Pergamon

PII: S0005-1098(98)00018-1

Automatica, Yol. 34, No. 7, pp. 825-840, 1998
« 1998 Elsevier Science Ltd. All rights reserved
Printed in Gireat Britain

0005-1098/98 $19.00 + 0.00

Design of Robust Adaptive Controllers for Nonlinear
Systems with Dynamic Uncertainties*
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A robustification methodology is described for a broader class of adaptive systems

with nonlinear dynamic uncertainties.
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Abstract—In this paper, a modified adaptive backstepping de-
sign procedure is proposed for a class of nonlinear systems with
three types of uncertainty: (i) unknown parameters; (ii) uncer-
tain nonlinearities and (iii) unmodeled dynamics. Nonlinear
damping terms are used to counteract the uncertain nonlinear
functions and a dynamic signal is introduced to dominate the
dynamic disturbance. The derived adaptive controller guaran-
tees the global boundedness property for all signals and states
and at the same time, steers the output to a small neighborhood
of the origin. Incidentally an adaptive output-feedback control
problem is solved. © 1998 Elsevier Science Ltd. All rights
reserved.

1. INTRODUCTION

Recent years have seen much progress in adaptive
control of a class of nonlinear systems, see the
recent textbooks by Krstic et al. (1995) and Marino
and Tomei (1995) and references therein. Most
adaptive control algorithms are proposed for non-
linear systems which are linearly parametrized and
are state feedback linearizable (see, e.g. Sastry and
Isidori, 1989; Kanellakopoulos et al., 1991b; Jiang
and Praly, 1991; Krsti¢ et al., 1992; Marino and
Tomei, 1993b; Praly, 1992; Seto et al., 1994). How-
ever, as pointed out in Krsti¢ et al. (1995), robust-
ness issue in adaptive nonlinear control has re-
ceived less attention and the robust modifications
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of the proposed adaptive nonlinear controllers are
yet to be developed (although see Jiang and Praly,
1992).

A singular perturbation approach was used to
take into account the effects of unmodeled dynam-
ics in adaptive control of feedback linearizable
systems under a matching condition (Taylor et al.,
1989), or an extended matching condition (Kanel-
lakopoulos et al.,, 1991a). In the work of Marino
and Tomei1 (1993a), the authors studied a class of
nonlinear systems satisfying a triangularity condi-
tion and assumed the uncertain nonlinearities are
unbiased, that is, the zero point is an equilibrium
for the system under consideration regardless of the
value of the unknown parameters. The results of
Marino and Tomei (1993a) were recently extended
by Polycarpou and loannou (1995) to adaptive
systems with biased uncertain nonlinearities. With
the additional assumption that the bounds of un-
known parameters are known, the adaptive control
design procedure of Polycarpou and Ioannou
(1995) was modified by Yao and Tomizuka (1995)
towards an improved transient performance.
However, all these papers (Marino and Tomei,
1993a; Polycarpou and loannou, 1995; Yao and
Tomizuka, 1995) have not considered the dynamic
perturbations. In Jiang and Praly (1992) we gener-
alized to adaptive control of nonlinear systems the
idea of using an available dynamic signal to bound
some dynamic uncertainty. This idea was further
examined in Jiang (1995) via small-gain techniques.
More recently, in Jiang and Praly (1996), we pro-
posed a recursive robust adaptive control proced-
ure for a class of non-linear systems in the presence
of unmeasured dynamics satisfying an input-to-
state stability property. This paper is an extension
of Jiang and Praly (1996) from the unbiased case to
the biased situation.

The primary goal of this paper is to study the
problem of robust adaptive control for uncertain
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nonlinear systems described by
z = q(z, x, u),
X=Xy + 07@(x1, ., X) + Aix, 2,0, 1),
l<i<n-—1, (1

o =u+ 0Tn(x1, ..., Xn) + Adlx, 2, 1, 1),

Yy =Xy,
where u € R and y € R represent the control input
and the output, respectively, x = (x,, ..., x,) e R"
is comprised of the measured states and the z € R™
is the remaining part of the unmeasured states, and
8 e R! is a vector of unknown constant parameters.
Assume that the A;’s and g are unknown Lipschitz
continuous functions but the ¢’s are known
smooth functions.

Throughout the paper, the following assumption
is made on the system (1).

Assumption 1.1. For each 1 < i < n, there exists an
unknown positive constant pf such that, for all
(z,x,u,t)in R xR"xR xR,

'Ai(x, Z, u, t)l < P?lf’n(l(xl, AR xi)')
+ pFia(lz)), 2

where ;; and y;, are two known nonnegative
smooth functions. With no loss of generality, as-
sume that ;,(0) = 0.

Nonlinear systems meeting Assumption 1.1 will
be discussed in Sections 2 and 5 (see also Remark
4.2). The above class of uncertain nonlinear systems
(1) is motivated by previous work on the control of
triangular systems in the context of both adaptive
(see, e.g. Kanellakopoulos et al., 1991b; Jiang and
Praly, 1991; Krsti€ et al., 1992; Marino and Tomei,
1993a, b; Praly, 1992; Seto et al., 1994; Jiang et al,
1996) and nonadaptive control (see, e.g. Byrnes and
Isidori, 1989; Tsinias, 1989; Freeman and Kokotovic,
1993; Tsinias, 1995; Teel and Praly, 1993).

In this paper, we present a robustification
method for the usual adaptive backstepping design
for system (1) in the presence of parametric, static
and dynamic uncertainties. The control objective is
to find an adaptive controller of the form

1=oxx), xeR™, 3)
u = u(x, ), )
in such a way that all the solutions of the closed-
loop system (1), (3) and (4) are globally uniformly

ultimately bounded* (Khalil, 1996). Furthermore,
the output y can be rendered small.

* The solutions of X = f(t, x) are said to be globally uniformly
ultimately bounded if, for any a > 0, there exist two positive
constants b and T = T'(a) such that

Ix(t)) =a = |x()|<b, Vixte+ T

To achieve this objective, an additional assump-
tion on unmeasured dynamics z is given in Section 4.
The contributions of the paper are twofold. Firstly,
the uncertain systems under consideration are sub-
ject to a general set of uncertainty: parametric un-
certainty (which may nonlinearly appear), uncer-
tain nonlinear functions and stable dynamic uncer-
tainties. Secondly, our control design procedure 1s
constructive and incorporates certain scalar dy-
namic signal r(t} which will be defined in Section 4.

There are several possible avenues to treat our
problem. The first possible way is to depart with
the idea of exploiting a priori information on the
system as much as possible. This is exactly what we
pursue in this paper since we utilize the fact that
there is a linear parameterization and all un-
modeled effects are bounded by the above-men-
tioned dynamic signal r(t). The second way is to go
through an intermediate case where we use the fact
that there is a linear parameterization but we treat
the unmodeled dynamics by a worst-case design on
the basis of small-gain arguments (Jiang et al., 1994;
Jiang and Mareels, 1997). The third one is the case
where everything is treated via a worst-case design
by ignoring the system structure, as in Teel and
Praly (1993). All these avenues have their own ad-
vantages and disadvantages. As far as our ap-
proach presented in this paper is concerned, the
main advantage is that, under our hypotheses, we
obtain a desired asymptotic behavior with a mod-
erate control effort. However, as any other purely
adaptive control scheme, this behavior is not ro-
bust with respect to perturbations which violate
our assumptions. As a result, the typical “bursting”
phenomenon may happen. This warns that some
precautions must be taken for the application of
our algorithm in practice.

