
Necessary conditions for stability and attractivity of continuous systems
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Considered in this paper are control systems of the form _xx ¼ f ðx; uÞ. For such systems a number of related necessary
conditions for various forms of stability and attractivity are presented. The paper starts by showing that Brockett’s
necessary condition for stabilizability via smooth feedback still persists if f is continuous and the class of allowable u
increased to include continuous feedbacks. Using similar ideas to those used to prove the continuous Brockett result,
again only assuming continuity of f and u, necessary conditions are then derived for global attractivity and for ultimate
boundedness.

1. Introduction

Let R denote the real numbers. Let f : R
n � R

m ! R
n

be a continuous function with f ð0; 0Þ ¼ 0 and consider
the system

_xx ¼ f ðx; uðxÞÞ ð1Þ

where u: R
n ! R

m is an as yet unspecified function. A
common problem in control theory is to find a function
u with uð0Þ ¼ 0 that makes the zero solution of (1)
locally asymptotically stable. This problem is often
referred to as the local stabilizability problem. From
the start it is unclear whether such a control u exists
and hence necessary conditions for the existence of
such a control are of interest. One now famous necess-
ary condition was given in Brockett (1983). Brockett’s
result states that if f is continuously differentiable a
necessary condition for the existence of a continuously
differentiable feedback control u that renders 0 locally
asymptotically stable is that the image of f contain an
open neighbourhood of 0.

An example of an f not satisfying Brockett’s con-
dition is

f : R
2 � R

2 ! R
2; ðx; uÞ ¼ ðx1; x2; u1; u2Þ 7! ðu1; u1u2Þ

The condition fails to be satisfied as no point of the form
ð0; �Þ, � 6¼ 0, is in the image of f .

Since the appearance of Brockett’s result, a number
of related papers have been published, see for example
Zabczyk (1989), Coron (1990), Ryan (1994), Kappos

(1995) and Clarke et al. (1998). In one of these,
Zabczyk (1989), it was shown that if f and u are con-
tinuous and the solutions of the closed loop system
unique then Brockett’s condition that the image of f
contain an open neighbourhood of 0 is still necessary
for the existence of a zero solution which is locally
asymptotically stable.

In this paper a number of related necessary con-
ditions for various forms of stability and attractivity
are presented and we start by giving a relatively elemen-
tary proof that Brockett’s necessary condition still holds
if f and u are continuous. Importantly the proof of this
result does not assume that solutions of the closed loop
system (1) are unique nor that solutions depend continu-
ously on initial conditions.

While the ingredients for the proof of this result exist
in various guises in the literature, to the best of our
knowledge, no simple complete proof of the result exists.
Note however that it was shown by Ryan that if f is
continuous and has the property that

K � R
m convex ) f ðx;KÞ � R

n convex ð2Þ

then the Brockett result still holds if u is a member of a
certain class of discontinuous functions (Ryan 1994).
Ryan remarks that if f and u are continuously differen-
tiable then condition (2) can be removed and hence that
his result is a generalization of Brockett’s. Though it is
not stated in the paper, if f and u are continuous the
same remark holds.

We believe the continuous case is especially import-
ant and hope that the relatively simple proof of the
continuous Brockett result given here will bring the
result to the attention of a much larger collection of
researchers and practitioners.

Using similar ideas to those used in the proof of the
continuous Brockett result we next derive two necessary
conditions for the existence of a zero solution which is
global attractive. The first of these is an extension of a
result from Zabczyk (1989) which states that Brockett’s
condition for local stabilizability is also necessary for
global attractivity. This result was shown to hold for
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continuous f and u under the assumption that closed
loop solutions were unique. We show that the same
result is true without requiring uniqueness of closed
loop solutions.

It is also shown that global attractivity implies that
the closed loop vector field must take on all non-zero
directions on all spheres centred about the origin. The
second condition shown to be necessary for global
attractivity is based on this fact. Unlike the Brockett
condition, it is non-local in nature.

As we show, a modified version of this latter con-
dition is also necessary for ultimate boundedness. We
show that the closed loop vector field must take on all
non-zero directions on all origin centred spheres of suf-
ficiently large radius. The modified necessary condition
is based on this fact.

As in Zabczyk (1989) and Ryan (1994), proofs of
results in this paper are degree-theoretic in nature and
do not rely on converse Lyapunov results.

