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Flatness-Based Control of Electrostatically Actuated
MEMS With Application to Adaptive Optics:

A Simulation Study
Guchuan Zhu, Jean Lévine, Laurent Praly, and Yves-Alain Peter, Member, IEEE

Abstract—Typical adaptive optics (AO) applications require
continual measurement and correction of aberrated light and
form closed-loop control systems. One of the key components in
microelectromechanical system (MEMS) based AO systems is the
parallel-plate microactuator. Being electrostatically actuated, this
type of devices is inherently instable beyond the pull-in position
when they are controlled by a constant voltage. Therefore ex-
tending the stable travelling range of such devices forms one of the
central topics in the control of MEMS. In addition, though certain
control schemes, such as charge control and capacitive feedback,
can extend the travelling range to the full gap, the transient
behavior of actuators is dominated by their mechanical dynamics.
Thus, the performance may be poor if the natural damping of the
devices is too low or too high. This paper presents an alternative
for the control of parallel-plate electrostatic actuators, which
is based on an essential property of nonlinear systems, namely
differential flatness, and combines the techniques of trajectory
planning and robust nonlinear control. It is, therefore, capable
of stabilizing the system at any point in the gap while ensuring
desired performances. The proposed control scheme is applied to
an AO system and simulation results demonstrate its advantage
over constant voltage control. [1613]

Index Terms—Adaptive optics (AO), deformable mirrors (DM),
electrostatic actuator, flat systems, microelectromechanical sys-
tems (MEMS), robust nonlinear control, trajectory planning.

I. INTRODUCTION

APPLICATIONS like free space optical communication
and targeting require smart systems, able to adapt to

changing conditions (e.g., air turbulence, atmospheric pertur-
bations, temperature, mechanical stress, etc.). Adaptive optics
(AO) is a technique that can correct aberrations, varying both
spatially and temporally in real time and, hence, it is particu-
larly well suited to respond to this requirement.

The basic concept of AO is shown in Fig. 1 and was first
proposed by the astronomer Babcock [2] in 1953. In this
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system, the aberrated light from a telescope is reflected off
the deformable mirror (DM). A small fraction of light is split
to the wavefront sensor (WFS). The optical aberrations in
the incoming wavefront are sent to the wavefront analyzer
(WFA), which generates the desired configuration of reflecting
surface. The control unit computes then the appropriate voltage
commands which are feedback to the DM. Based on the
control signals, the DM changes its shape and provides the
conjugate corrections to the optical distortions. Clearly, the
typical configuration of AO forms a closed-loop control system.
Babcock’s AO system was required to remove the deleterious
aberrations introduced by the earth’s atmosphere when using
large ground-based telescopes. For astronomy, the distortion is
introduced mainly by the Earth’s atmosphere, but any appli-
cation (e.g., vision science [1]) where there is an intervening
source of aberration can benefit from AO.

Conventional adaptive mirrors are complex, heavy weighted,
large in size, and expensive [3]. In a drive to reduce their
size and cost, microelectromechanical deformable mirrors
(MEM-DM) have recently been developed. Due to its high
functionality, low mass, low power consumption, and low
manufacturing cost, MEM-DM is an excellent fit for many ap-
plications, e.g., space applications, which require a low launch
mass. Three types of MEM-DM using silicon surface and bulk
micromachining are currently being pursued [4]: continuous
face sheet mirrors backed by individual actuating elements
[5], microfabricated membrane mirrors [3], [6], and segmented
mirrors [7]–[9]. The choice for a specific type of MEM-DM
depends on the application [10]. Continuous membrane mirrors
have optimal fill factor and no diffraction effects. However, they
suffer from crosstalk, have limited deformation range, and are
slower than segmented mirrors. Continuous membrane mirrors
are used when high power dissipation is an issue (e.g., laser
micromachining) and when high-order corrections are needed
(e.g., astronomy). Segmented mirrors are preferred for high
speed applications (e.g., optical free space communication). All
of the cited mirrors are actuated by parallel-plate electrostatic
actuators. These types of actuators can be easily integrated
under the mirror, without compromising the fill factor. Elec-
trostatic comb drive actuators are also used in AO systems [9].
Microfabrication of this type of devices is much more complex
and they are only used when additional large tip/tilt angles are
required [9].