The presentation of this paper is as follows: we
begin with a motivating problem in Section 2. Sec-
tion 3 contains some needed definitions and pre-
liminary results. Then, we present in Section
4 a novel robust adaptive backstepping scheme
which allows us to solve the above output regula-
tion problem. Illustrative examples are given in
Section 5. Section 6 discusses some particular situ-
ations where the exact output regulation can be
achieved. Our conclusion is in Section 7.

2. A MOTIVATING PROBLEM

The problem of output feedback stabilization of
nonlinear systems has recently received attention
with renewed interest (see, e.g. Kanellakopoulos et
al,, 1991c, 1992; Khalil and Saberi, 1987; Marino
and Tomei, 1991, 1993b). One common feature in
these cited papers is that the zero dynamics of the
system to be controlled is linear and is asymp-
totically stable. In our recent paper (Praly and



Robust adaptive controllers for nonlinear systems 827

Jiang, 1993), we have extended this case to the case
where the zero dynamics is nonlinear and is input-
to-state stable in the sense of Sontag (see Section 3).
An observer-based robust dynamic controller is
designed using a nonlinear small gain argument
(Jiang et al., 1994). Here, we intend to extend fur-
ther to the adaptive regulation case, i.e. gain func-
tions are known up to a multiplicative unknown
constant.

To this purpose, let us consider the following
class of single-input-single-output nonlinear con-
trol systems:

{ =40,y

&=Ci + 070y + il (),
I<i<n-—1|, (5)

Cn=u+070,(y) + wnl&, { u, 1),

y=2¢h,

where y represents the system output and the w,’s
are unknown functions satisfying

lié, & u, 0] < 9 @i (lyl) + FHeoulll]).  (6)

where the 3}’s are unknown positive constants and
@;, and ¢;, are known smooth functions.

It is important to note that nonlinear parametr-
ization was considered in Marino and Tomei
(1993b, Part II) and Teel and Praly (1993) for
classes of uncertain output-feedback systems sim-
ilar to the form (5). In Marino and Tomei (1993b,
Part II), the zero dynamics is linear, asymtotically
stable and the coupling terms w; (1 < i < n) depend
linearly on {. By taking advantage of these facts,
Marino and Tomei (1993b) succeeded in building
a globally self-tuning output-feedback stabilizing
controller by forcing an appropriate function to be
a Lyapunov function. In Teel and Praly (1993), the
problem of practical output regulation was solved
for a larger class of systems (5) using high-gain
control. Here, we intend to propose an alternative
solution which is even new in contrast to the exist-
ing work on adaptive output-feedback control
(Krstic et al., 1995; Marino and Tomei, 1995).

As in Praly and Jiang (1993), introduce an ob-
server as follows:

£i=Ei+1+Li(y_€1)’ I<i<n-—-1,
2n=u+Ln(y—E)

where the real numbers L; (1 <i < n) are chosen so
that the matrix

(7

~L, 10 0

—L, 0 1 0
A= :

~L,., 00 1

~L, 00 0

is asymptotically stable. Letting

_t-¢
20 = T,
Cb(é’ ’:’ u, t) = (9T¢1(,V) + (2] (éﬂ C’ u, t)9 rey 9T¢n()/')
+ @n(& Lu )T ®)

with p*:= max{|6|, 9%, ..., 9}, we have

1
Zo = Azp — ;,; WS, C,u, t). 9)

Thanks to the introduction of p* in equation (8),
the z,-system (9) is input-to-state practically stable
(cf. Definition 3.2) with some gain which is available
for feedback design. See Section 5.2 below.

Therefore, we get an augmented system for con-
trol design:

. 1
Zp = AZO - ;; C()(ﬁ, C’ u, t),

£ =qo(C, ),

V=& +0"0:1(») + p*z02 + 01(& G w1),  (10)
éi=5i+1 — Lip*z9,, 2<i<n—1,

én =u — L,p*z0;.

It is easy to see that system (10) belongs to the class
of systems (1) with

x=0& .. &, z=(, a1
Ay = p*zg; + wy, A=~ Lip*z4,, 2<i<n

It is clear that Assumption 1.1 is satisfied for
system (10).

Notice that, similar to Praly and Jiang (1993),
regulating the output y of (10) using the informa-
tion of partial-state x achieves the output regula-
tion problem for the original system (5). We will
come back to this issue in the Section 5.2.

3. MATHEMATICAL PRELIMINARIES

We begin with definitions of class K, K, and KL
functions which are standard in the stability litera-
ture, see Khalil (1996).

Definition 3.1. A K-function y, or a function of class
K, is a function from R , , into R, , which is con-
tinuous, strictly increasing and is zero at zero.
A K -function is a function which is of class K and
unbounded. A KL-function § is a function from
R,oxR.,to R, with the property that for each
fixed ¢, the function (-, t) is of class K and, for each
fixed s, the function (s, -} is decreasing and tends to
zero at infinity.

The concepts of input-to-state stability (ISS) and
ISS-Lyapunov function due to Sontag (Sontag,
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1989, 1990; Sontag and Wang, 1995) have recently
been used in various control problems such as
nonlinear stabilization, robust control and ob-
server designs (see, e.g. Sontag, 1995; Jiang et al,
1994; Tsinias, 1993; Praly and Jiang, 1993; Praly
and Wang, 1996; Jiang and Mareels, 1997)). In the
following, we present variants of these notions
which are suitable for our application.

Definition 3.2. A control system X = f(x, u) is input-
to-state practically stable (ISpS) if there exist a func-
tion # of class KL, a function y of class K and
a nonnegative constant d such that, for any initial
condition x(0) and each measurable essentially
bounded control u(t) defined for all ¢ > 0, the asso-
ciated solution x(t) exists for all ¢t > 0 and satisfies

[x(0)] < B(IxO), } + 7([w]) + 4, (12)

where u, is the truncated function of u at t and |||
stands for the L™ supremum norm.

When d = 0 in equation (12), the ISpS property
collapses to the input-to-state stability (ISS) prop-
erty introduced in Sontag (1990).

Definition 3.3. A C' function V is said to be an

ISpS-Lyapunov function for system X = f(x, u) if

o there exist functions a, o, of class K, such that
a([x]) < Vix) <ar(ix]), VxeR%, (13)

 there exist class K-functions «3, y and a constant
d > 0 such that

<l z ) +d = 50w
X

< = yslix]) (14)
When equation (14) holds with d = 0, V' is referred
to as an ISS-Lyapunov function.

For the purpose of applications studied in this
paper and motivated by recent work (Sontag and
Wang 1995; Praly and Wang, 1996), we introduce
in the sequel a notion of exp-ISpS Lyapunov
function.