All results in this paper are first derived for systems
of the form

_xx ¼ f ðxÞ ð3Þ

where f :Rn ! R
n is a continuous function and then

extended to systems of the form (1).
It should be noted that a result quite close to

Brockett’s for systems of the form (3) was provided
independently in Krasnosel’skiı̆ and Zabreı̆ko (1984, p.
340). The Russian original edition of this work was pub-
lished in 1975, a number of years prior to Brockett’s
paper.

In the remainder of this section we outline some of
the main ideas used in the paper and give an overview of
what follows.

Let Sa be a sphere of radius a centred at the origin
and let �BBð0; bÞ be a closed ball of radius b < a, also
centered at the origin. A fundamental result used
throughout the paper is the following. If f is a contin-
uous vector field and there exists a constant T such that
all solutions of the system _xx ¼ f ðxÞ starting on Sa are
confined to the set �BBð0; bÞ for all time greater than or
equal to T , then the vector field, amongst other proper-
ties, must take on all non-zero directions on Sa. Indeed
the conclusion of this result is true under weaker con-
ditions and the paper starts with a proper statement and
proof of this result in } 2. The result is first proved for
the class of continuous vector fields with unique sol-
utions. This is done using a homotopy argument. The
general case is then proved by appropriately approxi-
mating an arbitrary continuous vector field with one
that has unique solutions.

The next section of the paper, } 3, contains a proof of
Brockett’s result for continuous f and u and is a direct
consequence of the results of } 2. Section 4 contains
proofs of the global attractivity conditions. The ultimate

boundedness result is given in } 5. This essentially com-

pletes the paper and it ends with some concluding

remarks.

Stability plays a major role in control theory and is

an area of much current research. For further back-

ground and motivation the reader is referred to

Bacciotti (1992).

2. Main result

The main aim of this section is to prove Theorem 2.

This result is used repeatedly in the rest of the paper

including } 3 where it is used to extend Brockett’s necess-
ary condition for local stabilizability.

Let Sr denote the set fy 2 R
n j jyj ¼ rg, Bðx; rÞ

the set fy 2 R
n j jy� xj < rg and �BBðx; rÞ the set

fy 2 R
n j jy� xj � rg.

Before proceeding any further, let us introduce some

facts from topology that will be needed throughout the

rest of the paper. Suppose f1 and f2 are two continuous

functions from Sa into S1. Then f1 and f2 are homotopic

if there exists a continuous function F: ½0; c� � Sa ! S1

such that

Fð0; xÞ ¼ f1ðxÞ and Fðc; xÞ ¼ f2ðxÞ for all x 2 Sa

(That is, f1 and f2 are homotopic if it is possible to

continuously interpolate in S1 between f1 and f2.) In

addition, recall that for each continuous function

f :Sa ! S1 there is an associated integer called the

degree of f . Loosely speaking, the degree of f equals

the number of times f winds Sa around S1. Degree is

rather complicated to define and a precise definition will

not be given here.{ As well as some other properties of

degree which we will recall as required, we will need the

following fact. If two continuous functions f1:Sa ! S1

and f2:Sa ! S1 are homotopic then they have the same

degree. For more details about degree theory and a

proof of the result just mentioned see, e.g. Dugundji

(1966). Readers interested in learning more about degree

theory are also referred to Lloyd (1978).
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{Readers not familiar with degree theory should keep in
mind the n ¼ 2 dimensional case. In this case, Sa and S1 are
circles in R

2 and the degree of f equals the number times the
image point f ðxÞ rotates around S1 as x makes one rotation of
Sa. In greater detail, one method of calculating the degree of f
is to define �: ½0; 2�� ! Sa; � 7! aðcos �; sin �Þ, and to consider
the function f � �: ½0; 2�� ! S1. The function f � � is a closed
curved in S1. (By closed we mean that f � �ð0Þ ¼ f � �ð2�Þ.) As
a result it will encircle the origin a whole number of times as it
argument goes from 0 to 2�. The degree of f equals the total
number of times f � � encircles the origin in a counter-
clockwise direction minus the total number of times it
encircles the origin in a clockwise direction.