A common feature provided by the above mentioned
MEM-DMs is that a desired configuration of reflecting surface
can be produced by an underlying two-dimensional (2-D) array
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Fig. 1. Basic principle of adaptive optics for astronomical application with closed-loop actuation control (adapted from Fig. 1 in [1]).

Fig. 2. Scheme of 1DOF parallel-plate electrostatic actuator.

of microdevices, each of them making piston motion. When
the microdevices are actuated by electrostatic force, they can
be modeled as one degree of freedom (1DOF) parallel-plate
electrostatic actuator, whose scheme is shown in Fig. 2.
The mechanical part of the actuator can be represented as a
spring-mass-dashpot assembly, for which , , and are the
mass of the moveable upper electrode, the damping coefficient,
and the elastic constant, respectively. In this figure, is the
air gap, the zero voltage gap, the normalized deflection,
and the plate area. The actuator is driven by a voltage source,
where , , and are the source current, the applied
voltage, and the actuation voltage, respectively. Finally, rep-
resents the resistance of the device. This paper will address the
control of individual actuator, while the control of MEM-DM
in the context of networked environment will be considered in
a separate work.

The simplest control of electrostatically actuated microde-
vices might be to apply a constant voltage, whose value is
deduced from the static relationship between the actuation
voltage and the position of moveable plate. However, with such
an open-loop static control scheme the stable traveling range of
the moveable plate is limited to the one third of its full gap, the
distance between the top plate and the bottom electrode when
the voltage across the device equals zero [11]. Beyond that
point, the moveable plate will suddenly and catastrophically
snap down to the fixed electrode, rapidly reducing the gap to
zero. This phenomenon is known as “pull-in.” If the goal is to
achieve a stable traveling range of , a simple solution is to
extend the air gap to . Note that the additional gap

can be implemented by inserting an equivalent series capacitor
[12], [13]. An equilibrium beyond the pull-in position can
eventually be stabilized by a closed-loop feedback control [14].
Recent researches have shown that adding series capacitor acts
as capacitive feedback, which is effectively a special case of
input-output linearization feedback control, when the charge is
chosen as the output [15], [16].

Besides stabilizing the actuator around the set-point of op-
erations, many MEMS-based applications impose stringent re-
quirements on the transient behavior of actuator, such as set-
tling time, overshoot and oscillation. Furthermore, the control
schemes should also be robust vis-à-vis manufacturing toler-
ance, operation points, modeling errors, parameter uncertain-
ties, and environmental disturbances. It is indeed a very com-
plex task to incorporate all the aforementioned factors into the
design of control algorithms under the framework of linear con-
trol theory, and compromising the optimality of the system is
inevitable [17]. This motivates the application of nonlinear con-
trol techniques to improve the overall performance for MEMS
devices.

This paper will present a method for the design of control sys-
tems for electrostatically actuated parallel-plate microdevices,
which can meet different performance requirements regardless
of specific configurations. The considered problem is set-point
control from any point in the gap to any other points between the
electrodes. The controller design uses the method presented in
[18], which combines the techniques of trajectory planning and
robust nonlinear control. More precisely, based on differential
flatness [19], [20], a feasible reference trajectory is constructed
first in the phase plane, ensuring fast rise time while having well
damped transient response. Then a robust closed-loop feedback
control obtained by the potential method [21], [22] is added to
the control scheme, making the reference trajectory an attractive
invariant manifold.

