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Adding Integrations, Saturated Controls, and
Stabilization for Feedforward Systems

Frédéric Mazenc, Associate Member, IEEE, and Laurent Praly

Abstract—Our study relates to systems whose dynamics gen-
eralize # = h(y.u), ¥ = f(y,u), where the state components
x integrate functions of the other components y and the inputs
u. We give sufficient conditions under which global asymptotic
stabilizability of the y subsystem (respectively, by saturated con-
trol) implies global asymptotic stabilizability of the ¢verall system
(respectively, by saturated control). It is obtained by constructing
explicitly a control Lyapunov function and provides feedback
laws with several degrees of freedom which can be exploited to
tackle design constraints. Also, we study how appropriate changes
of coordinates allow us to extend its domain of application.

Finally we show how the proposed approach serves as a basic
tool to be used, in a recursive design, to deal with more complex
systems. In particular the stabilization problem of the so-called
feedforward systems is solved this way.

I. INTRODUCTION

A. Problem Statement

HE idea of backstepping, also called adding one integra-
Ttor (see [28] for instance), has led to one of the basic
tools proposed nowadays for designing stabilizing controllers.
In [13], Krsti¢ ef al. give a repertory of the many procedures
which can be obtained to deal with various classes of systems
by combining, maybe recursively, this particular Lypunov-
based design with other ones (see [12]).

This idea applies to the problem of knowing when asymp-
totic stabilizability for the system ¢ = f(y, ) implies asymp-
totic stabilizability for the system

v = f(y,x), &= h(x,y,u). (N

In this paper, systems of a different class are considered.
To simplify, in this introduction let us just mention that we
propose a solution to the problem of knowing when global
asymptotic stabilizability (respectively, by saturated control)
of the system y = f(y, u) implies global asymprotic stabiliz-
ability (respectively, by saturated control) for the system

v =fly,u). 2

That is, instead of making the control a state cornponent, i.e.,
controlling through a differentiator, as in (1), we add state
components which integrate functions of the other compo-
nents. Such components are called “integrating coordinates.”
The knowledge of a solution for this latter problern, called here

& = h(y,u),
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“adding one integration,” allows us to deal with systems whose
dynamics can be written, by using appropriate coordinates, in
a specific recurrent structure called feedforward form!

3.'7,,1, = f’n,(xla LR axn—l-,u);

o (3)
Ty = fZ(xhu')a
Z"l = fl(xl,u).

In particular we shall prove that for stabilizability of the system
linearized at the origin being assumed, global asymptotic
stabilizability holds if # = f1(z, u) is globally asymptotically
stabilizable with local exponential stability. Systems which can
be written in this feedforward form are not singularities in
practice. For instance, consider the celebrated cart-pendulum
system. Let:

*(M,z) be mass and position of the cart which is moving

horizontally;

*(m,1,#) be mass, length, and angular deviation from the

upward position for the pendulum which is pivoting around

a point fixed on the cart;

«finally, /' be a horizontal force acting on the cart.

The dynamics can be written as

{(M +m)i + mi cos(8)f = mif? sin(8) + F,

i cos(f) + 16 = gsin(h). @

By means of the following change of control, coordinates,
and time:

1 F4+mlg? sin(§)—mg sin(6) cos(8)
g M+m sin(8)?
@

z
T

SO:—.9029 UJo:é\/z,T:t g
Vit o= g !

g

Uy = y Lo = T,

&)

and by denoting by the derivation with respect to the new
time 7, we get the equivalent but normalized dynamics

e} o} °
%.O: S0, So= Up, 90: wo 6)
wo = sin(fy) — o cos(fo)

which are exactly in the feedforward form (3) with

x1 = (fo,wp), =2 =sp, =3= g (7N

This system will be used in Section V-C to illustrate our
feedback design.

!'Systems in the form (3) are generically not feedback linearizable. In
particular, this is the case when, controllability of the system linearized at

iein bei 02f2 f1 _ 92 2211 i not identic: ;
the origin being assumed, 5=F 5L — FZ Ho5- is not identically equal to

zero on a neighborhood of the origin.
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B. The Main Sources of Our Work

The first significant results about feedforward systems have
been presented by Teel in [25] (see also [24]). The main
point discovered in this work is that the knowledge of the
system linearized at the origin is already sufficient to propose
a family of feedback laws in which we are guaranteed to
find one element appropriate for the particular system under
consideration. This result follows from these two facts.

1) Higher order terms (see our basic definitions) play a
role only in the choice of an element in this family of
feedback, not on the definition of the family itself.

2) The “integrating” coordinates—zy to z, in (3)—must
be selected in such a way that only higher-order terms
appear in their time derivative. To meet such a constraint,
a linear change of coordinates is appropriate.

Such a result can be proved by using the new concepts in
interconnected systems theory that Teel has formalized in [27]
(see also [26]).