Lemma 1: Let f :Rn ! R
n be continuous and suppose

that for each x0 2 R
n there is an unique solution xð�; x0Þ

to the initial value problem

_�� ¼ f ð�Þ; �ð0Þ ¼ x0

If there exist constants a and b, a > b > 0, and T > 0
such that for each x0 2 Sa, xð�; x0Þ exists over the interval
0 � t � 2T and satisfies

jxðt; x0Þj � b < a for all t 2 ½T ; 2T � ð4Þ

then the function

g:Sa ! S1; x 7! f ðxÞ
j f ðxÞj

has non-zero degree.

One consequence of g having non-zero degree is that
g must be a surjective function. (This will be shown later
in Theorem 2.) In the more intuitive terminology used in
the introduction of this paper, f must take on all non-
zero directions on Sa.

Proof: As the antipodal map h:Sa ! S1, x 7! �x=jxj,
has degree ð�1Þn (Dugundji 1966, p. 339), it is suffi-
cient to show that g and h are homotopic.

Before proceeding recall that uniqueness of solutions
implies xðt; x0Þ depends continuously on ðt; x0Þ
(Hartman 1964, p. 94). Also note that (4) implies that
f ðxÞ 6¼ 0 for any x 2 Sa and hence that g is a well-
defined function.

Define F: ½0; 2T � � Sa ! S1 as

Fðt; x0Þ ¼

gðx0Þ; t ¼ 0

xðt; x0Þ � x0
jxðt; x0Þ � x0j

; t 2 ð0;T �

2T � t

T
xðT ; x0Þ � x0

2T � t

T
xðT ; x0Þ � x0

����
����
; t 2 ðT ; 2T �

8>>>>>>>>>><
>>>>>>>>>>:

Let us verify that F is well defined by first checking that
jxðt; x0Þ � x0j 6¼ 0 on ð0;T � � Sa. Suppose that there
exists x0 2 Sa and 
 > 0 such that xð
; x0Þ ¼ x0.
Uniqueness of solutions implies that the orbit passing
through x0 must be periodic. As jx0j ¼ a and
jxðt; x0Þj � b < a for all t 2 ½T ; 2T �, 
 must be greater
than T and hence we can conclude that
jxðt; x0Þ � x0j 6¼ 0 on ð0;T � � Sa. That jx0j ¼ a and
jxðt; x0Þj � b < a for all t 2 ½T ; 2T � also implies that

2T � t

T
xðT ; x0Þ � x0

����
���� 6¼ 0

on ðT ; 2T � � Sa and hence F is indeed a well-defined
function.

We now show that F is continuous. Note that the
fact that

lim
ðt;x0

0
Þ!ð0þ;x0Þ

xðt; x00Þ � x00
jxðt; x00Þ � x00j

¼ gðx0Þ for all x0 2 Sa

follows from the fact that

lim
ðt;x0

0
Þ!ð0þ;x0Þ

xðt; x00Þ � x00
t

¼ f ðx0Þ for all x0 2 Sa ð5Þ

and the fact that f ðxÞ 6¼ 0 for any x 2 Sa. That (5) is true
follows by applying the triangle inequality to

xðt; x00Þ � x00
t

� xðt; x0Þ � x0
t

þ xðt; x0Þ � x0
t

� f ðx0Þ
����

����;

noting that

lim
t!0þ

xðt; x0Þ � x0
t

¼ f ðx0Þ;

that

xðt; x00Þ � x00
t

� xðt; x0Þ � x0
t

����
����

¼
Ð t
0½ f ðxðs; x

0
0ÞÞ � f ðxðs; x0ÞÞ� ds

t

�����

�����
� max

0�s�t
j f ðxðs; x00ÞÞ � f ðxðs; x0ÞÞj

and finally that f ðxðt; x0ÞÞ is continuous in ðt; x0Þ. From
these facts it follows that F is a well-defined continuous
deformation of g to h and hence that g and h are homo-
topic. &

In order to prove our main result, we will need the
following theorem taken in modified form from Filippov
(1988, p. 90). It says that even when solutions are not
unique, they still in a certain sense depend continuously
on the vector field and on the initial condition.

