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Abstract

Even though the basic mechanisms of operation of reaction systems are relatively simple the dy-
namical models obtained from first principles are complex and contain highly uncertain terms. To
develop reliable model-based controllers it is therefore necessary to simplify the system dynamics
preserving the features which are essential for control. Towards this end, coordinate transfor-
mations identifying the states which are dependent/independent of the reactions and flows have
been reported in the literature. This has allowed, for instance, the design of observers which are
insensitive to the (usually unknown) reaction functions. The main contribution of this paper is
to show the utility of nonlinear state-dependent time—scaling to simplify the system dynamics,
and consequently the controller design. In particular, we show that with time-scaling and an
input transformation we can reveal the existence of attractive invariant manifolds, which allows
us to reduce the dimension of the system. As an application we study the well-known fourth
order baker’s yeast fed—batch fermentation process model, whose essential dynamics is captured
by a planar system perturbed by an exponentially decaying term. We then exploit this particular
structure to design, with reduced control authority, a nonlinear asymptotically stabilizing control
law which is robust with respect to the reaction function.
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1 Introduction

The concept of reaction systems [?] refers to a wide class of nonlinear dynamical systems that
appears in fields such as chemical engineering, biotechnology, ecology, etc. Even though the basic
mechanisms of operation are relatively simple the models are usually quite complex and uncertain,
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therefore various transformations that simplify their dynamics have been proposed. In [?] a linear
change of coordinates is used to separate —in reaction systems without inlet and outlet streams—
the reaction—variant states from the reaction—invariant ones. This decomposition is very useful —
for instance, for observer design— since the reaction functions are poorly known. In [?] (see also
[?]) a nonlinear change of coordinates is introduced to extend the concept of reaction invariants
of [?] to include flow invariants for reaction systems with inlet and outlet streams, thus leading
to a decomposition of the state evolution into reaction and flow variants/invariants. The inclusion
of a nonlinear transformation, besides adding a significant degree of complexity, might destroy the
structure of the system, stymieing the physical interpretation of the transformed system states.

As an alternative to the nonlinear change of coordinates of [?], we propose in this paper a
nonlinear state—dependent time—scaling which achieves the same objectives. Two important features
of our time—scaling are 1) it has a clear physical interpretation in terms of the residence time; 2) it is
explicitely computable, allowing for its application not just for analysis purposes, but also for observer
and controller design. Nonlinear time—scaling has already been used, among other applications, for
feedback linearization in [?, ?].

The main contributions of the paper are as follows. First, we combine the well-known linear
change of coordinates of [?] with the proposed time—scaling to derive two normal forms —applicable
to continuous and fed—batch reactors, respectively— that clearly reveal the reactions and flows vari-
ants/invariants and the existence of attractive invariant manifolds. The latter allows us to reduce the
dimension of the system and simplify the controller design. We also show that using these normal
forms we can easily design reaction—independent observers, which are simpler than the existing ones
and have a guaranteed computable convergence rate in all operating regimes. Second, to illustrate
the application of time-scaling for controller design we consider the problem of regulation of the
well-known fourth order baker’s yeast fed—batch fermentation process model. It is shown that in the
new time-scale, besides the unaccesible subspace, an atractive manifold is revealed, which reduces
the essential dynamics to a planar system perturbed by an exponentially decaying term. We then
exploit this particular structure to design, with reduced control authority, a nonlinear asymptotically
stabilizing control law which is robust with respect to the reaction function. Simulation results that
illustrate the performance of our controller are also presented.

