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speaking, we will show that if the result already holds for thés a magnitude- and rate-limited control law which globally asymp-

reduced-order system

i = f(x)+ g(a)v €)
with some control law = p(x), then it does so for (1) with a control
law v = v(z, y). To be precise, we will prove the following.

Theorem 1: Suppose there exigt® functionsy, r, V, a: IR® —
R such that

Al) V, «, andr are positive definite}” is proper,.(0) = 0, and
inf >, r(2) > 0 for somec > 0;
ly — ()| < r(x) impliesL;V(x)+ L,V (x)y < —alx);
w7, Lepi, Lop, Lyr, Lyr, andL gV are all bounded oiR"™;
L,V, Ly, and(Lyp - p) are allO(y/a(z)) asz — 0;
there existsro > 0 such thath is bounded on the set
{(z,y) € R" xR: |y — p(x)] < 7o}
there existsip > 0 such thatign[y — pu(x)] - h(z, y) < ho
onR" x IR;

B3) nhis O(y/a(x)+ [y — p(x)]?) as(z, y) — (0, 0).
Then there exisC' functionsv, p, U, 3: R™ x R — TR such that

Cl1) U, 3, p are positive definitel’ is proper,»(0, 0) = 0, and

inf {p(z. y): |2 + [y] > ¢} > 0;
C2) |lu — v(z,y)| < p(x,y) implies LpU(x,y) +
LUz, y)u < —B(x, y);
C3) v, p, Lyv, Lgv, Lip, Lap, and LU are all bounded on

A2)
A3)
A4)
B1)

B2)

R" x IR;
C4) LaU, Lyv,and(Lgv-v) are allO(\/3(z, y)) as(z, y) —
(0, 0).

B. Interpreting the Conclusion of Theorem 1: Properties C1)-C4)

If we can satisfy A1)-A4) and B1)-B3), then this theorem gen-

erates a control law and a Lyapunov functio whose derivative
along solutions of (1) withe = v(x, y) satisfies, from C2)

U=LpU(z, y)+ LeU(z, y)viz,y) < =Bz, y). @)

totically stabilizes the system
€T = —1 g + xyr

g =ys — a° max{0, y1}

8
g2 = u + sin (27).

Furthermore, we immediately have the following corollary to The-
orem 1.

Corollary 2: Let f, g: R" — IR" beC?, and suppose there exist
C?! functionsp, r, V, a: R" — IR satisfying A1)-A4). Then for
anym > 1 there is aC' function »: R x IR™ — IR such that
the system

&= f(x)+ g(x)y
1<i<m-1

9)

Yi =Yit1

Ym =v(2, y)
with y = [y1 ym]T is globally asymptotically stable, and
furthermore the control law = v(x, y) and its derivativei(z, y)
are bounded functions dfr, y).

The control lawr in this corollary is given by

V(e y) = =m0 (Am[ym + - -
+ 720 (X2y2 + 1o (Mifys = p(@)DD ---])
(10)
where the constants; and )\, are positive design parameters. It is
reminiscent of the nested saturation control laws proposed in [5] and

[6].

C. Interpreting the Assumptions of Theorem 1:

Thus this control law globally asymptotically stabilizes the origin oProperties A1)-A4) and B1)-B3)

(1), and we see from C3) that the control law= v(z, y) and its
derivative

u(z, y) = Lpv(z, y) + Lav(z, y)v(z, y) (5)
are bounded functions dft, y) as desired. The control law used
to prove Theorem 1 is simply

v(z,y) = —vo(Ny — u(z)]) (6)

where o0 IR — IR is the C'' saturation function defined in

Section IllI-A. Following our proof, the constant design paramete

~ and A must be chosen sufficiently large. In general, there is
guarantee that the magnitude limjt on the control law (6) can

be chosen small enough to meet a prescribed constraint. A simiJref1

statement holds for the rate limit, which depends on bptand A
as well as the functiong, ¢, h, 1, ando.

Theorem 1 can be applied recursively because properties C1)-C4)

Assumptions A1)-A4) concern only the reduced-order system
(3). Essentially, we require knowledge of a bounded function)
such that withv u(x), this reduced-order system is globally
asymptotically stable with Lyapunov functiol’(x). We require
further that the functionsL;n and L,u be bounded, which is
tantamount to requiring that the control lawy and its ratei: be
bounded along solutions to (3). The functienis a measure of
the stability robustness to errors in the implementation. gbr the
reduced-order system (3). Because some amount of robustness will
always exist, the only assumption concernings that it not vanish
Putside a neighborhood of = 0; the requirements that, L, and

r be bounded can be satisfied by takingo be constant outside
a compact set.

I[n Condition A3), we require that the functiab, 1" be bounded.
is requirement is an important part of Theorem 1. Indeed, let us
consider then = 1 system

. 3 3 .
r=—-x +2x"y, Y = u.