Theorem 1: Let G � R
n be open, f :G ! R

n continu-
ous and x0 be a given point in G. Suppose there exists
T > 0 such that all solutions of the problem

_�� ¼ f ð�Þ; �ð0Þ ¼ x0 ð6Þ

exist for 0 � t � 2T and remain in G during this time.
Then given � > 0 there exists � > 0 such that for any

x�0 2 G and any continuous function f �:G ! R
n satisfying

the conditions

jx0 � x�0j � �; sup
x2G

j f ðxÞ � f �ðxÞj � �

each solution of the problem

_�� ¼ f �ð�Þ; �ð0Þ ¼ x�0

exists for 0 � t � 2T and differs for these t from a certain
solution of problem ð6Þ by not more than �.
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Lemma 2: Let f :Rn ! R
n be continuous and K � R

n

compact. Suppose that for each x0 2 K all solutions of
the equation

_�� ¼ f ð�Þ; �ð0Þ ¼ x0 ð7Þ
exist for 0 � t � 2T. Then there exists a compact set K 0

such that for any x0 2 K and any solution xð�; x0Þ of ð7Þ,
xðt; x0Þ 2 K 0 for all 0 � t � 2T.

Proof: See Filippov (1988, p. 9). &

We will also need the following approximation
result. It will allow us to approximate an arbitrary con-
tinuous vector field, whose solutions may not be unique,
by a continuously differentiable vector field, whose sol-
utions will necessarily be unique.

Lemma 3: Given a compact set K � R
n, a continuous

function f :K ! R
n, and � > 0, there exists a continu-

ously differentiable function f �:Rn ! R
n satisfying

max
x2K

j f ðxÞ � f �ðxÞj � �

Proof: By the Weierstrass approximation theorem
(Dieudonné 1970, p. 139), for each coordinate function
fi of f there exists a polynomial function f �i :R

n ! R

such that maxx2K j fiðxÞ � f �i ðxÞj � �=n. The desired
function is f � ¼ ð f �1 ; . . . ; f �n Þ. &

The following theorem is the main result of this sec-
tion. Its proof starts by showing that if f satisfies the
requirements of the theorem, then it can be approxi-
mated by a vector field f � which (i) still satisfies the
requirements of the theorem, and (ii) has unique sol-
utions. Lemma 1 then implies that g� in (10), has non-
zero degree. Using a homotopy argument, it is then
shown that g and g� have the same degree. Finally, we
show that non-zero degree implies surjectivity.

Theorem 2: Let f :Rn ! R
n be continuous. If there ex-

ist constants a and b, a > b > 0, and T > 0 such that
for each x0 2 Sa all solutions xð�; x0Þ of the differential
equation _�� ¼ f ð�Þ, �ð0Þ ¼ x0, exist over the interval
0 � t � 2T and satisfy

jxðt;x0Þj � b < a for all t 2 ½T ; 2T �
then the function

g:Sa ! S1; x 7! f ðxÞ
j f ðxÞj ð8Þ

has non-zero degree and is surjective.

Proof: Taking K ¼ Sa in Lemma 2 implies there
exists a compact set K 0 that contains all solutions of
the initial value problems _�� ¼ f ð�Þ, �ð0Þ ¼ x0 2 Sa for
0 � t � 2T . Let G be an open bounded set containing
K 0 and let � be a constant that satisfies 0 < � < a� b.
Using the f and T of the theorem statement and the G

and � described above, for each x0 2 Sa let �x0 denote
the value of � in Theorem 1.

The sets Bðx0; �x0Þ, x0 2 Sa, form an open cover of
Sa. As Sa is compact this cover has a finite subcover
consisting say of the sets Bðx10; �x1

0
Þ; . . . ; Bðxm0 ; �xm

0
Þ. As

f is continuous and non-zero on Sa there exists B > 0
such that j f ðxÞj � B for all x 2 Sa. Let � satisfy
0 < � < minf�x1

0
; . . . ; �xm

0
;Bg and let �GG denote the clo-

sure of G. Taking K ¼ �GG in Lemma 3, it follows that
there exists a continuously differentiable function
f � : R

n ! R
n such that

max
x2 �GG

j f ðxÞ � f �ðxÞj � �

Let x�0 be an arbitrary but fixed point in Sa. As the sets
Bðx10; �x1

0
Þ; . . . ;Bðxm0 ; �xm

0
Þ cover Sa, x�0 2 Bðxi0; �xi

0
Þ for

some i 2 f1; . . . ;mg. From Theorem 1 it now follows
that x�ð�; x�0Þ, the unique solution of the differential
equation