2 Reaction network and kinetics

Consider a reaction system with R independent reactions involving S components [?], [?]. Two
different mechanisms, reaction kinetics and exchange dynamics, are involved. The overall dynamics
result from the S material balance equations for the S species and the continuity equation for the
reactor volume as

’ Vi = Qi — out
with nonnegative initial conditions, where n is the S—dimensional vector of quantities of each species,
Qin 2 Z?Zl (qm)j, with ¢;, the p—dimensional inlet volumetric flow-rate vector, g, the outlet
volumetric flow rate, V' the reactor volume (assumed measurable), N the Rx S constant stoichiometric
matrix, and r, the R—dimensional reaction rate vector, which is a function of n and V. Cj, is the
S X p inlet constant concentration matrix. The control inputs consist, in general, of the input and
output volumetric flow rates, but this may change according to the particular application. Similarly,
the available measurements will depend on the problem, which will be made explicit in due course.
Due to physical considerations, the validity of the model is restricted to trajectories living in the
S + 1-dimensional open positive orthant, which we denote as Rf_“. This assumption will be made

throughout the paper.
Using the fact that n = Ve, with ¢ the concentrations, the model (1) can be rewritten as

22‘/:{ ¢ = NTre (¢,V) + Cin %z —Q—‘j"c
@ Vo = Qin_QOut



where 7. (c,V) = 7, ({,V). Here, and throughout the rest of the paper, we have used r(((-),V)
to underscore the use of different arguments in the reaction functions. In typical applications the
functions r(.y are highly uncertain, hence we do not give at this point any specific structure to them.

3 Normal forms with time—scaling

The aim of this section is to combine the well-known linear change of coordinates of [?] with a time—
scaling to derive two normal forms that, besides revealing the reactions and flows variants/invariants,
exhibit the existence of an attractive invariant manifold. The first normal form is derived from (1)
and is applicable for continuous reactors, while the second one is obtained from (2) and is useful for
both continuous and fed-batch systems.

3.1 First normal form

. A . .
Under the assumption o = R + p, where ¢ = rank [N T,C’m], it has been shown in [?] that there
exists a linear change of coordinates z = T'n of the form

zZ1T = (N+)T (Is —CinMT)TL
zs = MTn (3)
zz = QTn

with M, @Q constant matrices of suitable dimensions and (-)* the pseudoinverse, which transforms
(1) into

s o= a4 (2,V)V
Zy = _%22 + Gin
Zg = Iy

where 2z, 73 and z3 are vectors of dimension R, p and (S — o), respectively.! (This linear transfor-
mation (3) is a slight modification of the one proposed in [?].) Now, to find the states which are
reaction and flow invariants, we should eliminate the term 2% from the equation of z3. Towards this
end, a nonlinear state transformation is applied in [?]. The simple observation that we make here is
that the same objective can be achieved introducing instead the following time-scaling

dt Vv
dT—qout

(4)

This time-scaling transformation is well defined (that is, t = 0o & 7 — 00) if % is bounded and
bounded away from zero. Recalling our standing assumption that V is bounded away from zero, we
have that these conditions holds true for continuous reactors—when gy, > € > 0.

. . . . . VAN @ .
Applying the chain rule, and introducing the notation (-) = %, we obtain our first normal form

z; = —z1+7r.(2,V)u
= — + Vg
»l 2 =2 5
z,V zg = —z3 ( )
V = —V + 1;11)2

. . . . . A
where 1, is a p-dimensional vector with all terms 1, and we have defined the new inputs v; =
2 A . . . . . .
qV -, Vg = qm%. The system is clearly decomposed into reactions and flows variants and invariants.
ou ou
For instance, the only reaction variant is z;, which is also flow variant. On the other hand, z3 is a
reaction and flow invariant.

From (5) and (3) we immediately have the following property.

'For o < R+ p, the same model (4) can be obtained using a different matrix M, see [?].



Proposition 3.1 The set M 2 {Q"n = 0}, with Q as in (3), is an attractive invariant manifold
for the dynamics (1). That is, (n(0),V(0)) € M = (n(t),V(t)) € M, Vt > 0. Furthermore, for all
(n(0),V(0)) € R we have limy_,oo Q"n(t) = 0.

It is important to notice that the new time variable can be explicitely computed on—line as
t Q
T(t) = / %ds —log V(t) +log V(0)
0
revealing the dependence of 7 on the residence—time —a well-understood quantity in reaction systems.

