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control design presented in this work are applicable to systems (1)
with multiple unstable eigenvalues with the Dirichlet, Neumann, or
Robin type boundary controllers.
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Norm Estimators and Global Output Feedback
Stabilization of Nonlinear Systems With

ISS Inverse Dynamics

Georgia Kaliora, Alessandro Astolfi, and Laurent Praly

Abstract—A preliminary result on the construction of norm estimators
for general nonlinear systems that do not necessarily admit a input output
to state stable (IOSS)-Lyapunov characterization is given. Furthermore, an
output feedback stabilization scheme is presented that makes use of norm
estimators. This construction extends some previous results allowing for
more general nonlinearities. Two examples complete the work.

Index Terms—Input-output-to-state stability, nonlinear systems, norm
estimators, output feedback.

I. INTRODUCTION

It has been clear for years now that, for nonlinear systems, global
uniform observability alone does not imply the existence of a conver-
gent observer, or even more so, the existence of a (globally) stabilizing
(dynamic) output feedback control law. On the contrary, it has been
shown in [5] that globally observable systems that do not however pos-
sess the unboundedness observability property cannot be stabilized by
any dynamic output feedback scheme.

It is now a growing trend to use high-gain observers as part of an
output feedback stabilization architecture for a variety of nonlinear sys-
tems that exhibit a triangular structure [1]. In [6], a high-gain technique
was introducedwhere the gainwas time varying, i.e., tuned on line.Mo-
tivated by the above reference the authors of [4] considered an output
feedback made of the combination of high, variable-gain observer and
controller. Both the previous output feedbacks are inherently nonlinear,
while in [8] a linear observer/controller (again with varying high gain)
proves to be sufficient for the output feedback stabilization for a class
of nonlinear systems.

On the other hand, for nonlinear systems written in observability
canonical form and that are input output to state stable (IOSS) globally
convergent observers can be designed via the idea of norm estimators
(see [3] for this and other related definitions), as shown in [7], where
again a “high-gain” idea is used, but the gain is this time tuned via the
norm estimator.

Motivated by [7] in this note we provide an approach toward the de-
sign of norm estimators for systems that are not necessarily IOSS. As
applications, we examine a nonlinear system that—in open loop—ex-
hibits finite escape time and nonlinear systems that are linear in the
unmeasured state.

Finally, we extend the result of [8]. Namely, under the assumption
of existence of a norm estimator, it is shown that the restrictions on the
growth of the system nonlinearities can be relaxed, allowing, thus, for
a larger class of nonlinear systems to be stabilized with this approach.
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II. ON NORM ESTIMATORS

Consider a single-input–single-output nonlinear system of the form

_x = f(x; u)

y = h(x) (1)

where x 2 n is the state, u 2 is the input, and y 2 is the output,
respectively. In [3] it is explained how the assumption that system (1)
is input output to state stable (IOSS) can be used for the design of a
first order dynamical system _! = �(!; u; y) such that a function of
!(t) serves asymptotically as an upper limit of the norm of x. In this
design it is instrumental to assume the existence of a IOSS-Lyapunov
function V (x) that satisfies the dynamic estimate

_V (x; u) =
@V

@x
(x)f(x; u) � �V (x) + 1(jh(x)j) + 2(juj) (2)

for classK functions 1(jyj) and 2(juj). In practice, even for systems
that are knowingly IOSS it might be difficult to compute such functions
V; 1 and 2. Even though this difficulty does not necessarily hinder
the construction of the norm estimator, it is however desirable to inves-
tigate whether norm estimators can be built under the assumption that
an (IOSS-)Lyapunov function exhibits a “good enough” dynamical es-
timate, that is different from the exponential decaying one in (2). In this
section such an alternative is presented.

