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On Assigning the Derivative of a Disturbance Attenuation
Control Lyapunov Function*®

Andrew R. Teel® and Laurent Praly?

Abstract. We consider feedback design for nonlinear, multi-input affine control
systems with disturbances and present results on assigning, by choice of feedback,
a desirable upper bound to a given control Lyapunov function (clf) candidate’s
derivative along closed-loop trajectories. Specific choices for the upper bound are
motivated by %, and %, disturbance attenuation problems. The main result
leads to corollaries on “backstepping” locally Lipschitz disturbance attenuation
control laws that are perhaps implicitly defined through a locally Lipschitz equa-
tion. The results emphasize that only rough information about the clf is needed
to synthesize a suitable controller. A dynamic control strategy for linear systems
with bounded controls is discussed in detail.

Key words. Control Lyapunov function (clf ), Disturbance attenuation, Iterative
design.

1. Introduction

One of the main analysis tools for verifying stability and/or disturbance attenua-
tion properties for closed-loop control systems is the Lyapunov function—a
smooth, positive definite, radially unbounded function. If the derivative of the
Lyapunov function can be bounded appropriately, then the resulting differential
inequality may be integrated to establish desired closed-loop properties, e.g., %>
or %, disturbance attenuation. The control synthesis problem can then be seen
as the problem of finding a Lyapunov function that can be assigned a desirable
derivative by appropriate choice of feedback.

A (global) control Lyapunov function (clf) for a smooth control system of
the form x = f(x) + g(x)u has been defined in [S1] to be a smooth, positive defi-
nite, radially unbounded function whose derivative along the parameterized vec-
tor field f(x) + g(x)u can be made negative for each x # 0 by an appropriate
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choice of the control parameter u. When a clf for x = f(x) + g(x)u is given, a
smooth function & : R"\{0} — IR can be constructed from the clf and its deriv-
atives along f(x) and g(x) so that the derivative of the clf along the vector field
f(x) + g(x)k(x) is negative whenever x # 0. Thus, there is an intimate connection
between the existence of this type of clf for x = f(x) + g(x)u and the construction
of a feedback law that globally asymptotically stabilizes the origin of this system.
See [A] and [S1] for more details.

Control Lyapunov functions have also been characterized for control systems
with disturbances. In Section 4 of [FK3] a robust control Lyapunov function
(rclf) for a system x = f(x,d) + g(x,d)u was defined to be a continuously differ-
entiable, positive definite, radially unbounded function whose derivative along
f(x,d) + g(x,d)u can, for each x # 0, be made negative, uniformly in d belong-
ing to a compact set depending on x, by an appropriate choice of u. A similar
notion is used in [SW]. In Section 6 of [FK3] it was pointed out how the notion
of an rclf encompasses the .%,, disturbance attenuation property. The rclf’s dis-
cussed in [FK3] do not address other disturbance attenuation properties directly
but the required modifications to the definition of the rclf are not difficult. Part of
the contribution here is in that direction.

In this paper we consider feedback design for nonlinear, multi-input control
systems with disturbances of the form

x=f(x,d)+ g(x)u, xeR" deR’ uelR™ (1)

We develop a general notion of a clf for these systems in Section 3.1. The defi-
nition of a clf is in terms of a desired upper bound, denoted a(x,d), for the clf’s
derivative and also in terms of a preliminary feedback function z(x) which is
more general than, but can be thought of as being like, minus the derivative of the
clf along the matrix field g(x). (The main assumption on 7(x) is that the deriva-
tive of the clf along the vector field g(x)z(x) is nonpositive.) In Section 2 we show
how various disturbance attenuation problems motivate specific choices for the
upper bound a(x,d). In Section 3 we state and prove our main results and make
some connections to other results in the literature. In Section 3.2 we characterize
a class of upper bounds &(x,d) that can be assigned to the derivative of the clf
based on a bound for the derivative of the clf when the derivative of the clf along
the vector field g(x)n(x) is zero. In Section 4 we apply our results to %, and %,
disturbance attenuation problems, including gain assignment when controlling
through perturbed integrators. These problems have also been discussed in [JTP]
and Section 9.5 of [I1], for example.

Throughout the paper we emphasize that only rough information about the clf
and the system is needed to synthesize a desired controller. A motivating example,
discussed in detail in Section 5, is the problem of global nonlinear %, disturbance
attenuation for the system

e ()'cl ) B (Axl + Bsat(—BTP(x;)x)) +d
u
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where x; e R”, x, € R, and “sat” is a standard saturation function. Here, under
appropriate assumptions, a feedback x, = 0;(x;) exists, but is only known impli-
citly through an equation of the form z(x;,6;(x;)) = 0, that gives nonlinear %,
disturbance attenuation for the x; subsystem. (See, for example, [M].) This prop-
erty is verified via the derivative of a Lyapunov function expressed in terms of
01(x1). There is a natural choice for a clf V'(x) for the full system (2) that has
desired properties when the derivative of V'(x) along the vector field ¢ is zero.
However, this choice is such that V'(x) depends explicitly on 6;(x;). Our main
results tell us how to choose u to achieve the nonlinear %, disturbance attenua-
tion properties of the x; subsystem under the feedback x, = 6;(x;) without
knowing 6 (x;) explicitly, i.e., without knowing the clf explicitly. (In Section 3.2
of [CPT] a general stabilization—disturbances set to zero—problem is considered
where the stabilizer for the reduced-order system is known implicitly through an
equation while the Lyapunov function for the reduced-order system is known
explicitly. It is then shown how to construct an explicit clf for the extended sys-
tem, at least locally.)

2. Motivation and Preliminaries

A function o : Rso — Ry is said to belong to class-#" (o€ ) if it is contin-
uous, zero at zero, and strictly increasing. It is said to belong to class-A, if, in
addition, it is unbounded. A function f: R5g X Rs¢9 — R is said to belong to
class-#" % if, for each t > 0, f(-, ¢) is nondecreasing and lim,_+ f(s, ¢) = 0, and,
for each s > 0, fi(s, -) is nonincreasing and lim,_ ., (s, f) = 0. A continuous func-
tion p: R” — Ry is said to be positive definite if p(x) > 0 for all x # 0. A con-
tinuous function p : R” — R is said to be radially unbounded if p(x) — oo as
X — 0.

Motivated by certain disturbance attenuation problems discussed below, we de-
velop sufficient conditions for synthesizing a continuous state feedback u = k(x)
that assigns a given upper bound a(x(¢),d(¢)) to the time derivative of a locally
Lipschitz clf candidate V' (x(z)) along closed-loop trajectories. In other words, we
are looking for a continuous function k(x) so that

V(x(2) < a(x(2),d(t)) for almost all ¢, (3)
where x(1) is any absolutely continuous function satisfying
x(t) = f(x(2),d(1)) + g(x(2))k(x()) for almost all 7. (4)

Throughout the paper when considering solutions of ordinary differential equa-
tions, generically denoted X=F (X,1), we assume that the Carathéodory con-
ditions are satisfied, i.e., F is continuous in X, measurable in ¢, and, for each
compact set ¥ of R” and each interval [a,b] of R+, there exists an integrable
function m : [a,b] — R+ such that

|[F(X, )| < m(z), V(X,t) €€ x [a,b]. (5)
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This guarantees that, for each initial condition and starting time, at least one ab-
solutely continuous solution of (4) exists locally in time, i.e., on the interval [z, T')
for some T > ¢, where ¢, denotes the starting time. (See, for example, Section 1.5
of [H].) Then, since V is locally Lipschitz, V'(x(¢)) is absolutely continuous [N,
Theorem 2, p. 245] and V(x()) is well-defined for almost all € [£,, T') [N, Cor-
ollary, p. 246]. Assuming that a(x(z),d(¢)) is locally integrable, the function ¢
defined by

o(1) = V(x(1)) — V(x(1.)) —j #(x(s), d(s)) ds (6)

is absolutely continuous [N, Theorem 1, p. 252], its derivative is defined for al-
most all € [t,, T) and, using (3), it satisfies

o(1) = V(x(1)) - &(x(1),d(1)) < 0. (7)

It follows from (7) (see, for example, Theorem 3.1 of [S3]) that ¢(¢) < ¢(t,) for all
t € [t,, T), which, from (6), implies that
t
V(x(1) < V(x(t)) +J a(x(s),d(s)) ds, Vie(t,, T). (8)
%
For %, disturbance attenuation, one function &(x, d) in (3) that we use is
a(x,d) = y|d|’. 9)