_�� ¼ f �ð�Þ; �ð0Þ ¼ x�0

exists for 0 � t � 2T and differs from a certain solution
of

_�� ¼ f ð�Þ; �ð0Þ ¼ xi0

by no more than � over the interval ½0; 2T �. Hence it
follows that

jx�ðt; x�0Þj � bþ � < a for all t 2 ½T ; 2T � ð9Þ

As x�0 2 Sa was arbitrary, equation (9) holds for all
x�0 2 Sa and Lemma 1 now implies that the function

g�:Sa ! S1; x 7! f �ðxÞ
j f �ðxÞj ð10Þ

has non-zero degree.
We now show that g and g� are homotopic. Consider

the function

F: ½0; 1� � Sa ! S1; ð�; xÞ 7! �f �ðxÞ þ ð1� �Þf ðxÞ
j�f �ðxÞ þ ð1� �Þf ðxÞj

That F is indeed a well-defined function can be seen by
noting that j f �ðxÞ � f ðxÞj � � < B � j f ðxÞj for all
x 2 Sa and hence that

j�f �ðxÞ þ ð1� �Þ f ðxÞj ¼ j f ðxÞ þ �ð f �ðxÞ � f ðxÞÞj

� j f ðxÞj � j f �ðxÞ � f ðxÞj

> 0

for all ð�; xÞ 2 ½0; 1� � Sa. F is also continuous. It fol-
lows that g and g� are homotopic and hence that g has
the same degree as g�.

Finally, if a function h:Sa ! S1 is not surjective, it
will be homotopic to a constant function (Dugundji
1966, p. 316). As constant functions have zero degree
(Dugundji 1966, p. 339), g must be surjective. &
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3. An extension of Brockett’s necessary condition for

local stabilizability

In this section we show that Brockett’s necessary
condition for local stabilizability still persists if f and
u are only continuous.

Before proceeding let us introduce some further ter-
minology. The following terms are taken from Rouche
et al. (1977) and while they are fairly standard they have
been altered to cover non-uniqueness of solutions.

Let f :Rn ! R
n be a given continuous function and

suppose f ð0Þ ¼ 0. Consider the system

_�� ¼ f ð�Þ

The trivial solution x � 0 will be called:

. stable if for each � > 0 there exists � ¼ �ð�Þ > 0
such that if jx0j � � and xð�; x0Þ is a solution of
_�� ¼ f ð�Þ, �ð0Þ ¼ x0, then

jxðt; x0Þj � � for all t � 0

. attractive if there exists 
 > 0 such that if jx0j � 

and xð�; x0Þ is a solution of _�� ¼ f ð�Þ, �ð0Þ ¼ x0,
then xðt;x0Þ is defined for all t 2 ½0;1Þ and

lim
t!1

xðt; x0Þ ¼ 0

. equi-attractive if there exists 
 > 0 such that for
each � > 0 there exists � ¼ �ð�Þ > 0 such that if
jx0j � 
 and xð�; x0Þ is a solution of _�� ¼ f ð�Þ,
�ð0Þ ¼ x0, then xðt; x0Þ is defined for all
t 2 ½0;1Þ and

jxðt; x0Þj � � for all t � �

. asymptotically stable if it is stable and attractive.

. equi-asymptotically stable if it is stable and equi-
attractive.

Lemma 4: Suppose f :Rn ! R
n is continuous and that

x � 0 is an asymptotically stable solution of the system
_�� ¼ f ð�Þ. Then x � 0 is equi-asymptotically stable.

Proof: See Filippov (1988, p. 160). &

In order to extend Brockett’s result we will need the
follow lemma taken from Zabczyk (1989).

Lemma 5: Suppose f :Rn ! R
n is continuous, that

f ð0Þ ¼ 0, and that there exists a > 0 such that f ðxÞ 6¼ 0
for all x 2 �BBð0; aÞ � f0g. Furthermore suppose

g:Sa ! S1; x 7! f ðxÞ
j f ðxÞj

has non-zero degree. Then the image under f of any open
neighbourhood of 0 contains an open neighbourhood of 0.

Theorem 3: If f :Rn ! R
n is continuous and x � 0 is

an asymptotically stable solution of the system _�� ¼ f ð�Þ,

then the image under f of any open neighbourhood of 0
contains an open neighbourhood of 0.