It deals with the case1 where we have aC1 functionW and two con-
tinuous functions ��, upperbounded in its first argument, and �, nonde-
creasing in its first argument, satisfying

_W (x; u) � ��(W (x); u; h(x)) 8(x; u) (3)

and:

jxj � �(W (x); h(x)) 8x: (4)

Let � be a locally Lipschitz function, upperbounded in its first argu-
ment and c1 to c3 be strictly positive real numbers satisfying

�(0; u; y) � 0 8(u; y) (5)

��(W;u; y) � �(!; u; y) 8W � ! 8(u; y)

(6)

�((1 + c1)! + c2; u; y) + c3 � [1 + c1]�(!; u; y)

8(!;u; y): (7)

Consider the augmented system

_x = f(x; u)

_! = �(!; u; h(x)); !(0) � 0: (8)

Then the following fact holds.
Lemma 1: For any locally essentially bounded input function u, the

right maximal interval of definition [0; T ) of any corresponding solu-
tion (x(t); !(t)) of (8) is not larger than the one of the corresponding
solution x(t) of (1) and there exists T � such that

jx(t)j � �([1 + c1]!(t) + c2 + jy(t)j; y(t)) 8t 2 [T �; T ): (9)

Proof: Since the _x equation is the same in (1) and (8), the x(t)
solution of (1) is necessarily defined at least on the right maximal in-
terval of definition [0; T ) of the corresponding solution (x(t); !(t)) of
(8). Also, remark that (5) implies

!(t) � 0 8t 2 [0; T ):

1This case encompasses, among others, Unboundedness Observability (UO),
integral input output to state stability (iIOSS) and input output to state stability
(IOSS).

Then, (3) and (6) give

_

maxfW (x)� !; 0g2 � 0:

Hence

W (x(t)) � !(t)+maxfW(x(0))�!(0);0g 8t 2 [0; T ): (10)

Note now that, as� is upperbounded in its first argument! can become
unbounded in finite time only if u and/or y become unbounded, and
this is in turn possible only if x is unbounded. Now, if T is finite, by
maximality, we have

lim
t!T

c1!(t) + jx(t)j = +1:

By (10) and (4), where � is nondecreasing in its first argument, this
implies

lim
t!T

c1!(t) + �(!(t) + maxfW (x(0))� !(0);0g; y(t)) = +1:

The function � being continuous,!(t) and/or jy(t)jmust go to infinity.
We deduce

lim
t!T

c1!(t) + jy(t)j = +1: (11)

So there exists a real number T � in [0; T ) such that:

maxfW (x(0))� !(0);0g � c1!(t) + jy(t)j 8t 2 [T �; T ): (12)

With (4) and (10), (9) follows.
If T is infinite, with (6) and (7), we get:

_

maxfW (x)� [1 + c1]! � c2; 0g
2

� �c3 maxfW (x)� [1 + c1]! � c2; 0g:

So there exists

T
� �

2 maxfW (x(0))� [1 + c1]!(0)� c2; 0g

c3

such that

W (x(t)) � [1 + c1]!(t) + c2 8t 2 [T �;+1): (13)

So again (9) follows.

III. EXAMPLES

Example 1: Consider the third-order system

_z = �z +  o(x1)

_x1 = x2

_x2 = u+ x
2

2 +  2(z)

yo = x1 (14)

where  2 satisfies, for some real number �

j 2(z)j � �z
2 8z: (15)

The first equation of (14) represents the inverse dynamics, and it is
clear that these are ISS with respect to their input x1. Nonetheless,
this system possesses solutions escaping to infinity in (positive) finite
time. However, system (14) is iIOSS. To see this, consider the partial
coordinates and feedback transformation

�1 = exp(�x1)� 1

�2 = � exp(�x1)x2

v = � exp(�x1)u (16)
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yielding

_z = �z +  (�1)

_�1 = �2
_�2 = v � (1 + �1) 2(z)

y = �1 (17)

with (�1) =  o(� log(1+�1)). As the linear part of the �-subsystem
of system (17) is a linear observable system there exist a matrix P 2
n�n with P > 0 and positive numbers v and y such that, with

V�(�) = �0P�, it holds that

@V�
@�

(�)
�2
v

� �kV�(�) + vv
2 + yy

2

for some k 2 (0; 1]. Along the trajectories of the �-subsystem of (17)
we obtain

_V� � �kV�(�) + vv
2 + yy

2 + pj1 + �1jj 2(z)jj�j (18)

for some positive real number p. Consider now the positive–definite
and radially unbounded function

V (z; �) =
�

2
z2 + log(1 + V�(�)) (19)

with a positive real number � to be defined. This yields

_V � ��z2 + �z (y) + p
j1 + �1jj�j

1 + V�(�)
j 2(z)j �

kV�(�)

1 + V�(�)

+
y

1 + V�(�)
y2 +

v
1 + V�(�)

v2:

Since the quantity (j1 + �1jj�j)=(1 + V�(�)) is bounded for all �, with
(15), it can be seen that, by picking � large enough, there exists �1 such
that we have

_V � �
�z2

2
�

kV�(�)

1 + V�(�)
+ �1 

2(y) + yy
2 + vv

2

� �k
V (z; �)

1 + V (z; �)
+ �1 

2(y) + yy
2 + vv

2:

We have also

z2 + j�j2 �
2V (z; �)

�
+ q(exp(V (z; �))� 1)

for some real number q. So we do have the iIOSS property. It follows
that Lemma 1 applies with

�(!; v; y) = �k
!