If de %, ie., d is measurable and ||d|; = J;”
from (8) with (9) and z, = 0 that

V(x(0) < V(x(0) +dlly,  Vee[o,T). (10)

d(1)|* dr < oo, then it follows

If V(x) is positive definite and radially unbounded in x, then we conclude from
(10) that each solution is defined on [0, o0). If we also have that (3) is satisfied
with

a(x,d) = —i(x) ()| + 7], (11)

where x is continuous and positive, then, denoting by V. the upper bound on
V(x(t)) from (10), it follows from (8) with (11) and #, = 0 that

1

()13 < G7lldll3 + V(x(0))) (12)

{x:V(x) lanmax} K(X)

When x(x) = 1/k(V(x)) with & : Rs¢o — R nondecreasing and V(x(0)) =0,
we get a nonlinear %, gain from d to y = h(x) given by

1)1, < \/RG2I1d1)7 ]l (13)

When £(x) = 1 this is the standard case of .%, disturbance attenuation with linear
gain y - s (“finite gain” ).
For %,, disturbance attenuation, we are interested in functions & satisfying

V(x) = max{y(|d|),e} = a(x,d) < —x(V(x)), (14)
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where ¢ > 0, and y and x are functions of class-#,. If d € ¥, i.e., d is measur-
able and ||d||, := ess sup,(|d ()| < oo, it follows from (3) with (14) that

V(x(r)) = max{p(|dl..).e} = V<-x(V(x(1)). (15)

With the differential inequality ¥ < —x (¥ (x(7))), and in other more general sit-
uations, we can apply the following result to determine a bound on V' (x(¢)):

Lemma 1 [LL, Theorem 1.10.2]. Let a(V, 1) satisfy the Carathéodory conditions.
If V(1) is absolutely continuous, defined on [t., T) and satisfies

V<a(V(t),t)  foralmostall telt, T) (16)

and if U(t) is the maximal solution of

U=uaU,1), U(t,) = U, = V(t.) (17)

with maximal interval of definition |to,T), then V(1)< U(t) for all te
[to,min{T, T}).

This type of lemma is used in the proof of Theorem 1 of [S2] to conclude for the
system (4) that if, in addition to (15), ¥ (x) is radially unbounded and there exists
a class-¢, function ¢ such that 6(]4(x)|) < V/(x), then, for each initial condition,
the solutions are defined for all # > 0 and satisfy

[h(x(0)] < max{B(V (o), 0,0 o p(ldl|.), 07 (&)}, V=0,  (18)

where ff e #"%. The property (18) with /i(x) = x and ¢ = 0 is known as input-
to-state stability (ISS). For more general functions /i(x), it is known as input-
to-output stability (I0S). See [S2].

Regarding the derivative of V' (x(¢)), since V(x) is assumed to be locally Lip-
schitz, if x = v(¢) for almost all 7, then V is defined for almost all # and equals the
usual one-sided directional derivative, i.e., for almost all z,

V(x(r) = lim Vi(x(1) + hu(}i)) — V(x(0)

(19)

Rather than work directly with the one-sided directional derivative, we work with
the generalized directional derivative of Clarke [C] defined as

V°(x;v) := limsup Viytho) = V(y).
h—0*, y—x h

(20)

Comparing (19) with (20), we see that the generalized directional directive is an
upper bound for the usual directional derivative. Moreover, the generalized direc-
tional derivative offers the following convenient properties when V'(x) is locally
Lipschitz:

1. [C, Proposition 2.2.4] At points where V'(x) is continuously differentiable,
Ve(x;v) = (0V/0x)(x)v.
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2. [C, Proposition 2.1.1(a)] If i is a nonnegative scalar, then
Ve(xs o+ vay) < V2(xy00) + Vo (s 02)Y (21)
3. |C, Proposition 2.1.1(b)] V°(x;v) is upper semicontinuous, i.e.,

limsup V°(y;w) = V°(x;v). (22)

(y,w)=(x,0)

4. [C, Proposition 2.1.1(a)] If ¥(x) has Lipschitz constant L in an open neigh-
borhood Z, then |V°(x;v)| < L|v| for all x € 4.
5. If f(x,d) and @(x,d) are continuous and

oV

Ox
where Q is a set of measure zero containing the set where 7 is not differ-
entiable,! then

() (x,d) <alx,d),  Vd,Vx¢Q, (23)

Ve(x; f(x,d)) < a(x,d), Y(x,d). (24)
This follows from the corollary on p. 64 of [C] which says that
o . . v '
Vo(x; f(x,d)) < limsup —(p)f(x,d); (25)
y—x.y @ 0X

rewriting f(x,d) on the right-hand side of the inequality as f(y,d)+
f(x,d) — f(y,d), using that (0V/0x)(y)f(y,d) < &(y,d) and then that &
and f(-,d) are continuous and that (0V/dx)(y) is bounded for y ¢ Q near
x, we are drawn to the conclusion.

6. If V(x), where x = [x7 x7]”, is continuously differentiable in x; and v =
[0 o 17, then V°(x;v) = (0V/0x2)(x)vs. This follows from the definition of
V°(x;v) and the fact that, from the mean value theorem and the differ-
entiability of V" with respect to x», V(y + hv) — V(y) = (0V/0x2)(z)hv, for
some z on the line segment connecting y to y + hv.

7. [C, Proposition 2.3.3] (V; + V2)°(x,v) < V7 (x,0) + V5 (x,v).

8. [C, Proposition 2.3.13] If ¥(x) = u|x; — 0,(x1)|*, where x = [xT x7]”, and
01 is locally Lipschitz, then V°(x;0),,,_g, () = 0.

In the rest of the paper, except where precision is necessary, we replace V°(x,v)
by the notation L,V (x), which is usually reserved for continuously differentiable
functions where it stands for (07 /dx)(x)v. We do this for the sake of the reader
more familiar with results for continuously differentiable Lyapunov functions and
because of the similarities between the Lie derivative and the generalized direc-
tional derivative described above. As further abuse of notation, when g(x)z(x)
is a vector field we replace V°(x;g(x)n(x)) by the notation LV (x)n(x). Also,
whenever we write L, V' (x) alone, we mean the row vector with ith entry given

! Rademacher’s theorem says that since V is locally Lipschitz it is differentiable except on a set of
measure zero.
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by V°(x;g:(x)). This last bit of notation will only be used in rigorous statements
when V'(x) is continuously differentiable.

3. Assignable Upper Bounds for clf’s

3.1. Main Result

We have motivated our desire to solve the following problem: given a locally
Lipschitz function ¥ (x) and another function é(x, d), find, when possible, a func-
tion k(x) so that

Lf(x.,d) V(X) + Lg(x) V(x)k(x) < &(x, d), V(X, d) (26)
In fact, we consider the more specific problem where a function 7 : R" — R™ is

given such that L,V (x)r(x) is nonpositive and we must find a locally bounded,
i.e., bounded on compact sets, function iy : R” — IR - such that

ke(x) = 7(x)y (x) (27)
solves our problem. For the case where there are no disturbances and V(x) is C!
and n(x) = =Ly V(x) T this mirrors Sontag’s “universal formula” for stabiliza-

tion [S1]. We consider more general functions 7(x) since we will be considering
problems where L, V(x) is not known exactly.

Definition 1. The function a(x, d) is said to be an assignable upper bound for the

derivative of V" using =z if there exists a locally bounded function y(x) so that,
with (27), (26) holds.

If yy*(x) establishes that d(x,d) is an assignable upper bound using 7, then, since
Ly V(x)n(x) is assumed to be nonpositive, any feedback of the form u =
7(x)y(x) where ¥(x) > " (x) also assigns the upper bound d&(x,d). As a conse-
quence, we can always take (x) to be locally Lipschitz or smooth.

Two properties will be used to characterize when d(x,d) is an assignable upper
bound for the derivative of V' using n. Both will be expressed in terms of the
function

o(x) = sgp{Lf(x7d> V(x) —a(x,d)}. (28)

The first property, a “clf” property, parallels the “clf” and “rclf” definitions in
[S1] and [FK3, Definition 4.1], respectively.

Definition 2. The locally Lipschitz function V(x) is a control Lyapunov function
(clf’) for the pair (m,a) if Ly V (x)7(x) is nonpositive, w(x) given in (28) is well-
defined, max{0, w(x)} is locally bounded, and, for x # 0,

limsup Ly, V(z)n(z) =0 = limsup w(z) <O0. (29)

The next property is related to the “small control property” found in [S1] in the
setting of stabilization without disturbances, and in [FK3] for stabilization with
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disturbances constrained to a state-dependent set. Further connections will be
made in Theorem 3 below.