The rest of the paper is organized as follows. Section II
presents the model of a 1DOF, parallel-plate electrostatic
actuator. Section III demonstrates that such a system is differ-
entially flat and, based on this property, an open-loop control
under the framework of trajectory planning is constructed. In
Section IV, a closed-loop control is proposed, while a reduced
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order observer, required for implementing the proposed control
scheme due to the lack of speed measurement, is presented
in Section V. Finally, the simulation results are reported in
Section VI and Section VII contains some conclusions.

II. MODELING OF ELECTROSTATIC ACTUATOR

Consider now the MEMS device shown in Fig. 2. Letting
be the charge on the device and denoting by the permit-

tivity in the gap, then the capacitance of the device is

(1)

and the attractive electrostatic force on the moving plate is

(2)

Thus, the equation of motion of the actuator is given by

(3)

From (2) and (3) it can be seen that the electrostatic force
increases with the inverse square of gap, while restoring me-
chanical force [the third term in the left-hand side (LHS) of (3)]
increases linearly with the plate deflection. The critical value
for the voltage across the device is the pull-in voltage, given by
(see, e.g., [11])

(4)

for that if the equilibrium voltage , there are two
equilibrium points in the gap, lying in and

, respectively. Whereas if , there is
only one equilibrium point at the one third of the gap. And
finally, if , then there is no equilibrium, and the
system is dominated by the electrostatic force. The equilibrium
at the one third of the gap is the so-called pull-in position and
the corresponding equilibrium voltage, , the pull-in voltage.
It can be shown that all equilibria beyond the pull-in position
are unstable (see, e.g., [11]). Therefore, in terms of bifurcation
theory, this critical point corresponds to a saddle-node bifurca-
tion with respect to equilibrium voltage. Consequently, with a
constant voltage control, the traveling range of the actuator is
limited to the one third of its full gap.

Assuming the system started operating from an initially un-
charged state at , then the charge on the electrodes at the
time is

(5)

or equivalently

(6)

The current through the resistor can be obtained by a simple
application of Kirchhoff’s Voltage Law and reads [11]

(7)

To make the system analysis and control design easier, we
transform the system (3)–(7) into normalized coordinates by
changing the time scale, , and performing a normal-
ization as follows [23] :

(8)

where is the capacitance at rest,
the pull-in charge corresponding to the pull-in

voltage, the undamped natural frequency, and
the damping ratio.

Accordingly, the normalized voltage across the actuator can
be expressed in terms of the normalized deflection of the move-
able electrode

(9)

and the dynamics of normalized charge becomes

(10)

Let be the speed of deflection of the moveable elec-
trode, then the system (3) and (7) can be written in the normal-
ized coordinates as

(11)

which is defined on the state space
. Note that the normalized deflection is limited

to 1. In the case where the thickness of the insulating material
coated on the bottom plate should be taken into account [15],
[16], it suffices to incorporate this factor with the variable trans-
formation while normalizing the deflection.

It can be seen that in the new coordinates, the mechanical sub-
system has a damping ratio and a undamped natural frequency
of 1.

Since the system analysis and control design will be per-
formed in the normalized coordinates, we can use to denote
the time and omit the qualifier “normalized,” if no confusion
will be introduced.

III. FLATNESS AND TRAJECTORY PLANNING

Like many mechatronic systems, electrostatically actuated
MEMS are differentially flat. In fact, from the second equation
in (11), we have

(12)
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Furthermore, the third-order time derivative of is

(13)

and, hence, the input to the system can be expressed as

(14)

Therefore, all the states, as well as the input in (11) can be ob-
tained from and its time derivatives, , , and , and the
system (11) is differentially flat with as flat output [19], [20].

We remark that if the reference trajectory is such that has
a monotonic behavior then we can use itself as a parameter
instead of time. Moreover, (11) can be written, by eliminating
the time, as

(15)

where and . Thus, we have

(16)

and

(17)

Noting that

(18)

is a function of , and , with .
This proves that and can be expressed as functions of ,
and , and thus the system (15) is flat with respect to (now
a function of ). Strictly speaking, the system (15) is orbitally
flat, due to the fact that it is parameterized with respect to [20].