1 + !
+ �1 

2(y) + yy
2 + vv

2

�(!; y) =
2!

�
+ q(exp(!)� 1):

Example 2: Consider nonlinear systems described by equations of
the form

_x = Ax +�(x; y; u) +B(y; u)

y = Cx (20)

where the functions � and B are continuous, j�(x; y; u)j �
�(y; u)(1 + jxj), and the pair fC;Ag is observable.

By observability of the pair fC;Ag there exist a matrix P > 0 and
a row vector L, satisfying, for some positive real number k

x0(A0P + PA)x � �kx0Px + 2x0PLy:

The following also holds for some continuous function v(y; u):

�0(x; y; u)Px + x0P�(x; y; u) � jv(y; u)j(1 + x0Px):

Consider the C1 positive definite and radially unbounded function
V (x) = log(1 + x0Px). There exist positive real numbers y and u
such that, along any solution of system (20), we have

_V � �
k

2

x0Px

1 + x0Px
+ jv(y; u)j+ yy

2 + ujB(y; u)j2:

So, Lemma 1 applies again.

IV. GLOBAL OUTPUT FEEDBACK STABILIZATION

In this section, we show how the existence of a norm estimator can
be used in an output feedback stabilization scheme.

Specifically, the property to be exploited is that, knowing how to get
a bound for the norm of the system state after a finite time, we can also
evaluate any bounding functions.

Consider nonlinear systems in the form

_z = q(z; y)

_x1 = x2 + �1(z; x1)

...

_xi = xi+1 + �i(z; x1; . . . ; xi)

...

_xn�1 = xn + �n�1(z; x1; . . . ; xn�1)

_xn = u+ �n(z; x1; . . . ; xn)

y = x1 (21)

where y 2 is the available output, and the z-subsystem represents
the inverse dynamics. It is useful to rewrite this system in the compact
form

_X = F (X) +Gu (22)

with X = (x; z).
Complementing the work of [8] we present a result that relaxes the

assumptions made in this reference. In particular, we use the following
set of assumptions.

A1) The subsystem _z = q(z; y) is ISS with respect to y, i.e.,
there exist a positive definite and radially unbounded func-
tion Vz(z) and a class K function  such that

@Vz(z)

@z
q(z; y) � �Vz(z) + (jyj): (23)

A2) There exist a continuous nonnegative function L and a class
K function � such that for all i = 1; . . . ; n

j�i(z; x1; . . . ; xi)j � L(x; z)(jx1j+ � � �+ jxij) + �(Vz(z)): (24)

The key novelty here is that L may depend on both x and z and not
only on y = x1. However, in this case, we need an estimate of an
upperbound for L. Specifically, (compare with Lemma 1), consider the
following assumption.

A3) There exist locally Lipschitz functions � and � such that the
system

_! = �(!; u; y) L̂ = �(!; y) (25)
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is ISS with input (u; y) and in particular, there exists a class
KL function and classK functions �u and �y so that, for
any positive t for which (!(t); u(t); y(t)) makes sense, we
have

jL̂(t)j � maxf (!( ); ); sup
2[ ; )

f� (j ( )j); � (j ( )j)gg:

(26)

Moreover, for any solution (X(t); !(t)) of the augmented
system (22) and (25), right maximally defined on [0; T ),
there exists T � 2 [0; T ) such that

L(x(t); z(t)) � L̂(t) 8t 2 [T �; T ): (27)

In the above, we need further restrictions on the functions ; �; �u,
and �y.