Definition 3. The locally Lipschitz function V(x) satisfies the bounded control
property for the pair (w,a) if there exist y > 0 and o > 0 such that, with w(x)
defined in (28),

(x) + 0Ly V(x)7(x) <0, Vx| < x. (30)

The main result of this section is the following:

Theorem 1. If V(x) is a clf and satisfies the bounded control property for the pair
(m,d), then a(x,d) is an assignable upper bound for the derivative of V using .

Proof. Define the function yy* : R” — IR~ by

max{0, w(x)}
Y (x) = Ly V(0)m(x)
0 if Lg(x> V(x)n(x) =0.

if Ly V(x)a(x) #0, (31)

We first establish that y*(x) is locally bounded. From the definition of " (x),
the bounded control property implies that *(x) < & for all |x| < y. For |x| > y,
since max{0,w(x)} is assumed to be locally bounded and since LV (x)r(x) is
nonpositive, it is sufficient to have that limsup, , L,V (z)n(z) =0 implies
limsup._,, w(z) < 0. This follows from (29) in the clf property.

The second fact to establish is that

@(X) + Ly V(x)m(x)y*(x) <0, VxeR", (32)
which, from the definition of w(x) in (28), is equivalent to
Ly ayV(X) + Ly V(x)m(x)y " (x) < a(x,d), V(x,d) e R" x R”. (33)
If Ly V(x)m(x) # 0, then
@(x) + Ly V(x)m(x)y " (x) = o(x) — max{0,w(x)} < 0. (34)

For the case where Ly, V' (x)n(x) = 0 we must establish that «(x) < 0. From the
bounded control property, when [x| < y and Ly V' (x)rn(x) = 0 we have o(x) <
0. For the case where |x| > y, since Ly, V' (x)7(x) is nonpositive we have

Ly V(x)n(x) =0 = limsup Ly V(z)n(z) =0, (35)

and so, from (29) in the cIf property, we also have that L,V (x)n(x) =0
and |x| > y imply limsup._,, o(z) < 0. Since w(x) < limsup,_,, w(z), the result
follows. |

Remark 3.1.  The function y*(x) is the minimum norm value for v, as a function
of x, that satisfies
@(x) 4+ vLy V(x)n(x) < 0. (36)
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It is the same choice as in equation (23) of [FK3]. When e (x) and L,V (x)n(x)
are locally Lipschitz on R”\{0} then it is not difficult to verify that y*(x) defined
in (31) is locally Lipschitz on R"\{0}. As pointed out earlier, even when *(x) is
not locally Lipschitz we can always upper bound it by a locally Lipschitz (on R")
function and assign the same bound &(x,d). If n(x) and y*(x) are locally Lip-
schitz (resp. continuous) on R"\{0} and 7(x) is everywhere continuous and zero
at zero, then the feedback we are proposing, u = n(x)¥/(x), is locally Lipschitz
(resp. continuous) on IR"\{0} and everywhere continuous. This observation is
useful for guaranteeing the existence of solutions to the closed-loop differential
equation.

We apply this result to certain disturbance attenuation problems in subsequent
sections. For %, disturbance attenuation, the conclusions that we draw from our
main result are very similar to the results in Propositions 4.4 and 4.5 of [FK3]
expressed in terms of the notion of an rclf. One of the main aspects we emphasize
throughout the paper is that only rough information about the system and V(x) is
needed to synthesize our controller. For example, assuming that V' (x) is a clf and
satisfies the bounded control property for (r, &), we only need to find an upper
bound for the function ¥*(x) defined in (31) to assign the bound & Moreover, in
the case where V is a clf for the pair (—L,V T, &), we do not need the exact mag-
nitude or direction of L, V' (x) to find a smooth function 7(x) such that V'is a clf
for the pair (7, &). In this sense, we do not need precise information about the clf
to assign the desired upper bound to its derivative. This observation is related to
gain and phase margin properties of L,V controllers made precise in [SJK].

If V(x) is continuously differentiable and radially unbounded, and if V'(x) and
Ly V(x) are known and V(x) is a clf and satisfies the bounded control property
for the pair (—L,V T, &), where the bounded control property in this case implies
that there exist y > 0 and & > 0 such that, for all |x| < y,

Sgp{Lf(x,d) V(x) = a(x,d)} < 8[Ly V(x| (37)

then the control can be taken as

with ¥, any continuous function satisfying

Vo (V(x) 2 ¥ (%). (39)

So we see that, maybe after reassigning the values of the level sets of V' to obtain a
new clf

. V(x)
7(x) =j V(s) ds, (40)

we can assign the upper bound v, (V(x))a(x,d) to the derivative of V using a
so-called L,V controller (see Section 3.4.3 of [SJK] and see [FP]).
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3.2. Sufficient Conditions for a clf

The next two results provide sufficient conditions for V" to be a clf for the pair
(m,4). The utility of these results is that they can be used to guarantee that (29)
holds without actually having to compute w(x) defined in (28). The sufficient
conditions are given in terms of a relationship between &(x,d) and a bound on
Ly(x,q)V(x) when Ly, V(x)n(x) = 0 (the function LV (x)n(x) is assumed to be
continuous in these results.)

Theorem 2. Let f(x,d) be continuous, let V : R" — Rq be locally Lipschitz,
and let m: R" — R"™ be such that L.V (x)r(x) is continuous and nonpositive. If
o(x,d) is such that

LyoyV(x)n(x) =0 = Ly a)V(x) <alx,d), (41)

then V(x) is a clf for the pair (r,a) for any a satisfying all of the following:
L. sup {Ls.a)V(x) — a(x,d)} is well-defined and locally bounded,
2. d(x,d) is lower semicontinuous on the set Ly V(x)n(x) =0, i.e.,

Ly V()n(x) =0 = liminf &(y,e) = d(x,d), (42)

(y,e)—(x,d)

3. there exist functions p,(x) (continuous and nonnegative) and p,(x) (continuous
and positive definite) such that

[dl = p1(x) = Lyxa)V(x) —a(x,d) < =py (), (43)

4. a(x,d) — a(x,d) = p(x) for some continuous, positive definite function p.

Proof. Since L,V (x)n(x) is continuous, to show that V(x) is a cIf for the
pair (7,a) we need to show that, for all x # 0 such that L)V (x)n(x) =0,
limsup._,, w(z) < 0 where w(z) was defined in (28). To this end we will show that,
for each x # 0 such that L,V (x)n(x) = 0, there exist &, >0 and a compact
neighborhood 73 of x not containing the origin such that, for all (z,d) € ¥y x R?,

Lf(z,d) V(Z) — &(Z,d) < —é&y. (44)

Let 75 be a compact neighborhood of x not containing the origin, let D, =
sup, . - p1(z) and
&x = inf (min{0.5p(2), p2(2)}). (45)

zely

Using the compactness of #"(x), D, < oo since p, is continuous, and &, > 0 since
p and p, are continuous, positive definite, and 0 ¢ ¥%. Then, from condition 3
imposed on &, we have

{zeV|d| =D} = LicaV(z)—d(zd) < —e (46)

It remains to show that (44) holds for |d| < D, perhaps by restricting z to a com-
pact neighborhood of x contained in #;. Assume, for the time being, that there
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exists b, > 0 such that

{z€73,0d| < Dx, Ly V(2)n(z) = —bs} = Lyea)V(z) —a(z,d) < —ex. (47)

We then define
Yy =Yy {z: Loy V(2)r(z) = —by), (48)

which is a neighborhood of x from the continuity of L,V (x)n(x). It follows
from (46) and (47) that (44) holds for all (x,d) € 75 x R”.