Since the system (15) is flat, it is possible to compute any
trajectory of the system without integrating the corresponding
differential equations.

It is now convenient to denote by , and the functions
, , and , respectively, to avoid confusion

with the time functions. The trajectory planning problem now
consists in determining the curve .

To bring the system from the initial point to a desired
point in the phase plane, one only needs to find a suffi-
ciently smooth trajectory , such that the initial and
final conditions are all met. Since the trajectory does
not need to verify any differential equations, it can be simply
constructed, for example, by polynomial interpolations. For ex-
ample, if , , , , , and are
known, the desired trajectory can be expressed as a
fifth degree polynomial [18]

(19)

where with . The coeffi-
cients in (19) can be obtained by applying the initial and final
conditions and the results are

(20)

Since

the initial and final constraints on the trajectory will be respected
as long as

The free parameters , , , and can be
chosen, for example, to make the reference trajectory to fit per-
formance specifications, under constraints on drive current and
applied voltage.

Note that since all the time derivatives of have to vanish
at the equilibria, the desired trajectory can be represented by a
polynomial with an arbitrary, finite order. This allows the ad-
dition of more degrees of freedom in trajectory tuning and the
obtaining of the desired behavior (e.g., fast rise time, low over-
shoot, and well damped oscillations).

Finally, it is worth pointing out that the pull-in equilib-
rium point is removed in this approach since we are using
time-varying controls that exactly generate the required poly-
nomial reference trajectory of . This remark will even be
enhanced in Section IV by a closed-loop synthesis that makes
the reference trajectory tracking stable.

IV. CONTROL SYNTHESIS

A closed-loop control is required in our scheme in order to
stabilize the system along any reference trajectory. In addition,
the closed-loop control will make the system robust vis-à-vis
modeling errors, parameter uncertainties, and disturbances. Ob-
viously, the function previously designed defines an in-
variant set of (11). Indeed, for any initial condition sat-
isfying

(21)

the input

(22)
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Fig. 3. Invariant manifold and its distance to out-of-the-manifold points.

satisfies (11) and is such that the corresponding solution
satisfies for all

(23)

Moreover, this trajectory coincides with the planned reference
trajectory.

On this set, the dynamics of (11) reduce to

(24)

Outside this set, we have

(25)

where is the distance between the invariant manifold and off-
the-manifold points, as shown in Fig. 3.

Thus, in order to ensure that the trajectory of the dynamic
system (11) converges to the planned reference trajectory, it suf-
fices to asymptotically stabilize the invariant set . Ac-
cording to (15)

(26)

By adding and removing a term to and
from (26), we obtain

(27)

In order to stabilize (27), we impose

(28)

where

Consider now the following Lyapunov function candidate

The time derivative of along the solutions of (27) and
(28) is

where

(29)

Since is positive for all and is nonnegative,
by choosing as a constant given by

(30)

will be a positive function. It is clear that
will be negative definite for any . Hence the error dy-
namics (27) and (28) are asymptotically stable provided that
is chosen as (30) and , and the reference trajectory is an
asymptotically attractive one.

Finally, the control signal can be deduced from (28), which
is given as

(31)

V. SPEED OBSERVER DESIGN

Usually, the charge on the device and the gap between the
electrodes can be deduced from the input current, the voltage
across the device, and the capacitance. However, directly
sensing the velocity during the normal operation of the device
is extremely difficult, if not impossible. We need, therefore, to
construct a speed observer in order to provide the estimate of
required for implementing the closed-loop control described in
the previous section. It can be shown that (11) with the deflec-
tion and the charge as outputs admits the observer canonical
form [24]. Therefore, it is possible to find a full order observer
with linear error dynamics. However, we need only to directly
construct a reduced order speed observer. To this aim, we set

(32)
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where is an arbitrary positive real number. Differentiating
(32), we get

(33)

Thus, if we set

where is the required estimate of and the estimate of ,
then

(34)

Let denote the estimation error, and note that
. The error dynamics can

be deduced from (33) and (34)

(35)

and is globally exponentially stable at the origin with a decay
rate defined by . This implies that

(36)

and (34) form an exponential observer.