Definition 3.4. A C' function V is said to be an
exp-ISpS Lyapunov function for system x = f(x, u)
if
« there exist functions o, «, of class K. such that
a([xh) < V(x) <ax(lx]), VxeR", (15)
« there exist two constants ¢ > 0, d > 0 and a class
K ,-function 7 such that

oV
E(x)f(x, u) < —cV(x) +y(Jul) +d. (16)

When equation (16) holds with d = 0, the function
V is referred to as an exp-ISS Lyapunov function.

The three previous definitions are equivalent
from Sontag and Wang (1995) and Praly and Wang
(1996). Namely

Proposition 3.1. For any control system x = f(x, u),
the following properties are equivalent:

(i) It is ISpS.
(ii) It has an ISpS-Lyapunov function.
(iii) It has an exp-ISpS Lyapunov function.

As another illustration of this notion of exp-1SpS
Lyapunov function, we give the following useful
fact.

Lemma 3.1. If V is an exp-ISpS Lyapunov function
for a control system 7 = ¢(z, u), i.e. equations (15)
and (16) hold, then, for any constants ¢ in (0, ¢), any
initial instant t, > 0, any initial condition z° = z(t,)
and r° >0, for any function ¥ such that §(u) >
y(Ju]), there exist a finite T° =T, r* 2°) >0,
a nonnegative function D(¢,, t) defined for all ¢ > ¢,
and a signal described by

F=—2¢cr+7u)+d rtg) =r° (17
such that D(ty, t) = 0 for all t > ¢, + T° and
V{z(t)) < r(t) + Dty t) (18)

for all t > t, where the solutions are defined.

Proof. By assumptions, we have
V< —cVzi)+y(lu@)) +d. (19)

From equations (19) and (17) and with the help of
Gronwall’s lemma, it follows that

Viz(t)) < r(t) + €OV (2%) — e TR0 (20)
Define
D(ty, t)y = max{0,e T (%) — e ) (21)

Since 0 <¢ <c¢ and #° > 0, there exists a finite
T® =T*@¢r° z°) = 0 such that D(t,, t) = 0 for all
t = to + T°. Finally, from (20) and (21), (18) follows
readily. (|

Remark 3.1. A memorizing signal similar to the
dynamic signal r as in Lemma 3.1 was proposed in
Jiang and Praly (1994} in characterizing unmodeled
effects for general dynamical systems. The benefits
of using such a signal are now well known in
adaptive linear control (Ioannou and Sun, 1996).
The idea of using it also in the nonlinear context
can be found in Jiang and Praly (1992).
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We close this section by giving three useful tech-
nical lemmas whose proofs are straightforward.

Lemma 3.2. For any x and y in R", and for any
positive real number &, we have

Xy =4Ix? + $ip1? — dix — yP?

1
< ol + ey (22)
&

Lemma 3.3. For any ¢ > 0, there exists a smooth
function g such that g(0) = 0 and

x| < xg(x)+e VxeR (23)

A simple example of functions satisfying
equation (23) follows from Lemma 3.2, ie.
g(x) = (1/4g)x. Another example verifying equation
(23) was given and used in Polycarpou and Ioan-
nou (1995), i.e. g(x) = tanh(dx/e) with 6 > 0 defined
by 6 =exp(— 6 — 1).

Lemma 3.4. For any ¢ >0 and any continuous
function f: R — R, with f(0) = 0, there exists a non-
negative smooth function 7, with f(0) = of/
0x(0) = 0, such that

Ifx)| <f(x)+¢, VxeR (24)

An idea of proof for Lemma 3.4 can be found in
Praly and Jiang (1993, Lemma A.1).

4. ROBUST ADAPTIVE BACKSTEPPING SCHEME

In order to present the robustification of the
adaptive backstepping design with tuning functions
in Krsti¢ et al. (1992), we need the following as-
sumption on the unmodeled dynamics character-
ized by the z-equation in equation (1).

Assumption 4.1. The z-system in equation (1) has
an exp-ISpS Lyapunov function V, in the sense of
Definition 3.4, i.e. there exist two constants ¢ > 0,
do = 0 and three class K -functions o, «, and
y such that

ay(lz]) < V2(2) < aa(lz]), VzeR™  (25)

v,
oz

Moreover, ¢, € (0, cg), do, ¥ and «, are known.

(Dq(z, x,u) < — coV2(2) + y(Ix1]) + do. (26)

Without loss of generality, we assume through-
out that y is a smooth function and of the form

(s) = s2yo(s?) 27)

with y, a nonnegative smooth function. Otherwise,
using Lemma 3.4, it suffices to replace y in (26) by
x3yo(x}) + &, with g > 0 being a sufficiently small
real number.

Thanks to Assumption 4.1 and Lemma 3.1, we
obtain an available signal r defined by

F = — Gor 4+ x390(x3) + dg, rlto) =1 >0 (28)
with the property that
V.(z(t)) < r(t) + D(to, 1) (29

for all t > t, where the solutions are defined, with
D(to, t) defined for each t > t; > 0 and D(to, ) =0
forallt >ty + T°(T° = 0 being finite and depend-
ing continuously on the initial conditions r°, 2°). In
particular, T°— + oo as [2°|— + c0.

Remark 4.1. Upon specialization to linear systems,
Assumption 4.1 is checked if the linear system
7 =¢q(z,0,0) in (1) is asymptotically stable with
a known stability margin (Ioannou and Sun, 1996).

4.1. An initial step
We start with the following subsystem of equa-
tion (1):
Z = q(z, x, u), (30)
Xy =% + 07 (x) + Ay(x, 2, 14, 1).

As in Krsti¢ et al. (1992) where A; = 0 and there is
no unmeasured dynamics z, consider x, as virtual
input and let # be a parameter estimate of . We
wish to find a stabilizing function w; and a tuning
function 1, such that the system (30) is adaptively
stabilized. However, in the present case where there
is a dynamic uncertainty A, containing uncertain
nonlinearities and unmeasured dynamics, certain
nonlinear damping term and dynamic normalizing
signal will be incorporated in w; and 7,.

More precisely, we will design a smooth inter-
mediate control function w, and smooth update
estimate laws t,, @, such that, with

x2="_62 +w1(x,,r, g»ﬁ) (31)

and along solutions of equation (1), the time deriva-
tive of the following function:
M

L SR ISR S St
V1—2x1+&0r+—2(9 G)F (0—0)
+ e (b - p*y 32)
24

satisfies
Vi< —ci Vi + X% + py(to, 1)
+@-0'T '@ -1

1 X
+ I(f’ —p*)p — ®y), (33)

where p* > max{p}, ..., pr}, I >0, Ao, A > 0 are
design parameters and ¢, > 0, u,(to,t) is a non-
negative function which is identically equal to some
constant whenever ¢ is sufficiently large.
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Towards this end, by hypotheses, taking the time
derivative of V| with respect to solutions of equa-
tion (1) yields

Vy < x1(x2 + 079, (x1)) + p¥lx ¥y, (1x1 )