Proof: Lemma 4 implies that the solution x � 0 is
equi-asymptotically stable and hence that there exists

 > 0 such that for arbitrary a and b satisfying
0 < b < a � 
, there exists T > 0 such that if jx0j ¼ a
and xð�; x0Þ is solution of _�� ¼ f ð�Þ, �ð0Þ ¼ x0, then

jxðt; x0Þj � b for all t � T

Theorem 2 now implies that the function g, see (8),
has non-zero degree. The result now follows from
Lemma 5. &

As an immediate corollary we have the following
extension of Brockett’s result.

Corollary 1: Suppose f :Rn � R
m ! R

n is a given con-
tinuous function satisfying f ð0; 0Þ ¼ 0. Furthermore sup-
pose u : R

n ! R
m is a continuous function satisfying

uð0Þ ¼ 0 and that x � 0 is an asymptotically stable solu-
tion of the system _�� ¼ f ð�; uð�ÞÞ. Then the image under
f of any open neighbourhood of ð0; 0Þ 2 R

n � R
m con-

tains an open neighbourhood of 0 2 R
n.

Proof: Let P � R
n � R

m be an open neighbourhood
of ð0; 0Þ. Then necessarily there exist open sets N � R

n

and M � R
m such that N �M � P and

ð0; 0Þ 2 N �M. Let N1 ¼ N \ u�1ðMÞ. As u is contin-
uous and uð0Þ ¼ 0, it follows that N1 is an open neigh-
bourhood of 0. Applying Theorem 3 to the continuous
function f ð�; uð�ÞÞ implies f ðN1; uðN1ÞÞ contains an
open neighbourhood of 0. Noting that f ðN1; uðN1ÞÞ �
f ðN;MÞ completes the proof. &

4. Global attractivity

In this section we show that a system that is globally
attractive must also necessarily satisfy the conclusion of
Brockett’s result (Corollary 2(i)). In addition, it will be
shown that the global attractivity of a system also
implies that the closed loop vector field of the system
must take on all non-zero directions on all spheres about
the origin. This latter condition will be used to derive an
additional necessary condition for global attractivity
(Corollary 2(ii)).

Let us first start with a precise definition of global
attractivity. Let f :Rn ! R

n be a given continuous func-
tion and suppose f ð0Þ ¼ 0. Consider again the system
_�� ¼ f ð�Þ. The trivial solution x � 0 will be called glob-
ally attractive if for each x0 2 R

n, each solution xð�; x0Þ
of _�� ¼ f ð�Þ, �ð0Þ ¼ x0, is defined for all t 2 ½0;1Þ and
satisfies

lim
t!1

xðt; x0Þ ¼ 0

(Rouche et al. 1977).
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Lemma 6: Suppose f :Rn ! R
n is continuous and that

x � 0 is a globally attractive solution of the system
_�� ¼ f ð�Þ. Let a and b be constants satisfying 0 < b < a.
Then there exists 
 > 0 such that if x0 2 Sa and xð�; x0Þ
is a solution of _�� ¼ f ð�Þ, �ð0Þ ¼ x0, then

xð½0; 
 �; x0Þ \ �BBð0; bÞ 6¼ 1

Proof: The proof will be by contradiction. Suppose
the conclusion of the lemma does not hold. This im-
plies that for each integer n � 1 there exists xn0 2 Sa

and a solution xnð�; xn0Þ of _�� ¼ f ð�Þ, �ð0Þ ¼ xn0, such
that jxnðt; xn0Þj > b for all 0 � t � n. We will now show
that this implies there exists a solution xð�; x0Þ,
x0 2 Sa, such that jxðt; x0Þj � b for all t � 0. As x � 0
is globally attractive, this will provide the desired con-
tradiction.

Taking K ¼ Sa in Lemma 2 implies that the func-
tions xnð�; xn0Þ, n ¼ 1; 2; . . . ; are uniformly bounded on
½0; 1�. By standard properties of ordinary differential
equations, these functions are also equicontinuous on
½0; 1� (Filippov 1988, p. 7). Arzela’s theorem now implies
that the sequence of functions xnð�; xn0Þ, n ¼ 1; 2; . . . ; has
a subsequence, xnið�; xni0 Þ, i ¼ 1; 2; . . . ; which is uni-
formly convergent on ½0; 1� to some function
y1: ½0; 1� ! R