VI. SIMULATION RESULTS

To illustrate the performance of the proposed control scheme,
we consider a segmented MEM-DM presented in [25]. The de-
vice is fabricated using Multi User MEMS Process (MUMPS)
[26]. The electrodes are patterned in the first polysilicon layer
(poly0). The second polysilicon layer (poly1) and the third
polysilicon layer (poly2) form the pads on the electrode chip.
The mirrors are patterned in the second polysilicon layer
(poly1), and the actuators in the third polysilicon layer (poly2)
of the mirror chip. The mirror chip is then mechanically bonded
to the electrode chip by gold compression bonding. The mirror
array is electrically connected to a ground electrode by the
bonding pads. Fig. 4 shows the top view of two actuators
and the cross-section view of two micromirrors of the final
structure. The micromirror is sustained by four beams clamped
at the corners as shown and acts as the moving electrode.

The final bonded stacks of layers provides a 5.25 spacing
between the fixed and moving electrodes. The pixel size of each
mirror is 400 400 . The size of the underneath elec-
trode is 200 200 . The calculated elastic constant was
489 N/m, while the measured elastic constant is 388 N/m, about
80% of the calculated one1. This discrepancy is assumed to be
due to difference in the design values and the actual dimen-
sions of the fabricated devices. It is observed that when oper-
ating under the normal pressure, the mirror exhibited an over-
damped behavior. The exact viscous damping coefficient is un-
known, which is one of the main sources of uncertainty in the
considered system. The pull-in voltage can be calculated from
(4), which is 213.7 V.

1Measurement provided by [25]. A similar setup is being built at the École
Polytechique de Montreal, but not yet available. Only numerical simulations are
considered in this work and real experiments will be presented in a future paper.

Fig. 4. Schematic top and cross-section view of 2 pixels showing the layer
stack. The vertical scale is exaggerated.

Note that the algorithm for trajectory generation is time inde-
pendent (see Section III) and, hence, reference trajectories can
be generated in any coordinates. Obviously it is much simpler
to generate the reference trajectories in the normalized coordi-
nates and then to convert the control signals into the ones in the
original coordinates. This will also make the trajectory gener-
ator generic and reusable for other MEMS devices of the same
type. However, the closed-loop controller and the observer have
to be implemented in the real time scale.

The nominal trajectory in the normalized coordinates is built
based on the performance specifications (corresponding to a
system with a damping ratio of 1.5, driven by an ideal electrical
source) and is drawn in Fig. 5(a). The function describing the
displacement speed of the moveable plate with respect to the
deflection is obtained by polynomial interpolation, from which

, , , and can be deduced. The refer-
ence trajectory can then be determined from (19) and (20). The
reference trajectories corresponding to different deflections are
shown in Fig. 5(b). It can be seen that for a full gap deflection,
the maximum speed of the reference trajectory is lower than the
one of the nominal trajectory. However, the simulation results
show that the performance has not been significantly affected.

To help tuning the controller, the function
[see (30)] corresponding to the planned trajectories is drown
in Fig. 6. It can be seen that for , or equiv-
alently a deflection of 5.2 (nm) from the position of rest,

. The controller gain can
then be chosen to be about 30. Note that the surface roughness
of the micromirror is about 40 (nm), the actuator provides
then a sufficient resolution around the position of rest with
this controller. Note also that the position of rest is stable for
zero input, therefore, to bring the actuator back to this point it
suffices to set the control signal to zero.

The control scheme has been tested with numerical simula-
tion for a single pixel of the DM. In the configuration of the
controller, the elastic constant is set to 489 N/m (the designed
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Fig. 5. Nominal and planned trajectories in the normalized coordinates.