¢ 1
+ p¥Ixy Wa(lz) — =2 + —(x3yo(x2) + do)
Ao Ao

+@-0'T -1g 4 L lpp, (34)

where p:= p — p*.
As in Polycarpou and Ioannou (1995), set

t1:= L(xia(xy) — ool — 67)), (33)

where ¢, > 0 and €° € R' are design parameters. We
have

. 1
Vi < x4 <x2 + 07y (xy) + /.t—xl}’o)
0

S P B B ST B
Ao io

— o0 — 0)( — 6°) + pHxs|Wi1(Ix4])
1.,
+Pﬂx1|KI/1z(|ZU+/—1§P- (36)

Next, we examine the last three terms in equation
(36). From Lemmas 3.3 and 3.4, given any ¢;; > 0,
there exists a smooth function ¥/, ;, with {;,(0) = 0,
such that

IxeWi(1x1]) < 1@ 110x1) + 811, Vxp R (37)

On the other hand, from equation (29) and As-
sumption 4.1, using Lemma 3.2, it follows success-
ively that

pYIxi¥a(lz]) < p*lxidiz ooy 1 + Dito, 1)
< p*Ix Y200y ' (2r)
+ P*|x Y120 00 1 (2D(t, 1))
< p¥|xq|¥izoar '(2r)
+4x3 + di, 1), (38)
where d(to, t) is defined by
dy(to, 1) = (P*¥12°07 '(2D(to, 1)))%.  (39)

Notice that d(to,t) =0forallt > ¢, + T°.
By application of Lemma 3.4, there exists a
smooth function y,,, with ;,(0) = 0, such that

Yrzoar {2 <P + L. (40)

Then, given any ¢;, > 0, since p* > pt, a repeated
use of Lemma 3.3 gives

pYIX1 1Y 2007 1 (2r)
< phixyWi2(r) + pYlxsl
<P X0 2(W 13 (x 0 1) + p*xyPa(x,)
+ 2p*eqa, (41)

where ;3 and },, are two suitable smooth func-
tions which are zero at zero.

Combining equations (37), (38) and (41), since
p* > p¥, equation (36) implies

. 1 .
¥y <x, (xz +07¢, + Txl)’o + PPya(xy)
0

+ 50+ PPt Walxy, r) + ﬁ'p14(x1))

do
r+—+p (€11 + 2812) + dy(to, 1)
Ao Ao

+@ =0T 10— 1) — 0o — )T (0 — 6°)

1., R
+ zﬁ(p — ) — 6,5(p — p°), 42)
where
oy = A[x ¥, (x,) + xllplz(r)'ﬁls(xl: r)
+ x1¥1a(xy) = o,p — p°)] (43)

with o, > 0 and p® > 0 as design parameters.
Therefore, by choosing the intermediate stabiliz-
ing function w, as

1 1
wy = —kyx; — T o “I;xu’o “'Zx1
— PW1(xy) + PraW1a(xy, ) + VIAEN)

(44)

with k; > 0 as design constant, in view of equations
(42) and (31), we obtain

. _ Co
Vl < —kle-i—xlxz-:{—r
0

d
+ ';:2 + p*(e1y + 2612) + dy(to, 1)
(1]
~ 1
+@-0T ' -+ S — o)

~ o0 — 0)T( — 6°) — 0,5 — p). (45)

Finally, equation (33) follows with equation (22)
and

o) = mm{Zkl, Gor Oy, T‘(’T—-)} (46)

d
py(to, 1) = 1‘9 + p*(eyy + 2¢4;,)
0

+ 4060 — 0°) + Y 0,(p* — p°)?
+ d,(tg, t). 47

Since d,(to,t)>0 for all t>¢t, and =0 if
t2to+ T° py(ty, t)is equal to a constant, denoted
as pj, if t > to + T°. It is important to note that
#1 > 0 can be made arbitrarily small by choosing
appropriately the design parameters Ao, €4, &2,
g, Tp.
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4.2. Recursive design step

The main purpose of this section is to show how
to extend the property (32)33) for the system (30)
to the system composed of the z-equation and
the (xy, ..., x;)-subsystems in (1) when 2 <i <n.
Again, the adaptive backstepping idea in Krsti¢ et
al. (1992) will be employed and extended to the
present case of dynamic uncertainties.

Let X; = x; and assume that we have designed
smooth intermediate stabilizing functions w;
and smooth update estimate functions 1; and
®; (1 <j <i— 1), such that, with

X, 8,p) (48)

V1 <j <i— 1, the time derivative of the following
function w.r.t. solutions of equation (1)

Xj+1 = Xj4y + wilxq, .0\

i-1
Vio, = 1x +ir+%(9 )T 1@ - 6)
i= 12
—(p — p*)?
+ 336~ 49)
satisfies

Vit € —cicy Vi + %oy % + fi-1(to, t)
+((9—6)Tr_ Zx;-rl'?i)(é—ri-l)

1 i-2 a |
+ (Z (P — p*) — j;l fj+1"a'%{) (P —wi-y)
(50)

where c¢;-; is a positive design parameter and
Ui-1(to, t) is a nonnegative function which identi-
cally equals to some constant u/{_; > 0 whenever
t>to+ T

We prove in the sequel that a similar property
holds for the system composed of the z-equation
and the (x,, ..., x;)-subsystems in equation (1).

Consider the function V; defined by

Vi=Vioy + 357 (51)
Notice that the variable x; satisfies

x—i =Xi+1 — Kl'(xls s X 1y 99 p)

gl awn 1 awl 1
oo B )5

J

awi-l X

— % + A; - (52)
where x; and A; are defined by
il dw;_ ow; _ _
Kl.zjgl 6le j+1 +"‘~ar—l(—C0r + x%’}’o + dO)a
(53)
A =A-—ii Wiy (54)
i i = axj 7

Then, by equation (50), the time derivative of
V: along the solutions of equation (1) satisfies

Vi< —cioyVier + - (to, 1)
- ic? ow;
o1 _ 3 i\
+((0 O - T gy )(0 7o)
1 =2 ow
AP — p*) — .. VA —
+<)_(P Y j;lxjﬂaﬁ)(P Wi 1)
Zﬁw[ 1 )

i=

+fi[xi+1 + Xy ""Ki+BT<¢E

ow;_y aWi 1
—-Té - P+ A] (55)

with x; ;= uifi =n.
Using Assumption 1.1 since p* > max {p}, ...,
px}, the following holds:
wn)

XA < p lxl(l//.l + Z
Wi-1

0wi owi—y

+P"|le(¢.z(IZI)+ Z 'l',z(IZI)) (56)

By pursuing the same arguments as in the Section
4.1, it follows that, given any ¢;,, ¢;, > 0, there are
smooth functions ;, and ;, of variables
(X1 v, X 1, 0, p) such that

p 'xl ('l’ll + Z

awl 1

wn) < p*Eiy + p*en,
(57)

Wi 1

p*Ix; I(\l/:z(IZI) + Z ¢,z(lZI))

< p*idi, +1x,[ + Z (aw‘ ‘)2]

+ ZiP*S,'z -+ d,-(to, t). (58)

where '
dilto, ) = ), (P*¥j2007 '2D(to, 1)))>.  (59)
i=1

Notice that d;(ty, t) >0 for all t >¢, and =0 if

t>to+ T
Define
1w, _
T =Ti—y + r<¢i - Z ‘u‘f’; X, (60)
jgl axj
©; =W + AX W0 + Vi), (61)
Hilto, 8) = pi— 1 (to, t) + p*(&i1 + 2igs) + dito, t).