3.2 Second normal form

The normal form derived in the previous subsection is only applicable to continuous reactors. We
will now define a second normal form useful also for fed—batch operation. To this end, we use the
model (2), to which we can also apply the linear transformation used in (3), that is z = T'¢, to get

= —%zl +7,(2,V)
Z9 = —%2’2 + ql7"

Z3 = —tz

V = —Qout T+ an

with z1, zo and 23 as before. We now use the residence time to define the time-scaling transformation

as
itV

R 6

Qi ©
which is valid independently of gy, thus is valid for continuous and fed—batch operation modes.
This yields our second normal form

z, = —zn+71(%5V)wm
2 . Zy = —Zz+ Uy
Ez,V . Zé = —z (7)
V’ = V= JoutV.
. . . A A g . .
where we have defined the invertible transformations u; = QL_, Uy = 3_" . Notice that in fed—batch

operation, when g,,; = 0, the last equation above further reduces to Vi =V. Also, as in the previous
case, we can compute the new time—scale 7.

The normal forms above, although similar in spirit to the ones obtained via a nonlinear state
transformation in [?], [?], are simpler and —in the authors opinion— easier to interpret in terms of
physical quantities. In particular, our state variables are still linear combinations of of the original
species and concentrations variables. Also, the nonlinear input coordinate change, which is introduced
only to simplify the notation, still preserves its physical interpretation.

3.3 Observer design

In this subsection we show how to reconstruct the state of the system from a subset of measured
concentrations. Towards this end, we recall from [?] the relationship

Ng Ns Czn s QS
= = + ’ +
R AR i AR
where ng is an Sg—dimensional measurable vector, which induces the indicated partitions of the
matrices N, Cj,, Q. Under the assumptions that S; > R and that N has a unique left pseudoinverse,

we have
ng = NtT(Nj)TnS + Aj1zo + Aszs (8)



where A1 2 Cy — NI (NF)T Cins and Ay 2 Q, — NT(NHTQ,.

S
We are in position to present the following proposition. The proof, which is carried out in the

7 time-scale, follows immediately from (8), the normal forms (5), (7), and the observation that
z3(7) = exp~ " 23(0) — 0. The latter property —~which is revealed by the time-scale change— obviates
the need to include an estimate of z3. Henceforth, the resulting estimator will be simpler than, e.g.,
the one reported in [?].

Proposition 3.2 Consider the reaction system (1). Assume
A T
1. 0 = R+ p, where 0 = rank [N ,Cm} ;

2. ng € R, as defined in (8), is measurable;

3. Sy > R and NI has a unique left pseudoinverse.

Under these conditions, the estimator (defined in the time-scale t)

TALt = NF(N:)TTLS-{-AL?:’Q (9)
Zy = _q$t22+Qin (10)

ensures the estimation error converges to zero as

V(i)
V(0)

4 172,(0) — 4 (0)]

hu(t) = ne(t) = 2D exp= s

On the other hand, if instead of (10) we generate the estimate 2o as

N QinA qin
Z9 = V 22+ V

the estimation error satisfies

fe(t) — ny(t) = exp Jo S s [724(0) — n¢(0)]

aoad

4 Nonlinear control of the baker’s yeast fed—batch fermentation
process

In this section, we illustrate the use of the time—scaling to design a robust nonlinear controller for a
biotechnogical reaction system, the aerobic baker’s yeast growth and fermentation process.

4.1 Process model

The aerobic baker’s yeast growth and fermentation process consists of three mass balances for biomass
(baker’s yeast), substrate (glucose) and ethanol concentrations. Many different models have been
proposed in the literature to describe this dynamics. In this work, we consider the model of [?],
which was studied for control purposes in [?]. In this case, the reactor operates in a fed—batch mode
and it is assumed that the substrate concentration in the medium is low and thus there is no ethanol
production, however an inhibitory substance is present. This leads to the following model with four
states

é1 = YP(e2,e3)cr — e hr

G = —él/) (CQ, C3) ¢+ (U,Q - 02) q‘i/" - km01 (11)
¢s = Pier+ Bat(ea,03) 1 — csh

Vi = g



where c1, ¢g,c3 are the concentrations [¢g/l] of microorganisms, substrate and inhibitory substance,
respectively; ug is the influent substrate concentration [g/l], which in applications is typically set to
a constant value; V' is the volume of the reactor [I], gy, is the feed of substrate [I/h], and S, B2, ky, km,
are positive constants. The reaction function 1 is highly uncertain and we would like to design a
controller which is insensitive to its particular shape.