(11)

are to the complete system (1) as properties Al)-A4) are to the
reduced-order system (3). After the first step in a recursive design, okfee feedback: = (x) = 0 is bounded with bounded rate and
needs only verify properties B1)-B3) at each new step. For exampiobally asymptotically stabilizes

by applying Theorem 1 twice, one can find constant paramaters

12
~1, A2, and vz so that (12)

r=—x +xv.

Forr(2) < 1, we see that conditions A1)-A4) hold, except that there
is no properC'' function V'(x) such thatL,V(z) = V'(x) - z° is
bounded. Therefore Theorem 1 does not apply, which is consistent

=) o

vz, y1, y2) = =20 </\2 {u) +mo <A1 |:?/1 +
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with the observation that no bounded control law= »(x, y) for We use these functions to define the following set&Rih x TR:
(11) can prevent finite escape times from all initial conditions.

The final requirement A4) on (3) is a mild condition on the local AT = n . +
. . . ) . . ={(zr,y) eR" xR:y >p" (z 24
behavior of the function$” andp in a neighborhood of = 0. This 0 (. y) y_ ) N 24
condition allows us to conclude the existence af*acontrol law v A" i={(z,y) ER" xRep™(x) <y <p'(x)} (25)
for (1) given aC'* control lawy for (3). This is in contrast to standard A7 ={(z, ) ER" xRy < p " (x)} (26)

backstepping results in which one degree of differentiability is lost,
namely in which aC' control law z yields a merely continuous
(C°) control law v.

Assumptions B1)-B3) concern only the functidn in the y- Note thatR™ x IR = AT U A° U A~ and thatd™t, A°, andA~ are
subsystem of (1). Conditions B1) and B2) will always be satisfiedisjoint. In the following we shall typically write:
whenh is bounded, but they also alloivto be unbounded in certain
directions. Condition B3) is a mild condition on the local behavior
of the function’ in a neighborhood of the poiritz, y) = (0, 0).

AT =4tua. (27)

0< I(x, y, pF), V(. y) € A* (28)

where! is some function. This must be understood as
Ill. PROOF OF THEOREM 1

+ ) 4+
A. Definitions and Technical Preliminaries 0 < I(w, y, u™(x)), Vi y) €A

o We will use the functionk™ defined in [3, eq. (11)] as and

» 0<I(w,y. i (w), V(r,y)ed . (29)
K. )= [ lats= )+ olsl = alaD)] d (13)
q . . . .
. R Using this notation and lettind? := sup, r(x), we have, for all

=sap— 0" +0GIl —palal + 3"y A4 T s

wherea > 0 andb > 0 are design parameters. One can verify that

K(p, q) > 0 for all p, ¢ € R, and furthermorek'(p, ¢) = 0 if and 0<(y—pS(@)y— ) <|y—plx) (30)
only if p = ¢. Partial derivatives of the functioA™ are r(e) < min{R, |y — p(e)[}. (31)
oK
Ki(p,q):=——(p, q) = (p—q) M(p, 15 .
G2 9) Op 9= -0 M9 (13) ¢ We note that the function
0K
Ky(p, q)i=— ([, q)=—(p— + 2D
(P, ) 94 (p, ) = =(p — q)(a + 2blq]) (16) oOly — p(o)])].  when(e. o) € A*
(z,y) = e (r(2)) when (. y) € A° (32)
where M is the continuous function given by ’ e
lpl +1lgl,  whenpg >0 is continuous, positive definite, and bounded away from zero outside
M(p,q):=a+b-{ p* 442 (17) @ compact neighborhood @f, y) = (0, 0).
EAT whenpg < 0. e We assume, without loss of generality, that
This function M satisfies the inequalities v, Lyr, and(L,r - 1) are allo(\/sz)) asz — 0. (33)
a+ 3bllpl+ lal] < M(p, q) < a+0[lp| + |ql] (18)

Indeed, if the given function violates this condition, we can always
for all p, ¢ € IR. Also, given any compact s&® C IR, there exists flatten it near: = 0 while preserving A1)-A4) and B1)-B3) so that

w > 0 such that this condition is satisfied.
K(pq) b e With Al), we see that outside a compact neighborhoad of 0,
P W =3 r(x) can be used to bound any bounded function. From (31) the same
K I ] holds onA* with |y — u(2)|. Consequently, from A3), A4), (31),
li | xl(pqu _ Xl(p,q) < (19) . .
\p|li1>loo 2 =0, 1+ K(p.q) Kol = @ and (33) there exist nonnegative constastsand ¢; such that for

all (z,y) € A*
forallp € R and allq € Q.
¢ We define a saturation functian as follows. Giversy > 1, let

i) ES ES o0, E
o: R — [—1, 1] be C'"', odd, nondecreasing, and such that with LoV () = (a4 2blu= ()DL () + Lo (0)n™ ()]

denoting the derivative of <ci(co+a+b)y/2alx)+ |y — p(a)]]. (34)
§) = sign( s| > 1 _— . .
ols) =sign(s), when|s| > (20) Similarly, it follows from (18), (31), B2), and B3) that there exists
s> <so(s)<oos’,  when|s| <1 (21) ¢2 > 0 such that for all(z, y) € A*:
0 <o'(s) < ao, Vs e R. (22)