(62)

Consequently, as in Krsti¢ et al. (1992), with the
observation that

i-1
§— Ti-1 = - T+ r(¢t jzlz‘l%c—,—l-%)x"
(63)
P—wioy=p—w + AWy + P % (64)
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equation (55) implies

Vi < —Ci—1 V,‘..l + /‘i(tO, t)

owi— 1 \?
+x|:x,+1+x, L — Ki+— x,( +Z(W 1))

oW, - 1 ow;_y

T

R i-2 aw i law
+ GT - —' J )( ')
( ; jt1 Fl le a J

J

i-2
+ (13 “)v' Xj+1 % )(l//u +'1/zz)]

Jj=1

i-1 AR
-+ <(g— 9)TF—1 — Z fj**l%%)(e — T,‘)
j=1

i—1
(1@ p*)—zx,ﬂ‘a )(p o). (69)

i=

By choosing the intermediate stabilizing function

w; as
owi-1\?
W,'=—k,‘fi“x,‘_l+l(,' ( +Z(W 1)
+ Ow;— + ow; - ¢ -
b T ™

~ i_2_ 6WJ ! laW,'_l
SUSPERE LICEE)

j=1 j=1
i-2
(p p z xmaw)(w,l + i) (66)

with k; >0, a direct substitution of x;.,:=
X;+1 + w; in equation (65) yields the desired in-
equality

Vi< — o Vi+ %iXirr + pulto, 1)

+ <(9 - B)TI“] - inz} JE,-H aw})(é - T,‘)
j=1 a0
i—1 6
( b —p*— Z X1 )(p @), (67)
where
¢; = min{c;_y, 2k;}. (68)

Note that, by assumption, w;(to, t) = 0 forall ¢t > ¢,
and identically equals to a constant denoted as
ui>0ift >ty + T°

4.3. Main result

According to the recursive control design pro-
cedure in the above subsections, at the last step (i.e.
i = n), picking the adaptive controller U= W, (so
Xn+1 = 0)and the adaptive laws b= 1,and p = ®,,
we arrive at

Vn < —¢ Vn + #n(th {) . (69)

By construction, the constant ¢, > 0 and the non-
negative function u, are given by

Cpy == min{c’o, Zkl-, O'p;L, 1’;—-—%‘1’;—:;)'; i= 1, ey n},
(70)

d " o
tnlto, £):= f + T p*en + i) + (0% — P
1]

i=]

+ -‘;—"19 — 0P+ Y diltor 1)
i=1

n
=+ Y dilto, ). (71)
i=1
We are now in a position to state our main result
on global adaptive regulation.

Theorem 4.1. Under Assumptions 1.1 and 4.1, all
the solutions (x(t), z(t), 8(t), p) of the derived closed-
loop system (1) are globally uniformly ultimately
bounded. Furthermore, given any u* >0 and
bounds on ¢ and the p¥’s, we can tune our control-
ler parameters such that the output y(z) satisfies

limsup |y(t)] < p*. (72)
o

Proof. By construction, Y !_ , di(to, t) is nonnegative
forallt > t, and is equal to zero for all t > t4 + T°.
As a consequence,

J- Y dito, Hdt < + .

o i=1
From equation (69), we have

|4 (t) < & + (V (t(i) — flt_'.')e“ln(l—u,)

l‘l ('n

T
+'[ dlte, s)ds, Vt>t,=20. (73)
o
It results that the signals %,(t), (¢), 8(z), p(t) and then
x{t) are globally uniformly ultimately bounded.
Due to equations (29) and (25), the trajectory z(t) is
also globally uniformly ultimately bounded. In par-
ticular, for all initial conditions whose norms are
less than 0 < a < + au, there exists a T° < 4+
such that the d,(t, t) are zero for all t >ty + T°.
This fact together with equations (73), (32) and (51)
implies that, for any pu > ./2u./c,, there exists
aT <+ o sothat |y(¢)} < uforallt > T. The last
statement follows readily since ./2u5/c, can be
made arbitrarily small if the design parameters Ao,
oo, I', 0, A, ky &, and &, (1 <i < n) are chosen
appropriately. |

Remark 4.2. Assumption 1.1 (A.1.1 for short) in
Theorem 4.1 implies the following condition, which
was used in Teel and Praly (1993).
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(A.1.1") For each 1 <i <n, there exist an un-
known nonnegative constant s; and two known
smooth functions ¥;,, ¥, such that

‘Ai(x, Z, U, t)l < 'l/ix(l(xls ey xi)') + l»Diz(lzl) (74)

for all t > 0 and all (x, z, u) satisfying |(xy, ..., x;)| +
Iz} = s

Indeed, under (A.1.1), (A.1.1)) holds with
Sp = % p;lzZ’ Ipix(s)2 =S5+ wil(s)za
Vi (s) = 5 + Yials).

Conversely, if A; is locally Lipschitz with respect to
(x1, ..., X, 2), uniformly in (x;4,, ..., X, 4) and ¢,
and if there exists a (unknown) constant p;, such
that

A0, ... 0, X qs v, X Ot ) S pio (75)

for all t >0 and all (x;+,, ..., X,, u), then (A.1.1')
also implies (A.1.1). Indeed, with equation (74), for
all t > 0 and all (x, z, u) satisfying |(xq, ..., x;)| +
|z| < s;, there exists an (unknown) nonnegative
constant p; so that

|Al < pio + pill(x1, - x)l +12) . (76)

Combining equations (74) and (76), it follows that,
forall (z, x, u, ) N R*xR"xR xR,

[A]l < pio + pill(xq, ..., x| + 12])

+lpix(i(x17 ---axi)|)+'11/iz(|zl)’ (77)

which implies (A.1.1).

Although (A.1.1) and (A.1.1") are equivalent
theoretically, (A.1.1) is more desirable in practice.
In fact, we used a linear function to bound the
nonlinear function A; in equation (76). This results
in a sufficiently large p; [or, p¥ in (A.1.1)] and
therefore, a high-gain adaptive controller is re-
quired in order to guarantee the smallness of the
output of equation (1).

5. EXAMPLES AND DISCUSSIONS

The class of nonlinear systems (1) includes the
class of parametric strict-feedback systems intro-
duced in Kanellakopoulos et al. (1991b) where the
A/s are identically zero and there is no dynamic
perturbation characterized by the z-equation in
equation (1). It also extends the class of nonlinear
systems studied recently in Polycarpou and loan-
nou (1995) in which uncertain nonlinearities were
considered but the information of full state is re-
quired and an overparameterization occurs.

In the sequel, we give several examples to illus-
trate our robust adaptive backstepping procedure.