The proof will be complete when we establish the existence of b, > 0 such that
(47) holds. If such a b, does not exist, then there exists a sequence (z,,, d,,) with
Zn € Vv and |din| < Dy such that

L!I(Zm) V(zm)n(zm) = — 1/71’1, Lf(z,,,.d,,,) V(Zm) - ONC(Zma dm) > —é&. (49)
By compactness, there exists a cluster point (x*, d*). Still denoting by (z,,, d,,) the

converging subsequence, we have, from the continuity and nonpositiveness of
L,Vr,

Ly V(x")n(x*) =0, limsup(Ly(-, a,)V (zm) — %(zm, dn)) = —&x.  (50)

m—oo

However, with the continuity of f(x,d) and, in turn, the upper semicontinuity of
LyV —a on the set L,Vr = 0, which follows from property 3 of the generalized
directional derivative given in Section 2 and condition 2 imposed on &, this
implies

Ly V(x")n(x*) =0, Lyee gV (x") —a(x*,d*) = —e, = —0.5p(x™). (51)
On the other hand we know, from (41), the first part of (51) and condition 4
imposed on the function &, that

Lf(x*,d*) V(X*) - &(X*7d*) = O((X*ad*) - &(X*ad*) =< _p<X*)' (52)
This contradiction of the second part of (51) proves the existence of b,. |

A corollary of the previous result is the following:

Corollary 1. Let f(x,d) be continuous, let V : R" — Ry be locally Lipschitz,
and let w: R" — R™ be such that L,V (x)n(x) is continuous and nonpositive. If
a(x,d) is such that

LynV(X)n(x) =0 = Lya)V(x) <alx,d) (53)
and the quantity sup,{Ls )V (x) — a(x,d)} is well-defined and locally bounded,
then V(x) is a clf for the pair (7, &) for any & satisfying

1. o is lower semicontinuous on the set Ly V (x)r(x) = 0,
2. there exist functions p(x) (continuous, positive definite) and p,(d) (continuous,
nonnegative, radially unbounded) such that

(x,d) — a(x,d) > max{p(x), p,(d)}. (54)



106 A. R. Teel and L. Praly

Proof. Condition 2 of the corollary implies condition 4 of the previous theorem.
Condition 2 of the corollary and the assumption that sup,{ Ly, 4V (x) — a(x,d)}
is well-defined and locally bounded imply condition 1 of the theorem. Condition
1 of the corollary implies condition 2 of the theorem. We will show that condition
2 of the corollary and the assumption that sup,{L; )V (x) —a(x,d)} is well-
defined and locally bounded imply condition 3 of the theorem.

Since sup,{Ly(x,a)V (x) — a(x,d)} is well-defined and locally bounded, we can
find a continuous, nonnegative function p;(x) satisfying

p3(x) > sgp{Lf(x,d) V(x) —a(x,d)}, VxeR" (55)

Let p,(x) be an arbitrary continuous, positive definite function. Since p, is radi-
ally unbounded, we can find a continuous, nonnegative function p, (x) such that

ld| = pi(x) = pald) = p3(x) + p2(x). (56)
Using (54) and (55), we have
Ly, V(%) = a(x,d) < p3(x) — a(x,d) +a(x,d) < p3(x) = py(d). (57)

Then, combining (56) and (57), we have
=) = L)V () —d(x,d) < —ps(x). W (58)

3.3. Sufficient Conditions for the Bounded Control Property

Throughout this section we assume that V' is continuously differentiable and we
address the relationship between the bounded control property (Definition 3) and
the small control property used in [S1] and [FK3]. We will show that the bounded
control property holds if a small control property holds (see Definition 5) and the
function 7(x) makes —L )V (x)n(x) large enough. To characterize the latter, we
make the following definition:

Definition 4. Given a C' function V(x) and a function A:R-o — Rxq (resp.
Jo : RR50 X Rsg — Ryy), the function z is said to locally dominate A (resp. A,) if
there exist y > 0 and x > 0 such that, for all |x| < y,

Ly V(X)7(x) = tl Ly V()| A(|Lg() V (X)) (59)
(resp. — Ly V(x)7(X) = p|Lyi) V(X)| 40 (| Lyi) V(X)1, |X]))- (60)
Remark 3.2. One choice for z(x) (locally) so that it locally dominates the iden-

tity, i.e., A(s) =, is
n(x) = —LyyV(x)". (61)

More generally, a choice for z(x) (locally) so that it locally dominates 4 is

)“(|Lg(x) V(x)DLg(x) V(x) !
|Lg(x) V(x)|

n(x) = —
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If Ly V(x) is smooth and /4 is smooth on (0, ), continuous everywhere, and
zero at zero, then the right-hand side of (62) is smooth on IR"\{L,) ¥V (x) =0}
and continuous on IR”. Similarly, one choice for 7 (locally) so that it locally
dominates 4, is

ol Ly VLX) Ly V()

n(x) = 63
) Ly V) (63
In what follows we will encounter functions A, that make the right-hand side of

(63) smooth on IR"\{0} and continuous on R"” when L, ¥ (x) is smooth.

Definition 5. The C! function V satisfies the small control property for & if there
exists a continuous, positive definite function p(x) satisfying: for each ¢ > 0 there
exists v > 0 such that |x| < v implies the existence of u such that |u| < ¢ and

S‘;p{Lf(x,d) V(x) = a(x,d)} + Ly V(x)u + p(x) < 0. (64)

The following theorem relates the bounded control property and the small control
property:

Theorem 3. If the C' function V satisfies the small control property for a, then
there exists /. : Rso — R smooth on (0, c0), continuous everywhere, and zero at
zero, and there exists A, (with the right-hand side of (63) smooth on R"\{0} and
continuous everywhere when Ly, V (x) is smooth) such that if & locally dominates A
or © locally dominates 1., then V(x) satisfies the bounded control property for
(7, a).

Proof. Step 1. First we establish that the small control property implies that
there exist a function y € " that is smooth on (0, c0) and a strictly positive real
number y such that for all |x| < y we have

Sgp{Lf(x,d) V(x) = a(x,d)} = [y V(X)[(IX]) + p(x) < 0. (65)

It follows from the small control property that, as long as y(0) = 0, the inequality
(65) holds for x = 0. Without loss of generality, assume that v(¢) given by the
small control property is nondecreasing in &. Let ¥ > 0 and y € #,, smooth on
(0, o0), be such that

y_l(s) < v(s), Vs e (0,7] (66)

Consider x satisfying 0 < |x| < y~!(¥) =: x and let & = y(|x|) > 0. Then we have
¢ < 7 and thus |x| = y~!(¢) < v(e). It is sufficient to establish that

— Ly V(X)7(|x]) < Ly V(X)u, Viu| <& (67)
The right-hand side is minimized under the constraint by taking

Lo V(x)T
u= _M. (68)
|Lg(x) V(x)l
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This gives
Ly V(x)u = —[Ly V(x)le = =Ly V() ]7(]x]). (69)

Step 2. Let y and y come from step 1. Let p € 47, be smooth on (0, c0) and such
that
pUxDy(Ix]) < p(x), Vx| <z (70)

Define A(s) :=y0p~!(s), and note that A(s) is smooth on (0, 0). Also, define
Ao(s,8) :=b(s,p(2))y(t) where b:Rsox Rs9p— Ry is smooth on (0,00) x
(0, 0), such that b(s,7) > 1 when s > 7 and b(s,7) = 0 when s < 7/2 with 5(0,0)
= 0. (It follows that the right-hand side of (63) is smooth on R"\{0} and contin-
uous on IR” when Ly, V'(x) is smooth.) Using (70), we have

{IXl <2 Ly V)L < p(IxD)} = [Ly V(X)2(Ix]) < p(x). (71)

On the other hand, when |L,) V' (x)| > p(|x|) we have, from the definition of 4
and A,

Ly VN (1X]) = A Lo V() < Lo V)G (Ix]) = 70 p7 (ILgiy V (9)])

<0< p(x) (72)

and
ILyo) V() (I1x]) = Ao (| Ly V(¥)], X)) <0 < p(x). (73)

From here we carry out the calculation for A. The case for A, goes through
verbatim.
The inequalities (71) and (72) imply that for all |x| < y we have

Ly VN ((1%]) = ALy V())) < p(x). (74)
Finally, it follows from (65) that, for all (x,d) with |x| < y,
Lytea)V (%) = [Ly) V()| Ly V (¥)])
= Lyteay V(%) = [Lg) V)P (1x]) + [ Ly V() (1X]) = ALy V(X))
< a(x,d) = p(x) + [Ly) V() (2([X]) = ALy V(x)1]))
<a(x,d).

