable O if and only if (n|O|1) =0
for all n # 1.

2. Provide the state |[¢f) of the system conditioned on r measurements giving as result
yp =g forall k=0,--- ;r—1.



. Show that the probability pi of measuring y;, = g for all k =0,--- ,r — 1 is given by
g r 2
= |ae,Dz) o)

. Now, we aim at studying the limits lim,, oo pi, and lim,, oo [17,). Show that

7,010~ ) =0 ().

. Deduce that
lim pJ =1 and lim [¢Y,) = |0) strongly in H..
m—r0o0

m—r0o0

Hint: Use the fact that D, is a unitary and that M is a projection, and therefore
they do not increase the norm of a state in H..

. Provide a simple and physical interpretation of the above limits.

. Now we consider a different measurement process based on the observable Oz = |2)(2].
We consider the associated Kraus operators My = I — |2)(2| and M, = |2)(2|. Also,
for simplicity sakes, we assume « to be real.

(a) Take cg,c1 € R such that |cg|? + |e1]? = 1, and consider the wave functions
(co — ac1/m)|0) + (c1 + aco/m)|1)
V1+a?2/m?

Show that | M D < [¢) — )] = O (-1;) (Hint: Calculate D, |1) by noting that
|1) = a'|0) and using the commutation relations).

[¥) = c0l0) + e1[1) and |¢h) =

(b) Deduce the limits limy, 00 P and limy, o0 |105) (P and [thi,) are the probability
to detect yp = g for kK =0,--- ,;m —1 and the corresponding quantum state at step
m starting from [¢9) = |0)).

(¢) Provide a simple and physical interpretation of the above limits.
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Exercise 1

1. We have
Wy _ Wy, | Wep O X O
e WS Gl wod L A Gl e L
_81/)6 o We We 2 62 X 2 82
rn ?1/16 5 (2% — @)% + §(l’ - @Wff
Oy wy We, o 0 X, o O X, o O
Tor = Wt gl TR gl k5 el
2. We have

d
i&d)g,n = ((n+1/2)we + wg)hgn + x(n +1/2)¢,
2 e = (04 1/2) + P+ X1 1/2)

d
i = (04 1/2)we +wp)bpn + X0+ 1/2)Pgn + x(n +1/2)¢en

Exercise 2
1. We have
H iy (1) = u(t) prge (e g) (e] + €™ |e)(g])
Fu(t)pep (e @rmwlt|e) (f] 4 e @rmwe)t| ) (e])
+u(t) g (€™ f) gl + eI g) (f]).

2. Since |pgel, |ftefls |1 fg| < min(we,ws —we), we can use the rotating wave approximation
and keep only the non-oscillating terms (secular terms) in H ;,,;(t) where u(t) is replaced

by zie~# st + G*eist, This yields to H = i, (ﬂ|f><g| + a*yg><f|) 16).

3. Since p(t) remains non-negative and of trace one, V(p) remains between 0 and 1. More-
over V(p) = 0 means that p = |e)(e|. Since
d . _ —x
o = g alf) (gl +*l9)(f], o]

+ (F1olF) (alodlal + reled(el) = “25% (1) f1p + pl£)( 1)



we have £V (p) = —kc(f|p|f) < 0. Thus V is a decreasing time function. Since the set
of density operators is compact and V' > 0, we can apply LaSalle’s invariance principle:
the trajectories converge towards the largest invariant set of density operators satisfying
%V = 0. When (f|p|f) = 0 we have p|f) = 0 and (f|p = 0 since p is a density operator
(therefore non-negative). Then we have

< o= gy (al1) (gl — * plod (1)

and we get by differentiating p|f) = 0 with respect to t: %p[f} =0,ie. —pyr,u*plg) = 0.
This means that |f) and |g) are in the kernel of p. This implies that p is necessarily the
projector on |e) since it must be of trace one and non-negative.

This Lindbald equation is the simplest dynamical model describing optical pumping, a
simple and powerful idea due to Alfred Kastler (Physics Nobel Prize 1966) for preparing
and stabilizing pure states.

Problem

1. It is easy to check that M ;M g+ M ZM e = I and therefore they represent an eligible
Kraus map. The measurement is non-demolition for an observable O, if the Kraus
operators M, and M. commute with O. It is easy to check that this condition is
equivalent to (m|O|1) = 0, Vm # 1.