5.1. Three third-order nonlinear systems
Example 1. Consider the following control system:

2
, X1X2
X=Xy + 0, x3 + 0, —=,
1 2 141 21+X§
x.2=x3a (78)
X3=us
Yy =Xy

which is in the form of equation (1) with
A, = 0,x}x,/(1 + x3) and A, = A; = 0. Since the
dynamic uncertainty does not occur in system (78),
we do not need the dynamic signal r as introduced
in Section 4. A variant of our proposed recursive
control procedure in Section 6 is applicable and
leads to a global adaptive controller which achieves
the output regulation while keeping boundedness
of the states. In fact, for system (78), a detailed
analysis proves that the derived adaptive controller
achieves the global adaptive stabilization, i.e.
x(t) = 0. It is worth noting that this system is in
a parametric pure-feedback form by borrowing the
terminology from Kanellakopoulos et al. (1991b).
However, the systematic adaptive algorithm pre-
sented in Kanellakopoulos et al. (1991b) is applic-
able to system (78) only in some non-global feasibil-
ity region.

The second elementary example is a control
system with nonlinearly appearing unknown para-
meter and input/state stable dynamic uncertainty.

Example 2. Consider the nonlinear system:
i=—z+xi,

X1 =X+ 0% + 0,(x, % + 0, sin(t>u)) + 0, 2,
(79

JEZ = U+ stg + 6622x1,
Y =X,

where 6; (1 <i < 6) are unknown constant para-
meters and z is unmeasured.

Obviously, system (79) is in the form equation (1)
with:

0=(01,05)", ¢1 =107, ¢,=(0,x), (80)
Ay =0,(x, %% + Osin(t?u)) + 04z, A, =062%x,.
Then, Assumption 1.1 holds with:
pt = max{0.5/6,|e%°%10,6,],10.|},
Yi1(s) = s€*%, Yya(s) =,
pE=05106l, Yails) =52 ¥aals) =s* (82)

It is direct to verify that Assumption 4.1 holds for
the z-subsystem in equation (79) with

V.(z) = 2%, y(s) = 1.25s%. (83)

(81)

c=1.2,
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Therefore, our recursive control design procedure
and Theorem 4.1 are applicable to system (79).

In order to compare the proposed robustification
method with previous adaptive backstepping de-
sign algorithms in the presence of dynamic uncer-
tainty, we consider the following simple example
whose nominal system was used in, e.g. Krsti¢ et al.
(1995), Pomet and Praly (1992); see also Polycar-
pou and Ioannou (1995).

Example 3. For the three-dimensional system,

Z= “Z+x%+50,

Xy =X;+60x% +8,(t) + 2z,

1 2 1 1 (84)
szu,

Yy =Xy,

where ¢ is an unknown constant parameter, é, and
6,(t) are two unknown bounded disturbances and
z is the unmeasured state component. For compari-
son purposes, we take exactly the same simulation
values as in Polycarpou and Ioannou (1995) for
 and 6,(t), i.e. @ = 0.1 and 8, (¢) = 0.6sin(2t). Also,
dg = 0.5.

It is directly checked that the z-equation in equa-
tion (84) fulfills the Assumption 4.1 with

V.@)=1z%  y(s)=255%  co=12,

do = 0.625. ®3)

So an available dynamic signal r is defined as
follows:

F=—r+25x} + 0.625, r0@ =r">0. (86)
Here, for simulation use, we take r° = 1.

Applying the robust adaptive backstepping de-
sign procedure in Section 4 to system (84), we get
a stabilizing control function w, defined by

.5
wy = — (kg + D)x; — Ox? —2,—x?
4o

—p l:tanh (éﬁ) + 2tanh (26x1)
€11 €12
+ rtanh <5x1r)J 87
€12

with é = 0.2785. Notice that for system (84) the
bounding functions y;; as given in Assumption 1.1
are: Y1 =1, Yia(s)=s, Yuy = Y, =0. Letting
Xz = X; — wy, we obtain the following adaptive
laws and adaptive controller for , p,, p, and u,

respectively,

0
-t (xi’ S L 9“)), #8)

)
15=/“L[—al,,(ﬁ—p")«&-xltanh-—-x—1
€11
26x,

ox 1
+ x,rtanh ——
€12 €12

; 5
+ % 2 tanh (—9- %, %‘ﬁ) + %y tanh(-- )Ezr)

+ 2x, tanh

0x, €21 X1 £22
+ 2x, tanh (—2—(2 X 2)], (89)
' £32
and

0
U= — (kz + 1))22 — Xy + _‘Yl(xZ + gx%)
0x,

+ ot (- + 2.5x1 + 0.625)

owy , 0w, 4 _ owy
— p——tanh [ — X, ——
+ p—p - an 821x2 ey

o 26
— 2prtanh <— )Ezr) — 2ptanh (-—— xz). (90)
€22 €22
The simulations in Figs 1 and 2 were performed
using MATLAB with the following choice of the
initial conditions and design parameters:

2(0) = x,(0) = x,(0) = 1, 8(0) = 0.5, p0)=0,
€11 =812 = 821 = &, =05k, =k, =1,
=10, A=T=1, o,=a5=1,

=0 p° =1

We observe that our robustified adaptive controller
yields better performance than previous adaptive
controllers in Krsti¢ et al. (1992) and Polycarpou
and Ioannou (1995).

5.2. Output-feedback form systems

We return to the uncertain output-feedback-
form system (5). As shown in Section 2, the output-
feedback control of equation (5) may be translated
into the problem of partial-state feedback control
of a new system (10). With the help of Proposition
3.1, if the {-system in equation (5) has an exp-ISpS
Lyapunov function V,, then it is ISpS. Since 4 is an
asymptotically stable matrix, from equation (6), it
follows that the z,-system in equation (10) is ISpS
with ({, y) as input (note that we do not assume that
the functions ¢;; and ¢;, are zero at zero). There-
fore, the cascaded (z,, {)-system is ISpS (Jiang et al.,
1994). So, using again Proposition 3.1, this system
has an exp-ISpS Lyapunov function.
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Fig. 1. Output y and parameter estimate f for three different algorithms: the dotted line is given by Krstié et al. (1992), the dashed line by
Polycarpou and Ioannou (1995) and the solid line by our control laws (88) and (90).
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Fig. 2. Control input u for three different algorithms as in Fig. 1.

In the sequel, it is shown how such an ISpS
Lyapunov function can be found in some interest-
ing situations. For the sake of simplicity, we
consider the following particular case where the
{-system in equation (5) 1s described by

{=Qol + qo1 (L, y), 91

where Q, is a stable constant matrix and there exist
a constant ¢, > 0 and a smooth nonnegative func-

tion g such that
Reo(Qo) £ — gy,
1901 (, )l < 4(ly]) + viLl,
lwi(&, Cou, O] < 9Fpis(Iy]) + $FICL,

where v is a small nonnegative constant.

(92)
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We will show that an exp-ISpS Lyapunov for the
composite (zo, {}-system in equation (10) can be
easily obtained in this case.

Let P, >0 and P, >0 be the solutions of
Lyapunov matrix equations

P,Qo + QI P, = — 21,

(93)
P2A+ATP2=—2I

Introduce the functions;

Vi) = (TP,

As it can be directly checked, V; and ¥, are exp-
ISpS Lyapunov functions for the {-subsystem and
the zo-subsystem of equation (10), respectively.
More precisely, we have

Amin(POILI? < Ve(0) < Amax(POICP,

Vo(zo) = Zngzo- (94)

95)
‘imiﬂ(PZ)leIz < VO(ZO) < lmax(PZ)'ZO'Z
and
v, 1 —2v|P,|
-a?(QoC + g0l M) < - TP V40

+ P24y, (96)

Vv, ) 1
2 (AZ" B F) S TPy o)
2n|P2|2
V,
mm(Pl) C(C)

+2UBP T @y + 6.
i o)
Letting

(1—-2v|P, 1) Amin(P1)
4n| P3| Ampax(Py)

Ve=Vi(0) + Vo(zo),  (98)

from equations (96) and (97), we have
V. < —cV. + P 24(yl?