It follows readily that if = satisfies: there exists u > 0 such that, for sufficiently
small x,
=Ly V(X)(x) = u|Ly) V() [A(|Lg(x) V (X)), (75)

then the bounded control property is satisfied. |

Remark 3.3.  The proof of the theorem shows that if there exist strictly positive
real numbers k and p such that, for sufficiently small x,
Sl;p{Lﬂx,d) V(x) = (x,d)} = | Ly V() lx] + plx)* < 0, (76)

then V satisfies the bounded control property for (z,&) for any =z that locally
dominates the identity. This amounts to saying that if (76) holds for sufficiently
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small x, then (37) holds for sufficiently small x and some & > 0. This also follows
directly from completing squares. The more general calculations of the proof lead
to this conclusion as well since, in the case of (76), we simply have
- k2
) =ks  pl) =5 M= (77)
As pointed out in Remark 3.2, one choice for 7(x) so that it locally dominates the
identity is —Lg () V'(x) T

Remark 3.4. 1If there exists u > 0 such that, for sufficiently small x,
=Ly V(xX)(x) = plm(x)] [ Ly V (x)], (78)

then, with * given in (31), for sufficiently small x satisfying L,V (x) # 0, we
have
_; max{0, w(x)}

()™ (x) < u (79)
‘L,q(x) V(X)|
When V satisfies the small control property, the right-hand side of (79) converges
to zero as x approaches the origin since, according to (65), for x near the origin
we have

@(x) < | Ly V() |p(|x1), (80)

where y is continuous and zero at zero. In this case the magnitude of the feedback
k(x) = m(x)y*(x) converges to zero even though the bounded control property
may not be satisfied for the given n(x).

Given a clf V, often there is a tradeoff between smoothness of the control law
at the origin and the inherent gain and phase margin robustness of L,V -type con-
trollers—controllers u = k(x) having the property that L,V (x)k(x) is non-
positive. We illustrate that this is the case even for systems without disturbances.
Consider the system

X1 = =X} +x2, (81)
Xy = u+ X1,

with the clf candidate V(x) = § (x{ + x3) for the pair (—x2, —x{ — x3). The func-
tion V/(x) is a clf for this pair since Ly, V' (x)7n(x) = 0 implies x, = 0 and, hence,

Ly V(x) = —x} + 2x1x0 = —x{ — x3. )

On the other hand, V'(x) does not satisfy the bounded control property for this
pair. If it did, then we could smoothly stabilize the origin with a control of the
form —y(x)x,. However, regardless of the value of 1/(0), the linearization would
always have an eigenvalue with positive real part. This is a contradiction to the
stability that would be implied by the assigned bound —x} — x3 to the derivative
of V. We conclude that, for the given clf, there is no smooth L)V (x)-type con-
troller, i.e., one that vanishes when x; = 0, that assigns the upper bound —x} — x3
globally. On the other hand, the smooth (non-Ly)V (x)-type for the given V)
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control u = —x, — 2x; does assign the upper bound —x} — x3 to the closed-loop
derivative of V.

Given a clf V(x), it is possible to get smoothness near the origin while still
retaining L, V'-type controller properties away from the origin. Suppose we know
a (smooth) feedback k;(x) and a strictly positive real number y such that, for all
X <z

SUP{ Ly, V(%) = 8(x,d)} + Ly V (x)ks(x) < 0. (83)

Let /: R>o — [0,1] be smooth such that /(s) =1 for s < /2 and /(s) =0 for
s > y. Next, note that if V'(x) is a clf for the pair (z, &) and

limsup Ly V(z)n(z) =0 = limsup Ly V(z)/(|z|)ks(z) <0 (84)

Z—X Z—X

(which is the case when V' is continuously differentiable and 7(x) = —Ly V' (x) n,
then V(x) is also a clf for the pair (7, & — Ly V (x)/(|x])ks(x)). Moreover, from
the definition of ¢/ and (83), V'(x) satisfies the bounded control property for this
new pair. It follows that we can find a smooth function y/(x) such that the control
u = £(|x|)ks(x) + n(x)(x) assigns the upper bound &(x, d) to the closed-loop de-
rivative of V'(x).

4. Disturbance Attenuation clf’s

In this section we provide conditions which guarantee that we can assign to the
derivative of 7'(x) an upper bound that is useful for establishing either %, or %,
disturbance attenuation properties. Of course, the resulting control law must
guarantee the existence of solutions for the disturbance attenuation properties
actually to hold. This section includes a study of assigning %, or %, input—
output gain when controlling through perturbed integrators. In particular, we
study the system

X x,d
= (1) = (D ) = s o y=h @9
and we discuss what can be said about gain assignment for the full system based
on what can be said for the x; subsystem with x, thought of as a control that is
allowed to be only locally Lipschitz in x;, perhaps defined implicitly through a
locally Lipschitz equation. For other results on “backstepping” locally Lipschitz
control laws, see Section 5.4 of [FK2] and see [FK1].

Recall that we say de %, if d is essentially bounded, ie., ||, :=ess
sup,. |d(1)| < oo. We say that d € %, if d is square integrable, i.e., ||d||7 :=
5 1d(0)|7 dt < oo.

4.1. ISS clf’s

For the %, (ISS/IOS) case, we have motivated in Section 2 that we want to as-
sign to the derivative of ¥ a bound &(x, d) that satisfies

V(x) = max{y(|d|),e} = a(x,d) < —x(V(x)) (86)
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for some ¢ > 0 and functions y and x of class-#7,. We will see that the following
assumption on ¥ and 7 will make V a clf for a pair (z,a) with & satisfying (86).

Assumption 1. The function f(x,d) is continuous and the locally Lipschitz,
positive definite, radially unbounded function V(x), the function z(x), and the
class-#., functions J, y, and « satisfy

L 3(h(x)]) < V (),
2. Ly V(x)n(x) is continuous and nonpositive,
3 Ly VE)R(6) = 0, V(%) = (1)} = Lyea) V(%) < —(V ().

Remark 4.1. According to Definition 4.1 of [FK3], if V is C!' and if
Ly V(x)n(x) = 0 only when L,y V(x) = 0, then Assumption 1 makes V" an rclf
and so the results of [FK3] apply.

Remark 4.2.  In [SW] the authors give a sufficient condition for the third condi-
tion of the assumption to hold for some y when f is affine in d, ie., f(x,d) =

Jox) + fi(x)d.

Corollary 2. If Assumption 1 holds, then there exists d(x,d) satisfying
V(x)=y(d]) = alx,d)<—-0.5c(V(x)) (87)

such that V(x) is a clf for the pair (n,d).

Proof. The proof is based on Corollary 1. First we define

—Kk(V if Vi(x)=y(d
(. d) ::{ e(V(x) it V(x) 2 y(d]), (88)
p(ldl) it V(x) <y(ldl),
where p(-) is a continuous function satisfying
sup  Ly(xa)V(x) < p(|d]). (89)
{x:V(x) <y(ld)}
We claim that
LyoV(x)n(x) =0 = Ly a)V(x) <oa(x,d). (90)

This follows by considering the two cases V' (x) > y(|d|) and V(x) < y(|d|). For
the former case, (90) follows from condition 3 of Assumption 1 and the definition
of a(x,d) in (88). For the latter case, (90) follows from (89) and the definition of
a(x,d) in (88).

To see that the quantity sup,{Ly(y,4)V (x) — a(x,d)} is well-defined and locally
bounded, we note that, from the choice for p in (89), we have

sup{Ly(v.q) V' (x) = a(x,d)} <maxq0,  sup Ly )V (x) +x(V(x)) r.
d {@:V(x)25(d))

O1)
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Since y is radially unbounded and V is continuous, the right-hand side is locally
bounded.
We also remark that the function o is lower semicontinuous, i.e.,

a(x,d) = (yher)n 1(2fd> a(y,e), (92)
and
Vx)zy(ld)) = alx,d) =—x(V(x)) (93)
We now take
a(x,d) == a(x,d) + 0.5x(max{V(x),y(|d|)}) (94)
so that
V(ix)=y(d) = a(x,d)=—-0.5(V(x)). (95)

Moreover, we have that & is lower semicontinuous and condition 2 of Corollary 1
holds with p(x) = 0.5k(¥(x)) and p,(d) = 0.5k o y(|d]). It follows from Corollary
1 that V(x) is a clf for the pair (z, &). |

The next result, which applies to the system (85) where a perturbed integrator is
added, is similar to what is reported in [JTP] and [PJ].

Proposition 1. For the system (85), if there exist a locally Lipschitz function
01(x1), a locally Lipschitz function n(x), a positive definite, radially unbounded,
locally Lipschitz function Vy(x1), and three class-A., functions o, y, and Kk
satisfying

L o([h(x)]) < Vi(x),
2. {N(x1) 2 p(dl), x2 = O1(x1)} = Ly.a)Vi(x1) < —x(Vi(x1)),
3. (x2— 01(x1)) " m(x ) is nonpositive and zero only when x; = 0,(x1),

then, for each y > 0, the functions

V(x) = Vi(x1) + plxs — 01 (x1)]?, (96)

n(x), 8, y, and K satisfy Assumption 1.