2. The state at the step 7 is given by

. g
pg) = oDglor)
[M, D [07_,)]

Therefore by induction, it is easy to see that

(M,D2)lo)
¥ = Taa ]

3. The probability for the first measurement to give yo = g is clearly || M, D« |0)?>. The
probability to achieve r measurements giving all y = g is given by
p=Pyr—1=9,9r-2=9, Yo =9)
=Plyr—1=9gly—2=9-"vw=9PWUr—2=9y-3=9-y% =9)

But

|1,05)"10)]

P(Yr1=9|g2=9 -y =9) = [|[MgDay? |* = 3
4,02 o]

and

P(yr—2o=g,yr—3=9," Yo =9) =p)_;.

The proof is clear by induction.



4.

7.

We have

(0% o > Oék
M, D [0) = (I = [1)(1)[) = e 5 (1 = 1)) Y =

2 OC
_la?® laf®

:e 2m?2 ‘0 +e 2m?2 Z\/»mk"

2

lo
We note that e” 2m? =1+ 0(1/m2) and that
o g~ 1 Jof*?
| E RIS 5> =1
M= VR

Noting that the series is convergent, the result is clear.

. One can write

M;D20) =10) + O(—5 )!Xo>
where xo is a normalized state in H.. Therefore
(MyD=)?0) = (M, D&)(|0> + 0( )IXO))
=10) +0(— )|X0>+0( )(M D < )[xo)-

We note that ||(M gD < )|xo)| <1, as D= is a unitary (therefore conserving the norm)
and M is a projection (therefore reducing the norm). Thus O(:15)(MyD < )|xo) can
be written as O( 5)|x1) for a normalized state |x1) in H.. In the same manner

(MyD=)™|0) = [0) + O(— Z Xk)):

m

where |xx)’s are normalized states in H.. Therefore
1 m—1
P = [(MgD = )m\0>HQ*H|0>+O DO a))lIP = 1 as m — oo
k=0

Furthermore
M,D2)"|0)

I1e5) = 10} = H( N

We have illustrated that, whenever we measure frequently the observable O; during
the unitary evolution, we freeze the state at time 7' (7" > 0 being arbitrary) in |0) and
remove the effect of the driving Hamiltonian. This is called the quantum Zeno effect.

—10)|| = 0 as m — oo.

(a) We have M gD < |¢)) = coMgy| ) +c1MgD o [1). In order to calculate D« |1), w
note that

« [0
D:|1) = Doal|0) = Daa'D_oD<|0) = (af - ).



As M, =1 —|2)(2|, we have

1 a

M,D 2 i) = co10) + 37 S11)) + s My(at = 2)(10) + 5 2 1) + 00 5)o),

where |xo) is a normalized state in H.. Therefore

D) = eofl0) + 211)) +e1My(al — 2)(0) + 2 [1) +0 <i>r><o>
= co(10) + 2 11)) + e M (11) + V22 12) — 210)) + O
= co((0) + 1)+ ex (1) — Z[0)) + O(#)lm,
where |xo) is a normalized state in H.. This proves the relation

IM gD |¢) = [§)[| = O(1/m?),
as 1/y/1+a2/m2 =1+ O(1/m?).

One has |¢)) = Rg|t)), where

1 _ a/m
Ry = \/1+72/m2 v 1+a?/m?
a/m 1

\/1—|-012/m2 \/1—i-042/m2

is a rotation matrix with § = arctan(a/m) in the space span{|0), |1)}. Similarly
to the question 5, we have lim,,_o0 pin = 1 . Also, we have

‘wg > arctan (a/m) ‘O> + O(l/m)b@ marctan(oa/m)’0> + O(l/m)’X>7

where X is a normalized state in H.. Now, note that R, arctan(a /m)\0> converges
to R,|0) for m tending to infinity.

We have shown that the measuring frequently the observable O3, we confine the
dynamics of the harmonic oscillator to the two-dimensional subspace spanned by
|0) and |1). A unitary displacement of the cavity state is therefore replaced by a
Rabi oscillation for this effective two-level system. This is called Quantum Zeno
Dynamics.