(1 — 2v|P1]) Ain(Py)
2n2mnx(P1)

% 3 @ally]) + $i)? (99)
i=1

where c is a positive real number given by

o min{l — 2P| 1
zj'min(Pl) ’ lmax(PZ)

} (100)

From equations (98) and (99), V, is an exp-
ISpS Lyapunov function for the z-subsystem of

equation (10) with

y(s) = sup {|P1 24(lyly 2

Iyl<s

(1 — 29| Py ) Amin(P1) ¢

2 @y + ¢.(y))2}

2nlmnx(PI) i=1
Arr2 (1 — 2v| Py} Amin(Py)

— | P1?4(0)* — 1 (P)

x 3 (9:1(0) + ${0))%, (101)

i=1
= | P|*§4(0) 2
(1 = 29| P ) Amin(Py) & 2
M7 (P,) 5;1 (011 (0) + ¢:(0))°.

(102)

Therefore, Assumption 4.1 is checked for the
system (10).

A direct application of the proposed control de-
sign procedure in Section 4 and Theorem 4.1 yields
a globally regulating dynamic output-feedback
controller for system (5). Namely:

Proposition 5.1. Under the conditions (91) and (92),
we can find an adaptive output-feedback dynamic
controller such that, for sufficiently small v > 0, the
solutions of the closed-loop system (5) are globally
uniformly ultimately bounded. Furthermore, the
output y(f) can be steered to the origin with any
prescribed accuracy.

6. FURTHER RESULTS

Up to now, we have studied the general case
where the system (1) does not necessarily have an
equilibrium point and the practical output regula-
tion has been obtained via robust adaptive control.
In this section, we concentrate on a subclass of
systems (1) which have an equilibrium and propose
sufficient conditions which result in a solution for
exact adaptive output regulation.

To simplify the presentation, we assume n = 2 in
equation (1), that is, consider the following class of
uncertain systems:

7 = q(z, x, u),
X1 = X2+ 07y (x1) + Ay (x, 2, u, 1),
Xy =t + 07¢,(xy, x3) + Ay(x, 2, u, 8), (103)
y =X
We make the following assumptions on the
system (103).

Assumption 6.1. For each i = 1,2, A; satisfies the
property (2) in Assumption 1.1 with y;, and
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¥;, both vanishing at zero and ¥;; depending only
on |x;|. Namely,

[Ai(x, z, u, )] < pFdin(Ix(|) + pFdia(lz]). (104)

Assumption 6.2. The z-system in (103) fulfills As-
sumption 4.1 with d, = 0 and y smooth and satisfy-
ing (27). Namely,

a1(|z]) < Vil2) < aa(f2l)
ov,

VzeR™, (105)

u) < — coVal2) + x3vo(xD).  (106)

Under these assumptions, we see that A; =
A;=0and q=0 as long as x; =0 and z=0.
Thus, (x$§, x5,2) = (0, — 67¢,(0),0) is an equilib-
rium point of the system (103).

In order to regulate y to zero and x to
x® = (x§, x3), the following additional conditions
are needed.

Assumption 6.3. The functions 5, Y2, and o,
satisfy

limsup i=1,2 (107

s=0+

< + o,

Yizo oy '(s)
s

Assumption 6.4. Denote X := (2, x7, w)T. For any
i = 1,2 and any compact set S in R™*?, the func-
tions 0A,;/0t(X, t) and 0A;/6X (X, t) are bounded on
SxR.,

Notice that Assumption 6.3 implies that the input/
output gain of x, + A; i = 1, 2, is linearly bounded
near zero. This is a common condition in asymp-
totic analysis based on nonlinear small-gain results,
see Jiang et al. (1994).

As in Section 4, we construct our adaptive con-
troller and adaptive laws through a stepwise con-
trol design procedure.

Step 1: Using the same notations as in the
Section 4.1 but with different expressions. For in-
stance, consider the function V, defined by, (see
equation (32))

1 A
Vi=dxd+—r+30-0'T'@-6)
0

1
—($p — p¥)?
+ 36— 5 (108)

Wlth ﬁ* = max{pl ’Pl 7p2sp2 }

We will prove that there exist suitable func-
tions t,, w; and =, so that the time derivative of
V, satisfies, instead of equation (33),

V] < - kle + x,fz - blr -+ (g - G)Tr—l(é - Tl)
1 «
+200— PP — ©y) +dilto, 1) (109)

with k; > 1, b, > 0 and d, (., t) as defined in (39).

Indeed, by Assumption 6.2, equation (34) holds
with dy =0 and p:= p — p*. Now look at the
terms p¥|xy|¥y1(1x1]) and p¥|x;|¥y2(]2]) in equa-
tion (34).

Since ¥y, is smooth and is zero at zero, there
exists a smooth function ,, such that

pHx ¥ (x ) < p*x}idi(xy), Vx,eR. (110)
According to equation (38),
pYIxi¥12(121) < p*1lxy ¥ 12000 1(2r)
+4x? +di(to, 1) (111)

Then, by Assumption 6.3, there exists a smooth
nonnegative function ,, such that

PEIX Y2005 L(2r) spﬂxll\/?u?u(r) (112)

<t ‘c:‘ X3 + m"

(113)
Consequently, in view of equations (110), (111) and
(113) equation (34) implies

. 1 ) .
Vi < x1(x2+9¢1(x1)+7xn’o +4%; +pxy (P14 ‘H/’%z))
0

3 T
-—mr +@ -0 0 -TIx,¢)

‘*‘E(PA — PP — Axty(x) — AxT,(r)?)

+ dy(to, 2). (114)
Setting
1 = Ix¢,(x,), (115)
©; = A0 (x0) + x5 (02, (116)
wy=—kyx; — 94’1(3(1) "}i‘)’xl?o -ix
— px1(F1a(xs) + P 12r)?), (117)
where k;>1, equation (109) follows with

b1 = 360/(4'{0)
Step 2: The time derivative of %, = x; —w,
satisfies

. 0
X, =u+0T¢,(x) + A, — ‘a‘:?(xz +0%¢, +Ay)

9%9—%(—60%%?0)—% p
:=u+6T(¢2 ~5-“ﬁ¢ )
(Az——g—@z\) (118)

Consider the function ¥, defined by
V,=V, + %% (119)
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With equations (109) and (118), differentiating
V, along solutions of (90) yields:

Vy < — kyx2 + x, %, — byr + (0 — 0T~ 1@ — 1)

+ %(ﬁ — PP — @) + di(to, 1)

0
+x{u+eT(¢z~§f¢l)

+ (A2 - Qﬁ”—‘Al) - xz:l. (120)