M(y, ui(:v)) sign(y — [li(.lf))h(ilj, y)
o ; + . R" 2 -
o We defineC™ functionsy™, p~: R" — IR by <eala+0)] /%a(l,) SR p—l

() = p(a) + r(2), p(x) = p(e) — r(z). (23) + oM (y, pF(2)) min{R, |y — p(z)]}. (35)
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e By using (21) ofs, (18) on M, and by imposing wherecs is given by the boundedness bf,x* andp*. Then, with
40) and (41), we get more simpl
{1(7)} ;sk (36) (40) ‘(1)/ g ! ply .
sup, {r(z T(x. y) <hale) + Jy = p (@M (y. p*(2) - o (Aly = u(o)))]

we get the following inequalities:

|
My = p(x)] <1= R <[Ci(%+a+b)2+cocl
y = n(a)| <

+3(a+0)° 4+ (c1 +e2+e3)a+D)]

1
o= o) < | 25 obo Ol = D) @7) 2
g : =,z R ). 46
1< Ay — pla)] = X{ b}m ) (46)
So by imposing thaty be large enough, we finally arrive at
= ) < (ol + ()] (0 e 1) < —Zalo) = Ly — 5 (o)
5 Ivo(Aly — n(@)])] (38) My, g (@) |ye Ny = (@) (47)
. {R 2} forall (x, y) € A*. This proves the negative definitenesd¥f ., y)
max-<{ —, - + 4
o’ bJ T, vyl+ e (@)) on A™.
- ~y 2 2) Construction of the Functiop: With the properties of the

Nye(Mly = p(@)])]- (39) function defined in (32), we can construct( positive definite
‘ function p(x, y) such that

. Hve(Aly — p(x))l,  when (z, y) € A*
ple, y) < { Lo (Ar(x)), when (x, y) € A° (48)

This yields, for all(x, y)

Iy — ()] <+ max {5, %}Mm pE ()
~ a
.’ha()\[y RN (40) and furthermorep is constant outside some compact set. With this

choice forp we obtain
Also, we have

min{R, |y — p(x)|} <R min{l, A|ly — p(2)|}

lu —v(z, y)| < plz,y) = W < =S(z, y) (49)

R where
< < ey = sl (41) 2 )+ Ly — o]
Sy =4, * + (50)
B. Proof of Theorem 1 v (Ny — u(2))], when (z, y) € 4
alx), when (z, y) € A°.

1) Proof of Global Stability: We propose a Lyapunov function
W (x, y) which belongs to the family of Lyapunov functions de- 3) Construction of the Functions and3: We definelU as
scribed in [3] and is “flattened” inside the sdf’, as proposed in U, y) = [l + W (2, )] (51)

(1]
K(y, p*(x)), when (z, y) € A* whereW is given by (42). We now show that there exists a function
Wiz, y) :=V(x)+ {07 when (z, y) € A° B(x, y) such that

(42) « 3is C" and positive definite;

o for all (z,y) € R" xR
where K is given by (14). One can verify thal” is ', positive (= 9)

definite, and proper. We next computgé in each of the two sets Bz, y) < S(x.y) . (52)
AT and A°. T I+ W(ay)
* In the setA® we obtain, using A2) - there exis C R" x IR, a compact neighborhood of the origin,
Wiz, y) = LiV(z) + L,V(2)y < —a(z). (43) and a constant > 0 such that for all(z, y) € C
Therefore, W (xz, y) is negative definite ond®, regardless of the Bla,y) > dlale) + (y — p(x))?]. (53)
value of the Coitm' variabler. . First, because® < so(s) when|s| < 1, and (33) holds, there is some
¢ In the setA™ we obtain, withu = »(x, y) given by (6) compact neighborhood of the origin such that for aliz, y) € C
W(e ) € = a(e) + T(w. y) = [y — w* (2)] 1 ) 1
+ yo(Aly — n(@D] 2 WAl — p(@)l,  zaydr(a)? < sa(e).
My, 7 (2)yo (Aly — p(@)]) (44) 8 3 54)

where M is from (17) and
. Let us now bounds(z, y) from below. We begin by observing from

T(w. y) =l — n* @][LoV (&) + My, y* (). 0) o ot ok e ¥ gin by g
= (a4 2b|p™ (@) )(Lpp™(2) + Lop™(2)y))-

_ Ty = 1= @] e (Aly = p())]
It remains to determine the negativenesd1fz, y) on the setd™.