4.2 Problem formulation

Following standard engineering practice, we will consider the following scenario:
(A1) The substrate concentration usg is set equal to a constant ub (i.e., the only control action is g;p).

(A2) ¢; and V are the only variables available for measurement.

(A3) The reaction function v is unknown and, for the purposes of the stability analysis, we only
assume that it is uniformly bounded, i.e., | 1| < M, and it satisfies the inequality

o o
9y (c2,c3) > 52%8—63 (c2,¢3)

(A4) The microorganisms growth does not take place if the substrate is absent, that is, 1(0,c3) = 0.

It is important to underscore the highly demanding —though practically realistic— scenario that
we have fixed. The vast majority of the research reported in the control literature assumes knowledge
of the reaction function, full state measurement and availability of us as an additional control signal.
See, e.g., [?] and references therein. Notice that no prior knowledge, appart from (A3) and (A4),
is required for . Furthermore, the technical assumption (A3) is satisfied by the usual reaction
functions, e.g., the combination of a Monod law and a product inhibition function proposed in [?]

Cy 1
= fp——— —— 12
Vlezyes) = p ks +co 14 c3 (12)
where the term —5 represents the inhibiting effect of the substance c3. We will see below that, in

14c2
spite of these restriciions, we can exploit the systems structure to regulate the process in a satisfactory
manner.

The typical control objective is to impose on c¢; a desired growth profile, while keeping co below a
given value ¢y, . [?, ?]. (The latter restriction ensures the substrate concentration is low and only
growth of the yeast occur without formation of ethanol.) We will express the control objective here in
terms of the more standard problem of stabilization of an equilibrium (for the system in the new time
scale) containing the point of interest (¢}, c3) with ¢} a given positive number, and 0 < ¢5 < ¢y, ..

Our last technical assumption —which is needed to ensure the existence of the equilibrium— con-
cerns the prior knowledge of a steady—state operating regime of the reactor. Namely, we need

(A5) Given uj, ¢ and ¢y,,,, a constant dilution term Q* is known such that if we fix 42 to this

. . T . A
value the first three equations of (11) admit an equilibrium point at ¢* = [¢], ¢5, ¢5] for some

0<c5 <ecy,,,. and some c3 > 0.

We will show below that Q* appears as a tuning parameter for our controller which (esentially)
determines the rate of convergence. Recalling that the reactor operates in a fed-batch mode we can,
in principle, regulate the transient behavior of ¢; with Q* or shifting the set—point ¢j. However, as
we will see in the simulations below, care should be taken to avoid an overshoot on cs.



4.3 Proposed controller

The proposed robust output feedback controller is given in the proposition below. We refer the
interested reader to [?] for an alternative adaptive control scheme, which assumes the reaction function
is given by (12) but with unknown parameters.

Proposition 4.1 Consider the bakers—yeast—batch fermentation process (11) with positive initial
conditions ¢(0),V (0) and assumptions (A1)-(A5). The nonlinear static output feedback law

*

Qin = Q_*VCI (13)
S

ensures global asymptotic stability of the set {c¢ = c*}, where 0 < ¢ < ¢, and ¢§ > 0. More
specifically, c(t),V (t) remains positive for all t > 0 and lim;_, ¢(t) = c*.

Proof: We begin by applying to (11) the time scale transformation % = qiln and change of input

. A
coordinates u; = q_L of our second normal form, to get
mn

¢, = —ct+1p(ec3)crun
g = —cg— éz/) (c2,¢3) cruy — kperug + uj (14)
cg = —c3f Brerur + Barp (c2, c3) crus
vV =V
From simple inspection of (14) we can define an attractive invariant submanifold of IR:-))F as
ALl km km
M= ¢)=(— —Pa—)c1 + 2+ —c3 = uj
{00 2 - m+er + B =3}
where ¢ £ [c1, o, c3]. This stems from the (easily verifiable) fact that ¢’ = —¢ + uj. The existence

of M and the structure of (14) motivates the linear change of coordinates z; = ci, 22 = ¢1 + kyca,
and z3 = ¢, which yields