n. By properties of ordinary differential
equations, y1ð�Þ will satisfy _�� ¼ f ð�Þ, �ð0Þ ¼ x0, for
some x0 2 Sa (Filippov 1988, p. 8). In addition, as
jxnðt; xn0Þj > b for all t 2 ½0; 1� and all n � 1, jy1ðtÞj � b
for all t 2 ½0; 1�. By a similar argument, there exists a
subsequence of the xnið�; xni0 Þ’s which is uniformly con-
vergent on ½0; 2� to some function y2: ½0; 2� ! R

n.
Necessarily, y2ðtÞ will equal y1ðtÞ for all t 2 ½0; 1� and
y2ð�Þ will satisfy _�� ¼ f ð�Þ, �ð0Þ ¼ x0 (over the interval
½0; 2�). As jxnðt; xn0Þj > b for all t 2 ½0; 2� and all n � 2,
jy2ðtÞj � b for all t 2 ½0; 2�. The solution y2 can be
thought of as an extension of y1 and it is clear that
this process can be continued and implies the existence
of a solution xð�; x0Þ, x0 2 Sa, which satisfies
jxðt; x0Þj � b for all t � 0. &

Theorem 4: If f :Rn ! R
n is continuous and x � 0 is a

globally attractive solution of the system _�� ¼ f ð�Þ, then

(i) the image under f of any open neighbourhood of 0
contains an open neighbourhood of 0,

(ii) for each a > 0 the function

g:Sa ! S1; x 7!
f ðxÞ
jf ðxÞj

is surjective.

Proof: Let a1 and b1 be arbitrary numbers satisfying
0 < b1 < a1 and let 
1 be the 
 in Lemma 6 for a ¼ a1
and b ¼ b1. Let y be an element of the set C if and
only if for some x0 2 Sa1 , there exists a solution
xð�; x0Þ of _�� ¼ f ð�Þ, �ð0Þ ¼ x0, such that y ¼ xðt; x0Þ

for some t 2 ½0; 
1�. Let D ¼ �BBð0; a1Þ [ C. Note that D
is an invariant set. Lemma 2 implies that C is bounded
and hence that D is bounded. Let a2 and b2 be con-
stants such that 0 < b2 < a2 and D � Bð0; b2Þ. Taking
a ¼ a2 and b ¼ a1 in Lemma 6 implies there exists

2 > 0 such that all solutions starting on Sa2 enter D
within time 
2. As D is an invariant set and
D � Bð0; b2Þ, Theorem 2 is satisfied with a ¼ a2,
b ¼ b2 and T ¼ 
2, and it follows that the function

ga2 :Sa2
! S1; x 7! f ðxÞ

jf ðxÞj

has non-zero degree. The first part of the result now
follows from Lemma 5.

Let a > 0 be an arbitrary but fixed number and
define the function

~gg:Sa2 ! S1; x 7! f ða=a2Þxð Þ
f ða=a2Þxð Þj j

As f ðxÞ 6¼ 0 for all non-zero x 2 R
n, the function

F: ½0; 1� � Sa2
! S1; ðt; xÞ 7! f ð1� tÞxþ tða=a2Þxð Þ

f ð1� tÞxþ tða=a2Þxð Þj j

is a continuous deformation of ga2 to ~gg and ga2 and ~gg are
homotopic. Hence ~gg also has non-zero degree. The func-
tions ~gg and g have the same degree and the surjectivity
of g follows by the same argument used in the proof of
Theorem 2. &

If f and u are as in the corollary statement below,
Theorem 4 implies that f ð�; uð�ÞÞ must take on all non-
zero directions on all spheres centered about the origin.
Condition (ii) of the corollary (which depends only on f )
follows directly from this observation.{

Corollary 2: Suppose f :Rn � R
m ! R

n is a given con-
tinuous function satisfying f ð0; 0Þ ¼ 0. Furthermore sup-
pose u:Rn ! R

m is a continuous function satisfying
uð0Þ ¼ 0 and that x � 0 is a globally attractive solution
of the system _�� ¼ f ð�; uð�ÞÞ. Then

(i) the image under f of any open neighbourhood of
ð0; 0Þ 2 R

n � R
m contains an open neighbourhood

of 0 2 R
n,

(ii) for each a > 0 and  2 S1 there exists ðx; uÞ 2
Sa � R

m such that

f ðx; uÞ
j f ðx; uÞj ¼  
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{A technical note: if ðx; uÞ ¼ ð0; 0Þ is the only point at
which f ðx; uÞ ¼ 0, condition (ii) of Corollary 2 is equivalent
to the statement ‘for each a > 0 the function g:Sa � R

m ! S1,
ðx; uÞ 7! f ðx; uÞ=j f ðx; uÞj is surjective’. This formulation cannot
be used in general as if f is zero at points other than ð0; 0Þ, then
there exists a > 0 for which g is not well defined.