For this we observe that by completing the squares and using (30), > JayAlly — (@) - T(l’)w —n(@)l] (55)
(34), and (35), we get, for allz, y) € AT > LayAlR(y — p(2)? = Lr(2)”] (56)
T(r,y) < i alx) + |y — ,ui(r)| 2 ;‘U" (y = )2 1? ( ) (57
[(c1 ((0 +a+b)°+ cocr + 3(a+b)? Furthermore, becaude — ;L(I)| < r(2) on A, we have from (54)
+(c1+c2+ ca)(a+ b))y — p()] that

+ My, p*(x)) min{R, |y — u(x)[}]  (45) a(z) > Lay\(y — p(e))? (58)

c,.|»~
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on 4° N C. We conclude from (57) and (58) that for &k, y) € C

S, y) > tale) + LayAly — p(a))*. (59)
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Therefore, the functiond having the properties listed above must

indeed exist.
4) Properties C1)—C4) are Satisfied:
e Property C1) follows from the construction of p, U, and 3.
« Property C2) follows from (49), (51), and (52).
e The functionsp, Lrp, and Lgp are bounded because is
constant outside a bounded set. By definitieris bounded on
IR" x IR. We calculateL v and Lrv as follows:

Lav(x, y) =—=yAo' (Aly — p(2)]) (60)
Lpv(x, y) =y o' (Aly — p(=)])
“[Lyp(x) + Lop(x)y — h(x, y)]. (61)

Recall thatjs’ (s)| < a0 for all s € IR; from this we conclude that
Lqv is bounded ofR™ x IR. On the other hand, if we require to
be large enough to satisfy both (36) and

(62)

then, with B1), A3), and the fact that'(s) = 0 for |s| > 1, we
see that the function

o' Ay = p(e))[Lop() y — bz, y)]

is bounded. We conclude from this and A3) tiat» is bounded.
We next verify thatL« U is bounded orR"™ x IR. It follows from
(42) and (51) that
1
14+ V(z)+ K(y, pE(x))
_ {Ix} (y, p*(x)), when(z, y) € A*

0, when (z, y) € A°,
Sinceu™ is bounded, we conclude from (19) that; U is bounded:;
thus C3) holds.
* We have left to verify C4).

LeU(x, y) =

(63)

1) From (6), (15), (30), and (63) we see that both
and LeU are O([y — pu(2)]) as (z,y) — (0, 0),
and it follows from (53) thatLU and (Lgv - v) are
O(\/B(x, y)) as(xz, y) — (0, 0).

2) From (61) we have

[Lev(z, y)| <yAool|Lrp(@)] + [(Lop - p) ()]
+ | Lgp(z)] ly — p(z)| + |z, 9]

and it follows from A4), B3), and (53) thaLzv is
O(\/B(x, y)) as(xz, y) — (0, 0).

IV. CONCLUDING REMARKS
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On the Computation of the Induced £, Norm of
Single-Input Linear Systems with Saturation

B. G. Romanchuk

Abstract—n this paper, a means of determining an upper bound of the
induced £> norm for a class of single-input linear systems with saturation
is given in terms of the existence of a candidate function which satisfies
three differential inequalities. A technique to calculate such a function
for systems with linear controllers is also developed.

Index Terms—Finite gain stability, nonlinear H, control, saturating
systems.

I. INTRODUCTION

The extension o, control methodologies to the robust control
problem for nonlinear systems is a research topic which has recently
attracted attention. One of the core analysis problems which needs to
be addressed is the induced-norm computation problem, which must
be solved before the synthesis problem can be seriously examined.

Using the concept of dissipativity introduced by Willems in [12],
there has been some effort on this topic for affine nonlinear systems,
some recent papers on which are [6] and [11]. The class of systems
examined in this paper are those with input constraints; recent related
work includes [7] and [8].

The development undertaken in this paper does not use any norm-
bound assumptions to estimate away the effect of the memoryless
nonlinearity, hence it is possible to undertake nonconservative anal-

We have presented a new backstepping procedure for the desigygsi$. This is also done in the paper [4], although for another problem

state feedback control laws which are bounded both in magnitude and
rate. Although the proposed Lyapunov function is necessarily moy
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complicated than the standard Lyapunov function for backsteppingirhe author is with McGill University, Montreal, PQ, H3A 2A7 Canada.

the resulting control law has a simple form.

Publisher Item Identifier S 0018-9286(98)00929-5.

0018-9286/98$10.00 1998 IEEE