21 = —z1+1,(2)z1uq
i

2y = —z22+ kyuy — kykpmziun
i

Z5 = —z3+uj

where 1, (2) = ) (é(@ —21), Baz1 — Iwi—llcyzZ + %Zg) .2 Finally, if we define the input transformation

v1 = z1u1 we obtain the following feedforward form

7 = —z+s(2)v
2oy = —z2 4 kyus — kykyv (15)
2y = —z3+ub

We will now study the equilibria of (15). In view of Assumption (A5), and the fact that time

scaling does not affect the equilibria, we have that (15), with v; = v} = %, has an equilibrium at
the desired operating point. (Assumption (A5) is then tantamount to say that the reaction function
) is such that the algebraic equation

ba (€1, 23, u3) (25 = kyuz) + kykmey = 0

. A
2Notice that 1. depends on the whole vector z = [z1, 22, 23].



admits a solution 25 = ky(uj — k,, o ).) We can thus translate the equilibrium to the origin to get

5 o= A+ [P(2+2) - (] + (24 20
Zy = -7

. . ~ A . .
where we have introduced the notation (-) = () — (-)*. The control law (13) in these new coordinates
reduces to v; = v, thus we obtain in closed loop the cascade system

5= A+ [ (F 4 27) — ()]
Zy, = —3% (16)
Fy = —%3

It is well known [?] that the cascade system (16) is (globally) asymptotically stable if
(a) All the solutions of (16) are bounded.

(b) The autonomous subsystem

7= =z +P(5)v] (17)
where we defined ), (%) 2 V(21 427,25, 25) — (27, 25, 23 ), is (globally) asymptotically stable.

Boundedness of 29, Z3 is, of course, obvious from (16). On the other hand, boundedness of Z; is
established considering the quadratic function V; = %2%, invoking assumption (A3), and bounding

the derivative of V] as follows

Vi < A+ |alla(E +27) — ()i
—2 + |21 (M + [ ("))}

=321 + 5(M + |9 (") |[vi])?

IAININ

To prove (b) we recall that any continuously differentiable function f can be decomposed as

f@) =10+ | | 1 O g

and, noting that g‘gf = ?;ff, write 1, (%) as

detz) = [ 204 21,2, 2

621

Now, applying the chain rule and the definition of the coordinate changes, it is easy to show that

assumption (A3) ensures that aaff < 0, hence the term in brackets is also negative. Therefore,

multiplying by Z; on both sides of the equation above we conclude that

ate(21) <0
The proof of (b) is then concluded evaluating V; along the trajectories of (17) as
Vi = =2} + 219, (510} < — 32

where we have used the fact that v > 0. Invoking the result of [?] mentioned above, we conclude
that the set {¢ = ¢*} is globally asymptotically stable.

It only remains to prove that the positive orthant is invariant and is fully contained in the domain
of attraction of the set. Let us denote the first three equations of the closed-loop system (11), (13)
as ¢ = fi(c), i = 1,2,3. We will now prove that along the axes ¢; =0, i = 1,2, 3 the corresponding



functions f;(c), i = 1,2,3 are nonnegative, which establishes that the vector field points towards the
(closed) positive orthant. For i = 1 we have fi(c) = ¢1[¢ (2, ¢3) — %cl], which is zero at ¢; = 0 and
positive for sufficiently small ¢;. Now,

*

Fallen,0,e5) = =0 0, 3) + Louss — ko
Y 1

which, given the definition of the equilibrium c¢*, is positive under assumption (A4). Finally, given
that 81,82 > 0, f3(cy,c2,0) is clearly positive for all ¢;, co. This concludes the proof.

aoa

5 Simulation results

In this section we present the simulation results concerning the robust controller described in the
previous section. First, we have studied the equilibrium points of the system (11) for the reaction
function (12) for constant control. A simple calculation shows that they are described by a cubic
equation of the form

as (El,u;) Eg + as (El,u;) Eg + a (El,ug) C2 + ap (El,ug) =0 (18)