Proof. Using property 6 of the generalized directional derivative given in Section
2, we have that

Ly V(3)m(x) = 2u(x2 — 3 (1)) (). 97)

Since 7(x) and 0 (x;) are assumed to be locally Lipschitz, so is Ly V' (x)n(x). By
assumption, L)V (x)n(x) is nonpositive and zero only when x, = 0(x1). Also,
using property 7 of the generalized directional derivative given in Section 2, we
have

Lie ayV(x) < Lye.ayVi(x1) + Loy (12 — 01 (x1)]). (98)
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By assumption, when L,V (x)n(x) =0 we have x; = 0;(x1) and thus, using
property 8 of the generalized directional derivative given in Section 2, we have

L‘(](X> V(x)n(x) =0 = {Xz 2(9] (Xl), Lf(x,d) V(X) SLq(x,d) V] (X]), V(X) = V] (X])}.
(99)

We conclude that
V() 2 9(d]), Ly V()r(x) =0} = Ly V(x) < —(V(x). W (100)

It follows from Corollary 2 that Proposition 1 provides conditions under
which V'(x) defined in (96) is a clf for the pair (z,&) for the system (85) with &
satisfying (87). If V'(x) also satisfies the bounded control property for the pair
(7, 4), then, combining Corollary 2 with Theorem 1, we have a new locally Lip-
schitz feedback 6,(x) = n(x)y/(x) and a new positive definite, radially unbounded,
locally Lipschitz function V,(x) = V/(x) that can be used for another application
of Proposition 1 if another perturbed integrator is added. In the process, y, which
characterizes the 10S gain, remains unchanged, and x becomes 0.5x.

By iterating this process for a chain of n perturbed integrators (which is possible
if, at each step, a bounded control property holds), we get a control law of the
form

U=, 1 (X)m-1(x), (101)

where

i1 (x) = —(x = T2 ()Y (x)) (102)

and ¥,;(x) comes from the ith application of Corollary 2 with Theorem 1. The
form of this control law is very similar to what is used in [TP] for semiglobal
stabilization with partial state feedback. The only difference is that, there, the
functions y;(x) are (sufficiently large) constants.

Regarding whether, under Assumption 1, V satisfies the bounded control prop-
erty for the pair (z,&) where & was constructed in the proof of Corollary 2, it fol-
lows from (91) and the definition of & in (94) that

Sgp{Lj'(x,d) V(X) - O~C(X, d)}

< maX{O, sup Ly V(x) + K(V(x))} —0.5¢(V(x)). (103)
{d:V(x)=y(|d])}

So, V satisfies the bounded control property for (7, ) if there exist y > 0 and
# > 0 such that

sup Ly, ayV(x) +0.56(V(x)) < —0Ly V(x)7(x), Vix| <y (104)
{d:v(x)=y(d)}

When the condition (104) is not satisfied, it still may be possible to modify the
function & near (x,d) = (0,0), thereby only changing the IOS gain locally, to
induce the bounded control property. Two examples of this are described in the
next corollaries which are proved in the Appendix.
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The first result says that if an %,, gain with an arbitrarily small offset at the
origin is allowed, i.e., ¢ > 0 in (86), then the bounded control property will hold
as long as x = 0 is an equilibrium point of the system when d = 0.

The second result says that if, when d =0, V' satisfies the bounded control
property for (7, o) for some continuous, negative definite function o(x), then the
function y in (86) can be modified near the origin so that a(x,d) satisfies (86) with
& =0 and V(x) satisfies the bounded control property for (7, &).

Corollary 3. If Assumption 1 holds and f(0,0) =0, then, for each ¢ > 0, there
exists d,(x,d) satisfying

V(x) = max{y(|d|),e} = &l(x,d) < —0.5x(V(x)) (105)

such that V(x) is a clf and satisfies the bounded control property for the pair (n, ).

Corollary 4. If Assumption 1 holds, V(0) = 0, and, for the system x = f(x,0) +
g(X)u, there exists ik € A, such that V(x) satisfies the bounded control property for
the pair (n,—k(V(x))), then, for each v > 0, there exist class-A, functions vy, and
K, and a function a,(x,d) satisfying

s>v = 90 =905),  rm(s) = r(s),

(106)
V) = pld) = a(xd) < —056,V(x))

such that V(x) is a clf and satisfies the bounded control property for the pair (z, a,).

4.2. L5 clf’s

For %, disturbance attenuation problems, we have motivated in Section 2 that we
want to assign to the derivative of 7 a bound &(x,d) of the form

&(x,d) = —i(x) ()| + 77|, (107)

where x is a continuous, positive-valued function. We will see that the following
assumption on ¥ and n will make V" a clf for the pair (x,&) with & of the form
given in (107).

Assumption 2. The functions f(x,d) and /i(x) are continuous and the locally
Lipschitz function ¥ : R" — R, the continuous, positive definite function
o:R" — R, the strictly positive real number p, the continuous function
x: IR" — IRy, and the function 7 satisfy

1. Ly V(x)n(x) is continuous and nonpositive, ) )

2. Ly V(x)m(x) =0 = Ly a)V(x) < —a(x) — w(x)|h(x)]" + »*|d]|",

3. there exists p;(x) (continuous, nonnegative) and p,(x) (continuous, positive
definite) such that

dl = pi(x) = Lyea)V(x) +0.52(x) + ©(x)[h(x)|* = y*[d]> < —ps(x).
(108)
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Corollary 5. If Assumption 2 is satisfied, then V(x) is a clf for the pair (z,d)
where
G(x,d) = —0.50(x) — w(x)|h(x)|* + »*|d|*. (109)

Proof. Follows from Theorem 2. |

If f(x,d) is affine in d, i.e., f(x,d) = f,(x) + fi(x)d, then the third condition
of Assumption 2 is automatically satisfied. This follows by noting that, with d €
IR” and f};(x) representing the ith column of f;(x), we have from property 2 of
the generalized directional derivative given in Section 2 that

le vdV ZL/"l, )d; V Z ‘d|L/"1, (x) sgn(d, ( ) (110)

For this affine case and when Vis C! and Ly(,) V' (x)n(x) = 0 only when Ly, V(x)
=0 and x(x) = 1, related results have been established in Lemmas 9.5.2 and 9.5.3
of [I1]. The control laws in Lemmas 9.5.2 and 9.5.3 of [I1] are everywhere smooth
but not of the L, V'-type—the controllers u = k(x) are not such that L V' (x)k(x)
is nonpositive. (The use of L, V-type controllers for achieving the result we have
presented is discussed at the end of Section 9.5 of [I1].) Thus, for the affine case, if
the ¥7'(x) does not satisfy the bounded control property for the pair (7, &), where
& is defined in (109) with x(x) = 1, the results of [I1] and the discussion at the end
of Section 3 may be used to get a controller that is smooth at the origin but with
the Ly V' (x) structure away from the origin.

We again consider the system (85) with the added assumption that d enters in
an affine manner. The result here is essentially the same as those in Theorem 9.5.4
and Corollary 9.5.6 of [I1] (see also 12).

Proposition 2.  For the system (85) under the assumption that d enters in an affine
manner, if there exist a locally Lipschitz function 01(xy), a locally Lipschitz func-
tion n(x), a nonnegative, locally Lipschitz function V\(x1), a continuous, positive
definite function oy, a continuous, positive-valued function ri(x)), and a strictly
positive real number y such that

Loxs = 01(x1) = Lygeay V(1) < —ou (1) = 51 (1) [(x)|* + 72 d,
2. (x2 — 01(x1)) " 7(x) is nonpositive and zero only when x; = 01(x),
then, for each u > 0 and each continuous, positive definite function a(x) satisfying
x2="01(x1) = a(x) <o(x)), (111)
the functions
V(x) = Vi(x1) + glxa = 01 (1), (112)
n(x), o(x), k(x) = K1(x1), and y satisfy Assumption 2.

Proof. The proof is the same as that for Proposition 1 except that from (98) we
conclude

Ly V(X)n(x) =0 = LiaV(x) < —a(x) — w(x)|h(x)]* +2d]>. =
(113)
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Combining Proposition 2 with Corollary 5, we have conditions under which
V(x) defined in (112) is a clf for the pair (7, &) for the system (85) with & satisfying
(109). If V' (x) also satisfies the bounded control property for this pair, then, with
Theorem 1, we have a new locally Lipschitz feedback ¢»(x) = n(x)y(x) and a new
nonnegative locally Lipschitz function V>(x) = V(x) that can be used for another
application of Proposition 2 if another perturbed integrator is added. In the pro-
cess, y and x, which characterize the .#, gain, remain unchanged. This procedure
can be repeated for a chain of perturbed integrators of length n as long as at each
step a bounded control property is satisfied.