A4) The functions  and � are C1 on (0;+1) and
1) there exists a real number � � 1 such that

�s
d�(s)

ds
� �(s) 8s > 0: (28)

2) There exist strictly positive real numbers k and s0 such
that

�(2(s)) � ks 8s 2 [0; s0]:

A5)
1) There exists an integer m � 1 and a positive real

number p satisfying

�y(s) +
�(2(s))

s
� p+ s

m 8s � 0: (29)

2) There exists a real number � in (0; 1) and a positive real
number q satisfying

�u(s) � q + s 8s � 0: (30)

Remark 1: The set of assumptions given here are a generalization of
the assumptions given in [8], where it is assumed that the nonlinearities
�i(� � �) are linearly bounded—in growth—with a rate which is output
dependent. This situation can be recovered in the present set up by
letting �u(s) = 0. Assumptions A1 and A2 describe a class of systems
which is significantly enlarged. This is made possible by the existence
of the bounding function estimator, described in Assumption A3. The
cost of this generalization is having to satisfy conditions (30).

It will be shown that, even with this set of relaxed assumptions,
boundedness of solutions as well as convergence to the desired equilib-
rium can be achieved by means of a linear dynamic output feedback,
with a dynamic high gain, following the ideas in [8].
Proposition 1: Suppose that Assumptions A1 to A5 hold. Then

there exist a function �(!̂; y; r), matrices F 2 1�n andK 2 n�1,
with K = [k1; k2; . . . ; kn]

0 and a positive real number b such that the
dynamic output feedback control law composed as follows:

_̂x1 = x̂2 + k1r(y � x̂1)

...
_̂xi = x̂i+1 + kir

i(y � x̂1)

...
_̂xn = u+ knr

n(y � x̂1) (31)

u = �rnF

y
x̂

r

...
x̂

r

(32)

_! = �(!; u; y)

L̂ = �(!; y)

_r = �r(br � �(L̂; y; r)) (33)

with r(0) � 1, is such that all trajectories of system (21) are bounded
and converge to the origin.

Before continuing with the proof of Proposition 1, we define the
matrices A; D 2 n�n and B;C 2 n�1 as follows:

A =

0 1 � � � 0
...

...
...

0 0 1

0 0 � � � 0

B =

0
...
0

1

C =

1

0
...
0

D =

0 0 � � � 0

0 1
...

...
...

0 0 � � � n� 1

and recall the following lemma from [8], which is instrumental in the
design of the control scheme (31)–(33).
Lemma 2: For any strictly positive real number a, there exist real

numbers d0 and d1, symmetric matrices P 2 n�n and Q 2 n�n,
and matrices K 2 n�1 and F 2 1�n satisfying the following set
of inequalities:

d0 > 0 d1 � 0 P > 0 Q > 0

P (A�KC
0) + (A�KC

0)0P � �d0P

Q(A�BF ) + (A�BF )0Q � �d0Q

� aP � PD +DP � d1P

� aQ � QD +DQ � d1Q: (34)

Remark 2: Lemma 2 implies that the controller gains F andK are
function of the positive parameter a.
Sketch of the Proof of Proposition 1: Let the matrices K and F in

(31) and (32), respectively, be chosen according to Lemma 2. In (33),
choose the function �(L̂; y; r) satisfying at least

�(L̂; y; r) � b � 0: (35)

By constraining the initial condition of the varying gain r to be larger
than one, i.e., r(0) � 1, we guarantee that for each solution and all t
where it makes sense, r(t) � 1. The choice of the real number b will
be dictated later.

Considering the observer given by (31) define the error variables

ei = xi � x̂i

the normalized error variables

"i =
ei

ri�1+a

for i = 1; . . . ; n, and the corresponding error vector " =
col("1; "2; . . . ; "n). Following straightforward manipulations, one
gets

_" = r(A�KC
0)"� (aI +D)

_r

r
"+�1 (36)

where

�1 = col
�1

ra
;
�2

r1+a
; . . . ;

�n

rn�1+a
:

Next, let P be the matrix given by Lemma 2. We consider the posi-
tive–definite and radially unbounded function

V" = "
0
P":
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With straightforward calculations, upper bounding, and using the in-
equalities (34) one obtains

_V" � �([d0 � (2a+ d1)b]r + a�(L̂; y; r))V" + 2"0P�1: (37)

Next, consider the vector of scaled estimated states as:

�x = col
y

ra
;
x̂2
r1+a

; . . . ;
x̂i

ri�1+a
; . . . ;

x̂n
rn�1+a

(38)

and a scaled input [recall (32)]