For the values of ¢, = ¢} and u} = ub, considered in [?] and [?], the equation (18) has no positive
real roots c3, such that ¢5 < ¢, . —this reveals an inconsistency of the mathematical model with
experimental data, that was quite surprising for us. It is reasonable then to try to assign the
equilibrium ¢; = ¢} by changing u3, but our analysis revealed this to be impossible. Consequently,
we looked for a new equilibrium point that maximizes the value of c¢;, keeping ¢y in the region of
interest. It can be verified that, as uj ranges in (0,u3.), the admissible equilibrium points belong
to the set C = {¢1,6210< ¢ <ey,,,,,0 <2 <c,..} It can, furthermore, be shown that for the
numerical data of [?] and ¢;,,,, = 56 and ¢y, = 0.28, all the points belonging to this set are stable.
It is, therefore expected that a simple linear feedback will preserve stability and add some desired
robustness properties. This study, as well as additional detail on the present work, may be found in
[?].

Given this previous study, we have chosen for our simulations the set—point (c}, c3) = (56,0.23)
with w5 = 125.022, being Q* = 7.613 the constant dilution term corresponding to this equilibrium
point. The initial conditions considered are ¢y = [10 0.001 0 0]%, with V(0) = 10.

Firstly, in order to justify the assumption (A5), we have simulated the behaviour of the system for
several constant values of the dilution term, in particular for 42 = Q*,1.11Q*,1.25Q*. Effectively,
we have verified that there is an equilibrium point associated to each constant value of q%. However,
the behaviour of cg is practically inadmissible, largely exceding its maximal allowable value.

Secondly, we have simulated the system with the robust control law (13) varying Q*. The resulting
behaviour is shown in Figures 1 and 2. We can see that this parameter (esentially) determines the
rate of convergence of our controller (the convergence rate improves if Q* is higher). However, we
observe that care should be taken to avoid an overshoot on cg. Note that, in contrast to [?], the only
control action is g, and we assume that only ¢; and V' are measurable, thus the resulting behaviour,
taking into account the constraints mentioned above, is quite satisfactory.

Finally, we present the effect of adding an integral term —Fk; f(f (c1 — ¢})ds in the control law
(13). The resulting behaviour is shown in Figures 1 and 2, where we have used Q* corresponding
to (cj,c5) = (56,0.23) and several values of the parameter k;. We observe that the steady error is
smaller. Again, note that care should be taken to regulate cs.
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Figure 1: (a) Evolution of the state with the robust control law (13) varying the parameter @,
(Q*,1.11Q*,1.25Q*). (b) With an integral term, Q* corresponding to (c},c3) = (56,0.23) and varying k;
(ki =1074,1073).
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Figure 2: (a) Evolution of the robust control law (13) varying the parameter Q*, (Q*,1.11Q*,1.25Q*). (b) with
an integral term, Q* corresponding to ¢* = (56,0.23) and varying k; (k; = 107%,1073).
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6 Conclusions

The main message of the present work is that the structure of physical systems in general, and
reaction systems in particular, can be profitably used for analysis and controller design. In some
applications these structural properties are revealed already at the modeling stage. For instance,
when using variational modeling for mechanical, electrical or electromechanical systems, see e.g. [?].
See also [?] for a mass balance example where the Hamiltonian structure is suitably exploited. For
other classes of systems the first logical step is to apply coordinate changes, which is the approach
advocated in [?, ?]. In this paper we have proposed time—scaling. This has been used in reaction
systems to obtain two, easily interpretable, normal forms which reveal various invariants (with respect
to reaction and flow, or asymptotic invariant subspaces) that simplify the analysis and the controller
design.

An example of a fed—batch reactor is used to illustrate the main ideas, and a robust scheme with
reduced control authority is proposed. Although assumption (A5) can be justified in terms of prior
knowledge about the steady state regime, it would be interesting to relax this requirement. This
leads to a non—standard adaptive control problem where the equilibrium to be stabilized is unknown.
Current investigation is under way to solve this problem.
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