5. #.,-Based Control of Linear Systems with Input Saturation

Much progress has been made on the problem of global stabilization and distur-
bance attenuation for linear systems with bounded controls in recent years. One
set of results in this area has been to show that algebraic Riccati equations can be
used to construct control laws that yield global, or semiglobal, stabilization and
disturbance attenuation for all stabilizable linear systems having no exponentially
unstable open-loop modes. For semiglobal results, see [SLT], [L], and the refer-
ences therein. For global results, see [WB], [M], [T], [SF], and [SAS] among
others. For most of the global results, a family of algebraic Riccati equations is
employed and a selection from the family is made by solving an implicit equation.
In this section we apply the results of this paper to show that the implicit control
law can be made explicit and dynamic without paying a price in the level of
disturbance attenuation.
We consider the control system

X1 = Axi + Bp(v) + d, (114)

where (A4, B) is stabilizable and 4 has no eigenvalues in the open right half-plane.
The function ¢ is continuous and such that

vT(e) > min{]of, |o]}. (115)

Letting .#, denote the set of positive definite, symmetric n x n matrices, we
assume we have constructed a function P:R — .#, such that P(r) is locally
Lipschitz, P(r) — 0 as r — oo, for each r € R~ we have

ATP(r) + P(r)A + P(r) (%1 - BBT> P(r)=:Q(r) <0, (116)
and, where P(-) is differentiable, we have
—po(r)-1d < % < —p(r)-1d (117)

for some continuous, strictly positive functions p; and p,. (Note that p;(r) — 0
as r — o0.) Since P is supposed to be only locally Lipschitz, all subsequent deriv-
atives should be interpreted as holding almost everywhere. For example, such a
function could come from the positive definite, stabilizing solution to the alge-
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braic Riccati equation

1
14 x(r)

where y(r) is smooth, monotonically strictly increasing with lim,_,, y(r) = oo and
lim,_,_o, x(r) = =0.5, x(0) = 0, and y is sufficiently large. See [T] and [M], for ex-
ample, for a discussion of the properties of such an equation. Alternatively (see
[M]), if we have an infinite sequence {P;};  of positive definite matrices such
that P,y — P; > 0, lim,;_, P; = 0, and, for each i > 0, the inequality (116) is sat-
isfied, then we can synthesize P(r) as

P(r) = [(1 = q(n) Py} + a(r) P} )7 (119)

where i(r) is the largest integer i such that i < r and ¢(r) = r — i(r).
Now we let ¢ be some small positive real number and define

n(x1,x2) == [x{ P(x2)x1 + ¢ - tr(B” P(x2) B). (120)

1
ATP+PA+P(y21—BBT>P+ 1=0, (118)

The value of ¢ should be small enough so that ¢- tr(BTP(0)B) < 1, so that we
have 77(x1,0) < 1 for x; sufficiently small. The function #(x1, x2) is always positive
and, since dP/dr < —p,(r)I, there exists a continuous, positive definite function
p3(x2) such that (0n/0x2)(x1,x2) < —p;(x2). It follows from the mean-value
theorem for Lipschitz functions [C, Proposition 2.6.5] that 5(x,x;) is strictly
decreasing in x;. Next, we implicitly define a function 6;(x;) as the unique solu-
tion of the equation C(xy, x;) = 0 where

C(x1,x2) :=n(x1,x2) — min{#x(x;,0),1}. (121)

We are guaranteed that the equation C(xj, x,) = 0 has a unique solution for each
x; € R" since n(xy,xz) is strictly decreasing in x, and limy, . 7(x;,x2) = 0. In
particular, 6,(x;) = 0 for 7(x;,0) < 1 which is the case for x| sufficiently small. It
follows from (01/0x2)(x1,x2) < — ps(x2) and the corollary on p. 256 of [C] that
the function 6;(x;) is locally Lipschitz. Note that 6;(x;) takes values in [0, c0).
Also, 6;(x1) — oo and P(6,(x;)) — 0 as |x;| — oo so that

|X1| — 00 = XITP(Hl (xl))xl . tr(BTP(Hl(xl))B) =1l-—¢- tr(BTP(01 (Xl))B) — 1.

(122)
It follows that the function
Vi(x1) = x| P(01(x1))x (123)
is locally Lipschitz, positive definite, and radially unbounded.
We also are guaranteed, from the definition of 0 (x)), that
x! P(01(x1))x1 - tr(BTP(0;(x1))B) < 1. (124)

Also, from the properties of the trace,

‘BTP(Ol (X]))X1|2 < XITP(Ul (X]))xl 'U‘(BTP(01 (Xl))B) <1 (125)



118 A. R. Teel and L. Praly

and, in particular,
|BT P(0,(x1))x1]* < |BTP(0,(x1))x1]. (126)
We let 7 : R” — [0.5, o0) be locally Lipschitz but otherwise arbitrary, define
q(x,d) = q((x1,x2),d) = Ax) + Bp(—1(x1)B" P(x2)x1) + d,
q(x1,d) = q((x1,0,(x1)),d),

and consider the Lie derivative of V(x;) along the vector field ¢(x,d) under the
constraint x; = 0;(x;), i.e., along the vector field §. (The Lie derivative calcu-
lations that follow should be interpreted as holding almost everywhere since
V1(x1) is only locally Lipschitz.) We get, with (115), (116), and (126),

LiVi(x1) < xT(ATP+ PA)x, + 2x] Pd

(127)

dp
+ 2X1TPB(p(—‘L'(X1)BTP(01 (xl))xl) + xlTExl -Lg@l (Xl)
< —x{ Ox; + |BT Px,|* +7*|d|*

: dP
— 2min{z(x;)|BT Pxi|?, |BT Px|} + xlTExl - Lgbi(x))

dp
< —x!0x; +y*|d|? +x1TEx1 - Lg01(x1). (128)

Next we relate the last term of the right-hand side to the left-hand side. First
note that for all x; such that #(x;,0) < 1, the last term of the right-hand side is
zero. The function 0;(x;) is not differentiable on the measure zero set
{x1 : 7(x1,0) = 1}. When 7(x;,0) > 1, we have that

n(x1,01(x1)) = 1. (129)
Differentiating this equation, we get

L;Vi(x1) - tr(BTPB) = —(Vi(x1) + ¢) -tr(BTi';I;B> - Lz01(x1). (130)

We then have
dP tre(BT PB)x[ (dP/dr)x,

r —_— . - — — [, -
Y g Bba) = =L ) e S R BT (P dn B) (131)
We let 9(x;) be a continuous, nonnegative function satisfying
T T
9(x1) = tr(B' PB)x{ (dP/dr)x; (132)

(Vi(x1) + &) - te(BT(dP/dr)B)’

Here we have used the bounds on dP/dr in (117). Then, considering the two cases
L;Vi(x1) > 0and L;Vi(x;) <0, we have, for all xy,
dpP

xfﬁxl - Lg01(x1) < max{0, —3(x1) - LzV1(x1)}. (133)
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Combining this with (128) we have

LiVi(31) < —p gy S Q)i + 57 (134
We let ve (0,1) and let
1 (¥1) = v T OOy () (135)

(1 + 80x)) |

and

() = (1= ¥) gy 6 00 ) (136)

Since 9, Q, and 0, are continuous and J is nonnegative and Q(r) > 0 for all r, it
follows that x; and o; are continuous and x;(x;) > 0 for all x; while o (x;) is
positive definite. We then have

LiVi(x1) < —a(x1) — w(xr) |1 |+ y2|d]. (137)

The right-hand side and the function §(x;,d) are continuous and so, according to
property 5 of the generalized directional derivative given in Section 2, the bound
holds everywhere when the left-hand side is interpreted as the Clarke generalized
directional derivative. Henceforth, we make this interpretation. Now we use the
results of Section 4.2 to produce a dynamic controller that calculates 6(x;)
on-line and provides the same level of %, disturbance attenuation guaranteed by
(137). Consider the extended control system

X1 = Axi + Bp(—7(x1)BT P(x2)x1) + d = q(x,d), (138)

)'szu

which is in the form (85). Define 7(x) = —C(x],x2) and note that the quantity
(x2 — 01(x1))7(x) is nonpositive and zero only if x; = 0;(x;). We now use Propo-
sition 2 and Corollary 5 to conclude that, for each u > 0,