�u =
u

rn+a
= �F �x: (39)

This yields

_�x = r(A�BF )�x � (aI +D)
_r

r
�x+ r�2 (40)

where

�2 = col
�1
r1+a

+ "2; k2"1 . . . ; ki"1; . . . ; kn"1 :

Consider the matrix Q that satisfies the inequalities (34) of Lemma 2
and define the positive–definite and radially unbounded function

Vc = �x0Q�x:

With straightforward computations, and using inequalities (34), it can
be shown that Vc satisfies the estimate

_Vc � �([d0 � (2a+ d1)b]r + a�(L̂; y; r))Vc + 2r�x0Q�2: (41)

With Assumption A2 (and r � 1), we get

�i
ri�1+a

� L(x; z)[(j�x1j + � � �+ j�xij)

+ (j"1j+ � � �+ j"ij)] + �(Vz(z))

ri�1+a
:

By completing the squares, this yields

2"0P�1 � L(x; z)[Vc + d2V"] + d3
p
V"

�(Vz(z))

ra

for some positive numbers d2 and d3 that depend on a. In a similar way
we can obtain an estimate for the norm of the vector �2 and

2r�x0Q�2 � d4L(x; z) +
d0
2
r Vc + rd5V" + d6

p
Vc

�(Vz(z))

ra

for some strictly positive real numbers d4; d5 and d6 depending on a.
With the previous estimates we obtain

_V" � �([d0 � (2a+ d1)b]r + a�(L̂; y; r)� d2L(x; z))V"

+ L(x; z)Vc + d3
p
V"

�(Vz(z))

ra
(42)

_Vc � � d0
2
� (2a+ d1)b r + a�(L̂; y; r)� d4L(x; z) Vc

+ rd5V" + d6
p
Vc

�(Vz(z))

ra
: (43)

Following [8] again, wemake the following choices for the real number
b and the function �(L̂; y; r)

0 < b � d0
4(2a+ d1)

�(L̂; y; r) = �1(L̂) + �2(y; r)

�1(L̂) =
L̂

a
max d2; d4 +

2d5
d0

(44)

where the function �2(y; r) is to be defined later on. Consider now the
function

V"c =
2d5
d0

V" + Vc: (45)

It can be shown that the choices given by the constraints (44) lead to
the estimate

_V"c � � d0r

4
+ a�2(y; r) V"c +

d7
ra

p
V"c�(Vz(z))

+ maxfd2; d4g(L(x; z)� L̂)V"c:

Consider now the positive–definite and radially unbounded function2

U(z; "; �x) = c
V (z)

0

��(s)

s
ds+

1

�
(2
p
V"c)

�

where c � 4d7 and � is the positive real number of Assumption A4.1.
It can be shown, see [8], that

_U � � c

4
��(Vz(z)) +

c

2
��(2(y))

� d0r

8
� d7

ra
+

a

2
�2(y; r)

� maxfd2; d4g
2

(L(x; z)� L̂) (2
p
V"c)

� (46)

which, if (a=2)�2 � (d7=r
a), can be upperbounded also as

_U � � c

4
��(Vz(z))

� d0r

8
� maxfd2; d4g

2
(L(x; z)� L̂) (2

p
V"c)

�

+
c

2
��(2(y))� a

2
�2(y; r)� d7

ra
2d8
ra

�

jyj�

for a positive real number d8 depending on a. Then, it is shown in [8]
that, by picking the function �2 as3

�2(y; r) = max b;
2d7
a

+
cra�

a(2d8)�
max k�;

�(2(jyj))
jyj

�

(47)

we obtain

_U � �min
1

4
;
�d0
8

U

+ �
maxfd2; d4g

2
maxf0; (L(x; z)� L̂)gU: (48)

Remark that, if we pick a small enough to get

a� < 1 (49)

then, with (44) and (47), there exists continuous functions �1 and �2
such that we have

_r � �1(!; y) + �2(y) r: (50)

Now, the state of the closed-loop system is made of (X;!; (x̂i); r). Let
[0; T ) be the right maximal interval of definition of some of its solution
(X(t); !(t); (x̂i(t)); r(t)). It follows from (50) that r(t) cannot escape

2Recall that, by Assumption A4.1, � � 1 and note that when � < 2, this
function is in general only locally Lipschitz. The following still holds by con-
sidering _U as the upper right Dini derivative, see [8].