Fig. 6. � (x)=�(x) for different trajectories.

Fig. 7. Responses of voltage controlled parallel-plate electrostatic actuators with system parameter variations.

value) and the damping ratio is fixed to 3. The estimated re-
sistance is 500 . A pulse voltage with a width of 0.5 ms
and an amplitude of 2 times of pull-in voltage is applied to
steer the operation. The actuator is supposed to be driven by a
bipolar voltage source, whose amplitude is limited to times
of pull-in voltage by a saturator.

Fig. 7 shows the responses of actuators controlled by the
proposed scheme corresponding to the deflections of 20%,
40%, 60%, 80%, and 100% of the full gap, respectively. In
the simulation, the elastic constant of these devices is set
to 388 N/m (the measured value) and the damping ratio is

, , and , respectively. It can be seen that the
proposed closed-loop control extends the stable operational
range to the full gap.

In order to demonstrate the performance of the closed-loop
control scheme, systems under the constant voltage control are
also simulated and the results are shown in Fig. 8. Since the
stable operational range for open-loop control schemes is lim-
ited by the pull-in position, only a one third deflection of the full
gap is considered. It can be seen that systems with a closed-loop
control are much faster than the ones using a constant voltage
control scheme. Note that a possible solution to obtain a shorter
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Fig. 8. Closed-loop control versus constant voltage control.

Fig. 9. System responses with noisy measurements.

Fig. 10. System responses with control signal delays.

response time is to reduce the viscous damping of the device by
putting the mirror into a low pressure chamber. Clearly, closed-
loop control offers a simpler, more reliable, and less expensive
alternative for improving the response time.

The system is also tested against measurement errors, which
are modeled as independent zero-mean uniformly distributed
noises with maximum amplitude equal to 5% of the value of set-
point and the corresponding charge, respectively. The influence
of measurement noises to the performance is shown in Fig. 9. It

has also been observed that the system robustness is decreased
due to the presence of measurement noises.

The last test simulated a voltage source delayed by a first
order system whose time constant is . Since the slower the
system, the bigger the delay can be tolerated, the simulation ad-
dressed only the fastest system, namely the one with a damping
ratio of 1. The deflection is set to 90% of the full gap. Fig. 10
shows the responses corresponding to the control using a voltage
source with a time constant equal to 0.05 and 0.1 ms, or
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equivalently with a response time of 0.2 and 0.4 ms, respec-
tively. For the purpose of comparison, the response of a device
driven by an ideal voltage source is also sketched. Note that the
response time of the ideal system is about 0.4 ms. It can be seen
that delays on control signals degrade the system performance,
but the system remains stable when the delay does not exceed
the system response time. It has also been observed that further
increasing the delay could destabilize the system.

Note that all the reported results are obtained by using the
same controller, whose design is based on the nominal plant
( and ). This shows the robustness of the
presented control scheme.

VII. CONCLUSION

This paper addressed the control of a parallel-plate electro-
static actuator, which is the basic element in MEM-DM for AO
applications. It has been shown that this system is differentially
flat, and based on this property, a control scheme, combining
trajectory planning and nonlinear robust control has been pre-
sented. The obtained control system was capable of extending
the stable actuation range to the full gap, exhibiting an excellent
performance in terms of response time, and was robust vis à vis
the dynamical characteristics of the device.

Finally, it is worth noting that, in the original design of the
presented DM, the air gap of the actuator was intentionally made
more than three times the required deflection for implementing
the AO application in order to avoid the pull-in phenomena. In
fact, with the proposed control scheme, it is possible to reduce
air gap to the one-third of its current dimension. An immediate
benefit is that the maximum value of driving voltage can be sig-
nificantly decreased. Consequently, the device will be more re-
liable, less expensive, and much easier to operate. This shows
the importance of taking into account the control strategy in the
early stage of MEMS device design.
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