Proof: To prove (i), the proof of Corollary 1 carries
over word for word if in that proof one replaces
‘Theorem 3’ by ‘Theorem 4’.

To prove (ii), as we have already indicated, Theorem
4 implies that for each a > 0, the function

g:Sa ! S1; x 7! f ðx; uðxÞÞ
j f ðx; uðxÞÞj

is surjective. This implies the result. &

Remark 1: A modified version of the second neces-
sary condition of Theorem 4 exists for bounded
globally attractive sets. Indeed suppose A � R

n is a
bounded globally attractive set and that c � 0 is such
that A � �BBð0; cÞ. Then the conclusion of Lemma 6 still
holds for a and b satisfying c < b < a. (The proof re-
mains almost unchanged and is omitted.) Following
the proof of Theorem 4, one can now show that
for each a > c, g given by (11) is surjective. Similar
comments hold for the second necessary condition of
Corollary 2.

5. Ultimate boundedness

In this section we give a necessary condition for ulti-
mate boundedness. This condition follows from the
result that if solutions of a system are ultimately
bounded, then the closed loop vector field of the system
must take on all non-zero directions on all spheres about
the origin of sufficiently large radius.

Let us first start with a precise definition of ultimate
boundedness. Let f :Rn ! R

n be continuous. The sol-
utions of _�� ¼ f ð�Þ are ultimately bounded if there exists
c > 0 such that if x0 2 R

n and xð�; x0Þ is solution of
_�� ¼ f ð�Þ, �ð0Þ ¼ x0, then xðt; x0Þ is defined for all
t 2 ½0;1Þ and there exists a T > 0 (which may depend
on xð�; x0Þ) such that

jxðt; x0Þj � c for all t � T

(Yoshizawa 1966). If the value of c is of interest, we will
say that the solutions are ultimately bounded with
bound c.

The proofs of the results of this section are very
similar to those of the previous section and are omitted.

Lemma 7: Suppose f :Rn ! R
n is continuous and that

the solutions of _�� ¼ f ð�Þ are ultimately bounded with
bound c. Let a and b satisfy c < b < a. Then there ex-
ists 
 > 0 such that if x0 2 Sa and xð�; x0Þ is a solution
of _�� ¼ f ð�Þ, �ð0Þ ¼ x0, then

xð½0; 
 �; x0Þ \ �BBð0; bÞ 6¼ 1

Theorem 5: Suppose f : R
n ! R

n is continuous and
that the solutions of _�� ¼ f ð�Þ are ultimately bounded.

Then there exists �aa > 0 such that for each a � �aa the
function

g:Sa ! S1; x 7! f ðxÞ
j f ðxÞj

is surjective.

Corollary 3: Suppose f :Rn � R
m ! R

n and
u:Rn ! R

m are continuous and that solutions of the sys-
tem _�� ¼ f ð�; uð�ÞÞ are ultimately bounded. Then there
exists �aa > 0 such that for each a � �aa and  2 S1 there
exists ðx; uÞ 2 Sa � R

m such that

f ðx; uÞ
j f ðx; uÞj ¼  

6. Conclusion

In this paper we have presented a number of necess-
ary conditions for various forms of stability and attrac-
tivity for systems of the form (1) and (3). All results were
derived for arbitrary continuous f and u. The first result
presented was a proof of Brockett’s necessary condition
for stabilizability. Next two necessary conditions for
globally attractivity were given. The first of these was
the same as Brockett’s condition while the second fol-
lowed from the fact that the closed loop vector field
must take on all non-zero directions on all spheres
about the origin. A necessary condition for the existence
of a bounded globally attractive set was also mentioned
(Remark 1). Lastly we proved that the requirement that
a closed loop vector field take on all non-zero directions
on all spheres about the origin of sufficiently large radius
is necessary for ultimate boundedness. This requirement
was then used to give a necessary condition on f .
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