0xy

By Assumptions 6.1 and 6.2, it holds

_ ow
X2 <A2 - 5‘;‘:‘A1)

<[ X21(p3¥21(1x11) + P2 22(12]))

ow
+ | B2z (P11 (%)) + P ().
1
(121)
Using the similar arguments as in Step 1, we get
_ 0w
2= (P (x ) + P (l2))

1

(0w \? .
S%x%'*'Psz%(g; Vi1
1

. Ow _ _, [ ow\?
+ pt xza‘ll‘ Wiz '(2r) + 153 (5)7:)
+dy(to, 1). (122)
In addition, with equation (113), we have

_ ow -

pt xz”a‘é Y1200 1(2")
b 1 0w, \?
<+ Pt g3 (5;:) Jia(* (123)

As for the first term in the right-hand side of equa-
tion (121), since y,; is smooth and is zero at zero,
there exists a smooth nonnegative function ,, so
that

p3Ixal¥2i(Ix:]) < 4x% + p¥2%30,,(x)).  (124)

Similar to equation (113), letting d,;(t,t) =
[P, 001 *(2D(t,, t))]?, there exists a smooth
nonnegative function ¢/,, so that

P§|x2|V/22(|Z|))
< pElxa|Yazear '2r) + 333 + dyy(to, )

< P31%2l8/r W22 + 153 + dyy (t0r 1)

1 b )
< p%zb—xi«ﬁzz(r)z +741r +453 +dy (8o, 1),
1

(125)

Therefore, by the definition of p*,
ow b
X3 (Az - W:A’) <ixi+ —zir + dy(to, )

- 1 - —e 0W1 2
+dyy(to, ) + X3 | 3%, + P¥%, | 5—
axl
7 e 1 S 1 2
(P +—¥h+i |+ % (Y +— V0 ||
b, b,
(126)
By choosing the adaptive controller w, and adap-

tive laws 7, and &, as

~ ow
U=W2=—sz2"x1_9T(¢2—5‘"l¢1)
Xy
Y SO I
+ Ky — g Xy — PTX, l//21“"5"//22
1
by owy\? P +_1_J;2 +1 (127)
px; _Bxl 11 b, i2+a)

b=1,=1,+T%, (¢2 - %3:—1‘ q)l), (128)

X oW V[ - 1 . 1
P=w=w +1x§<$11) (Wu +E:lﬁz +Z)’
oof = |
+Ax§(|//21 +5"¢’%2) (129)
1 y

where k, > 0, from equations (120) and (126), it
follows that

Vy < —(ky — 0.5)x} — kox?
b
- —21r + 2d\(to, 1) + day(to, 1. (130)

Notice that d,(to, t):= 2d,(to, t) + d3;1(to, t) = O for
alltZtoand =01ft2t0+ TC
Finally, we establish the following.

Proposition 6.1. Under Assumptions 6.1-6.4, all the
signals and states of the closed-loop system (103),
(127)-(129) and (28) are globally uniformly ulti-
mately bounded. Furthermore,

}ir:.}(ly(t)l + Ix(1) — x°| + |z()]) = 0. (131)
In particular, if rank[¢,(0) ¢,(0, x5)] = I, then

lim |8(t) — 8] = 0. (132)

f aade ol
Remark 6.1. Proposition 6.1 can be extended to
higher-dimensional uncertain nonlinear systems of
the form (1) by induction. Also consult Jiang and
Praly (1996) for robust adaptive regulation of a lar-
ger class of systems having the origin as an equilib-
rium via a worst-case design.
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Proof. For each initial instant ¢t and each initial
condition (x(to), 8to), Blto), z(2o)) in R*™*? and
r(to) = r° in R o, let (x(2), 8(¢), p(t), z(2), (t)) be the
corresponding solution defined on the maximal
interval [to, T,), with T, > to. Since d,(ty, t) is non-
negative and integrable over [¢,, oo), this together
with the definition of ¥, in equation (119) implies
that x(¢), (), p(2), and r(z) are bounded on [t,, Ty).
With equation (29), z(t) is bounded. Therefore,
T,= co.

From equation (130), it follows that x, (t)?, x,(t)?
and r(t) are integrable. Further, the derivatives of
these signals are bounded and therefore they are
uniformly continuous. A straightforward applica-
tion of Barbalat’s lemma (Khalil, 1996) yields that
x1(t), x5(t) and r{t) go to zero as t goes to co. Then,
equation (29) ensures that z(f) tends to zero as
t-» 00. Further, equation (104) implies that A; and
A, tend to zero. By definition of X,, it follows

lim [x5(t) — 0©)d1 (x P =0.  (133)

On the other hand, by means of Assumption 6.4
and Barbalat’s lemma, it results that x,(r) and
%2(t) converge to zero as t goes to oo. Back to the
equations (103), (104) and (127), we have

lim [x,(t) + 01 (x1(1)] = 0, (134)

}gg @) -0y [¢z(x(t)) - g—% ¢x(x1(f)):l =0.
(135)

Therefore, equation (134) gives that x,(f) con-
verges to — 08¢ (0) = x5 and equation (131) follows
readily. Moreover, equations (133) and (134) imply

lim(@(t) — )T ¢,(0) = 0. (136)

So, with equation (135), we obtain

lim @) — 6)7¢,(0, x5) = 0. (137)
Himdo o}
If rank[¢1(0) ¢,(0,x5)] =dim8 =, from equa-
tions (136) and (137) and by contradiction, we con-
clude the property (132). O

7. CONCLUSIONS

We have considered in this paper a wide class of
uncertain nonlinear systems with unknown para-
meters, static and dynamic uncertainties. A modi-
fied robust adaptive backstepping design proced-
ure is proposed, which demonstrates a robustifica-
tion method for previous backstepping-based
adaptive nonlinear controllers (see, e.g. Krstic et al.,
1992, 1995; Polycarpou and loannou, 1995). This

method is nothing but the translation to the nonlin-
ear case of standard fixes proposed in linear adap-
tive control (Ioannou and Sun, 1996), i.e.

« the introduction of a mechanism to keep the esti-
mated parameter bounded, here a g-modification,
» the introduction of a dynamic dominating signal
to inform about the size of dynamic uncertainties.

The robust adaptive controllers obtained in this
paper drive the output to a small neighborhood of
the origin while guaranteeing the internal Lagrange
stability for all signals. For a subclass of perturbed
systems which possess an equilibrium point, suffi-
cient conditions are proposed under which the state
converges to the desired equilibrium and the para-
meter estimate converges to the true parameter.
The proposed algorithm can be extended to handle
a larger class of block-strict-feedback systems
(Krstic et al., 1995, Section 4.5.2) in the presence of
nonlinear disturbances and unmodeled dynamics.
Extension to the adaptive tracking problem follows
readily.

By allowing perturbations of the nominal case,
the recursive control design procedure proposed in
this paper allows us to deal with a broader class of
systems in the presence of nonlinear parametriz-
ation, uncertain nonlinearities and unmodeled dy-
namics. Simulation results on a particular example
showed that our robustified adaptive controllers
lead to better performance than previous adaptive
controllers (Krstic et al, 1992; Polycarpou and
Ioannou, 1995).
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