V(x) = Vi(x1) + u(x2 — 01 (x1))? (139)
is a clf for the pair (7, &) with
a(x,d) = —0.5[o; (x1) + (32 — 01(x1))*] = re1 (x1)|x1 |2 + 92|d)*. (140)

We now verify that V satisfies the bounded control property for the pair (z, &) as
well. We start by establishing that there exists a neighborhood %, of the origin
and a constant L such that

|(x2 = 0(x1))7(x)| = Llxy — 0(xy)|? (141)

for all x € %,. This would establish, in the terminology of Definition 4, that
7 locally dominates the identity. We know from the definition of 6(x;)
that 0(x1) = 0 on a neighborhood of the origin. So we need to establish that, for
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sufficiently small x; and x;,
|(x)| = L|xy]. (142)

Now, for x; sufficiently small,
n(x) = n(x1,x2) — n(x1,0). (143)

Then since (dn/0x2)(x1,x2) < —p3(x2) the bound (142) holds according to the
result of Section 7.1 (Lemma 2) of [C]. Note that p;(x;) depends on ¢ and
decreases to zero as ¢ — 0 so L decreases to zero as ¢ — 0. Again using that
0(x;) = 0 on a neighborhood of the origin, we have

Lye.ayV(x) = LgVi(x1) + Ly gVi(x1), (144)
where ¢ and ¢ were defined in (127). Then using that g(x,d) is locally Lipschitz
and V(x) is smooth in a neighborhood of the origin, and using that (137) holds

and the definition of «;(x;) in (136), we have that there exist strictly positive real
numbers ¢; and ¢, such that, for all x sufficiently small,

Liv.a)V(x) —a(x,d) < —611|x1|2 +0.5|x; — Q(X1)|2 + qa|x1]|x2 — 0(x1)]

q—% x2 — 0(x1)]?
< <4q1+0.5>| 2 — 0(x1)]
. 2
< Tl <4‘1—;+0.5) (x2 — 0(x1))7(x). (145)

Thus the bounded control property is satisfied and the proof of Theorem 1 gen-
erates a locally Lipschitz function ¥(x;,x) so that the following is true: the
locally Lipschitz dynamic controller

v=—1(x1)BT P(x2)x1, (146)
X2 = —C(x1, x2)Y(x1, X2),

with the functions 7, P, C, and y described above, assigns the bound &(x, d) given
in (140) to the derivative of the clf candidate V'(x;,x;) given in (139) along the
trajectories of (114), (146). We emphasize that s is a positive-valued function that
just needs to be sufficiently large and the function P (which also appears in the
function C) can be given by (119) where the elements of the sequence {P;} are
computed on-line.

6. Conclusion

In this paper we presented results on using the (multi-input) control variable u
to assign a desirable upper bound &(x,d) to the derivative of a clf V(x) along the
vector field f(x,d) + g(x)u. In particular, we have given a relationship between
the class of assignable upper bounds, using a control u = z(x)y(x), where
Ly V(x)r(x) is continuous and nonpositive, and a bound on Ly, 4V (x) that is
satisfied when L,V (x)n(x) =0 (see Theorem 2 and Corollary 1). We have
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emphasized that the control law can be synthesized with only rough information
about g(x), f(x,d), and V(x).

Our results on assigning an upper bound to the derivative of V" were applied to
nonlinear ¥, and %, disturbance attenuation problems, including various
“backstepping locally Lipschitz, disturbance attenuation control law’’ problems.
One particular application was to nonlinear %, disturbance attenuation for linear
systems with bounded controls.

Appendix

A.1. Proof of Corollary 3
Taking o as in (88) and defining (see (94))

G (x,d) := a(x,d) + 0.5k(max{V(x), y(|d|), e}) (147)
with ¢ > 0 it can be verified, as in the proof of Corollary 2, that V'(x) is a clf for
the pair (=, &.) and

V(x) > max{y(|d|),e} = a.(x,d)=—-0.5x(V(x)). (148)
Moreover, using (91) and (147), we get

sgp{Lf(x_,d) V(x) = ou(x,d)}

< max{O, sup  Lyya)V(x)+ K(V(x))}
{a:v(x)zy(ld))}

— 0.5x(max{V(x),e}). (149)

So, the bounded control property for (7,a.) is satisfied if there exist y > 0 and
o > 0 such that

sup  LyyayV(x) + x(V(x)) — 0.5¢(max{V(x),e})
{d:V(3) 27(1d))}

< — 0Ly V(x)7(x), Y|x| < x. (150)

We are assuming that f(0,0) =0 and ¢ > 0. In the case where V'(0) = 0, it fol-
lows from property 4 of the generalized directional derivative given in Section
2, the continuity of f'and ¥, and the fact that y~! and x are continuous and zero
at zero that there is a neighborhood of the origin in which the left-hand side of
(150) is negative. Since the right-hand side of (150) is nonnegative, it follows
that (150) holds for some y > 0 and all & > 0. In the case where V(0) > 0, it fol-
lows from condition 3 of Assumption 1 with (x,d) = (0,0), the assumption that
£(0,0) =0, y(0) =0, and property 4 of the generalized directional derivative
given in Section 2 that L)V (0)7(0) # 0. From the continuity and nonpositive-
ness of L,V (x)n(x) there exist y > 0 and b > 0 such that

—LyV(x¥)n(x) 2 b, Vx| <z (151)
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Again, from the continuity of f'and V and y € ., it follows that (150) holds for
this y > 0 and for some & > 0. It follows that V'(x) satisfies the bounded control
property for (7, &.). |

A.2. Proof of Corollary 4

Without loss of generality assume #(s) < x(s) for all s > 0 and then let § € 4~ be
such that, for x sufficiently small,

Vix) 27(ldl) = Lya)-rx0V(x) <0.58(V(x)). (152)
For example, let y > 0, let L be a Lipschitz constant for V'(x) on the set |x| < 2y,
and let y, € 4, satisty
|f(x,d) = (%, 0 < pe(ld]), Vx| <y, Vd. (153)
Such a function y, exists since fis continuous. Then define
5(s) = max{p(s), & (2L - 7,(5))}. (154)

According to property 4 of the generalized directional derivative given in Section
2 and (153), with this choice of 7, (152) is satisfied. With this construction we see
that, without loss of generality, we can assume that j(s) > y(s) for all s > 0.

Let y,, x, be of class-#7, and match y and %, respectively, for small s and match
y and x for s > v and satisfy y,(s) > y(s) and #,(s) < x(s) for all s. For example,
let ¥; € (0, v) be such that 7(¥,) < y(v) and then pick

70) sel0,ml,
wo) = { mady0. =25+ 2 mh selmol 059
»(s), s € [v, 0).

Similarly for x,, let ¥, € (0,v) be such that #(7,) < x(v) and then pick

K(s), s €1[0,v),
Koy (8) = min{;c(s)7vv:;2 K(v2) +i:zz K(v)}7 s € [V, V], (156)
K(s), s € [v,00).

Similarly for x,, let ¥, € (0, v) be such that ©(v,) < x(v) and then pick

I~C(S), - NS [O; VZ]a
Ky (s) = min{x(s),vv__jzk(vz) + j — ;z K(v)}, se [, (157)
K(s), s € [v,00).

With these choices, point 3 of Assumption 1 holds with y, replacing y and «,
replacing k. Define &,(x,d) using (88), (89), and (94) but with y, in place of y
and r, in place of x. It can be verified, as in the proof of Corollary 2, that V(x) is
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a clf for the pair (7, &,) and
V(x)=p(d) = a(x,d)=-05k,(V(x)). (158)

Now, V satisfies the bounded control property for (z, &,) if there exist y > 0 and
v > 0 such that

sup Ly, ayV(x) +0.5x6,(V(x)) < =0Ly) V(x)7(x), Vx| < y.
{d:v(x)zp,(d])}

(159)

We use property 2 of the generalized directional derivative given in Section 2, the
fact that 7(0) = 0 and V' is continuous, the fact that y,(s) = y(s) for small s, and
(152) to see that, for sufficiently small x,

sup  Lyxr.a)V(x) + 0.51,(V(x))
{d:V(x)=7,(d])}

< sup  {Lra)-rx0)V(X)} + Lyr.0) V(%) + 0.58(V (X))
{d:V(x)=y,(1d|)}

< Lf(xﬁg)V(x) +I~C( V(x)). (160)

By assumption, for the system X = f(x,0) + g(x)u, V satisfies the bounded con-
trol property for (7, —x(V")). It follows from (160) that, for the system x = f(x, d)
+ g(x)u, V satisfies the bounded control property for (=, a,). |
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