3Assumption A4.1, implies that � (y; r) is a locally Lipschitz function when
r � 1.
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to infinity in finite time without (!(t); y(t)) doing the same. So, if
T is finite then jX(t)j + j!(t)j + j(x̂i(t))j goes to infinity when t

goes to T . But if only j(x̂i(t))j does so, then (48) and (50) imply that
U(t) and r(t) and, therefore, j(x̂i(t))j are bounded on [0; T ). This is a
contradiction. So, Assumption A3 can be invoked. Hence there exists
T � in [0; T ) and a positive real number b1, both depending on a and
the initial condition, such that (27) holds and

jX(t)j+ j!(t)j+ r(t) � b1 8t 2 [0; T �]: (51)

However, inequality (48) proves thatU(t) and, therefore, �x(t); "(t) and
z(t) are actually bounded on [0; T ). Since (25) is ISS, boundedness of
the overall solution as well as T = +1 will be established if we prove
that r(t) is also bounded on [0; T ). So consider the dynamic equation
for r, written here in a simplified form which can be obtained using
Assumption A5.1

_r = �r(br � b2 � b3L̂� b4r
a� � b5jyj

�m
r
a�): (52)

where the bi’s are positive real numbers depending both on a and the
initial condition. By applying techniques which are standard for dealing
with ISS systems, it can be shown that, with (49), we have

r(t) � b6 + b7 sup
s2[0;t)

jy(s)j + jL̂(s)j 8t 2 [0; T )

where b6 and b7 are other positive real numbers depending both on a
and the initial condition. With Assumption A5 and (26) of Assumption
A3, we can further refine this inequality in

r(t) � b8 + b9 sup
s2[0;t)

jy(s)j + jy(s)jm + ju(s)j : (53)

Now, with (38) and (39) and the boundedness of �x(t), we remark that,
there exists a positive real number b10, depending on a and the initial
condition, satisfying:

jy(t)j � b10r
a ju(t)j � b10r

n+a 8t 2 [0; T ):

So, (53) becomes

r(t) � b8 + b11 sup
s2[0;t)

r(s) + r(s)am + r(s) :

From here, by using the same arguments as in the proof of the small
gain theorem of [2], we can show that, if a is chosen small enough to
satisfy

a� < 1
a�m

1� a�
< 1 am < 1

(n+ a)(1� �)

n
< 1

or, in short

a < min
1

�(m+ 1)
;

n�

1� �

then r(t) is bounded on [0; T ).
So, as mentioned before, the closed-loop solution is defined and

bounded on [0;+1). Then, from the inequality (48) we have thatU(t)
converges to zero. This implies that both z(t) and x(t) converge to the
origin as t tends to +1.

V. CONCLUSION

In this note, two issues have been addressed. First, it is shown that
globally convergent norm estimators can be designed also for systems
for which an exponentially decaying IOSS-Lyapunov function may not
exist. In addition, the problem of output feedback stabilization for a
class of nonlinear systems with ISS inverse dynamics has been ad-
dressed and solved by means of linear dynamic output feedback, with

dynamic high gain. This result generalizes existing results by allowing
for more general forms of nonlinearities.
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Output Regulation of Uncertain Nonlinear
Systems With Nonlinear Exosystems

Zhengtao Ding

Abstract—An adaptive control algorithm is proposed for output regu-
lation of uncertain nonlinear systems in output feedback form under dis-
turbances generated from nonlinear exosystems. A new nonlinear internal
model is proposed to generate the desired input term for suppression of the
disturbances. The proposed internal model design is based on boundedness
of the disturbance, high gain design and saturation. It is capable to tackle
disturbances in any specified initial conditions. Some uncertainties in the
systems are allowed, provided that they do not affect the desired feedfor-
ward control term, and they are tackled by using nonlinear dominant func-
tions and an adaptive control coefficient. The proposed control algorithm
ensures the global convergence of the state variables to the invariant mani-
fold, which implies that the measurement or the tracking error approaches
to zero asymptotically.

Index Terms—Disturbance rejection, nonlinear exosystems, nonlinear
systems, output regulation, uncertainty.

I. INTRODUCTION

The output regulation problem is well posed and solved for linear
systems in [1], [2]. For nonlinear systems, an important contribution to
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