Our main objective here is to propose a Lyapunov analysis
counterpart to the interconnected systems point of view. This
is made possible from the following remark: assume that the
functions in (2) are C? and that we have

h(y,0) =0, Vy. ®)

In this case, there exist functions hs, fo, and fo such that (2)
can be rewritten as

&= ho(y,w)u, 9= foly)+ foly,u)u. ®

If y = 0 is a globally asymptotically stable solution of
¥ = foly), then the converse Lyapunov theorem [30, Th.
V.19.8] guarantees the existence of a Lyapunov function V (y)
such that

——
u=0= 12"+ V() < —cViy). (10)

This proves that we are exactly in the context of the theory
usually referred to as the Jurdjevic and Quinn approach to
which many authors have contributed (see [1], [4], [9], [11],
[14], and [16] and the references therein). Our goal in the
following is mainly to relax (8). This is done by applying a
change of coordinates which generalizes the one proposed by
Teel and by translating in terms of stability margin the fact,
exhibited by Teel, that higher-order terms play a minimal role.

During the preparation of the final version of this paper,
we received from M. Jankovic et al. a preprint of their paper
[10]. They propose also a Lyapunov design for feedforward
systems but, instead of a change of coordinates which im-
plicitly introduces a cross term in the Lyapunov function,
they address directly the construction of such a term. Due to
space limitation, we cannot go further into comparing the two
methods, but the interested reader may refer to [17]. However,
some of the ideas presented in that paper helped us.

¢ We realized that the arguments, used for the proof of
our previous result [18, Proposition 2.1], were in fact
powerful enough to establish Theorem III.1.

¢ The set of assumptions introduced in {10] will be used to
illustrate our own assumptions.
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e We are borrowing from [10] the dynamic solution for

(30).

C. Organization of the Paper

In Section II, we first revisit the Jurdjevic and Quinn
approach in a specific case. This allows us to present some
technical results and make some discussions which are useful
for the remainder of the paper. In Section III, we state our
main result with relaxing (8). In fact, we allow % in (2) to
depend on y, u, and xz, but we impose a restriction on the
behavior of this function for y near the origin and z going to
infinity. This constraint on the dependence in y generalizes the
notion of “higher order”” used by Teel. In Section IV, we show
how it may be possible to enforce the satisfaction of such a
constraint by a change of coordinates.

In Sections V-A and V-B, by combining the Lyapunov
design of Section III and the change of coordinates of
Section 1V, we are able to answer the question about global
asymptotic stabilizability of forms generalizing (2) and (3).
To help the reader in getting a better grasp on the design
we propose, we apply it to the cart-pendulum system in
Section V-C.

Finally Section VI contains some concluding remarks.

D. Notations and Basic Definitions

* Throughout the paper, the symbol ¢ may be used to
denote generically a strictly positive real number (i.e.,
ct+cxe =cl

« For an element X in R™ @ R™ @ RP and a vector x in
RP, we denote their contraction by (X, x). It is a matrix
in R™ @ R™ whose (4,7) entry (X, z);; is

P
(X,2)ij =Y Xjm) Th
k=1

an

» Let p be a nonnegative real number. A continuous func-
tion F(x,y) on R is said to have a zero of order p at
y = 0 if there exists a nonnegative continuous function
F such that for all (z,y) € R'

|7 (2, )| < F(z,y)lyl"- (12)

* With @ a positive definite symmetric matrix, we denote
| = VaTaz,  |zlo = Va2l Qa.

» For any matrix M we denote by Ay one of its eigen-
values,

* By V(15) we denote the function defined as follows when
this makes sense:

(13)

14

The subscript (15) refers to the equation number of the
differential equation

X = o(X). (15)
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If ¢ is continuous and V is Lipschitz cont:inuous, then
we have (see [30, p. 3])

V(®(t, X)) - V(X)

g TS Va9
where ®(¢, X) is any of the solutions of
0P
E(t'/x) :(p((D(zf’X))’ (I)(OaX) =4&. (a7

This property as well as [30, Th. IL.8.1] will be used
throughout the paper.

* For a real valued C? function k&, we denote by &’ its first
derivative.

II. THE JURDJEVIC AND QUINN APPROACH

A. Result

We start our analysis by restating, in a slightly more general
form (see also [4, Corollary 1.6}), a result by Bacciotti in
[1, Remark 10.9] which is based on the Jurdjevic and Quinn
approach [11]. For this, we consider the controlled system

i1 = ho(z1) + ho(z1, 22, y, u)u

d9 = eo(xe) + ea(z1, 22, y,u) u (18)
g = foly) + folzr, 20,9, w)u
where y is in R™, x1 in R™, z9 in R™, u in RY. We

introduce the following assumptions.
Assumption AO: The functions hg, ha, €y, ea. fo, and fo
are C° and hg, co, and fy are zero at the origin.
Assumption Al: There exist three positive definite and
proper C* functions @, S, and V so that

0
5%(.’)71)]10(1’1) = — R(T1) S 0 V.’L’l (]9)
a8
a—(ﬂ?g)@o(l’g) =—-T(z3) <0 Ve #0  (20)
xTo
oV ,
8—y(y)fo(y) =-W(y) <0 vyz0. (20
Assumption A2: x1 = 0 is the only solution of
i’l — h,()(.’l?l), . (22)
89 (1) ha(21,0,0,0) = 0, 5% (1) ho(z1) = 0.

Theorem I1.1: Under Assumptions A0, Al, and A2, for any
@ in (0, +0o¢], the origin can be made a globally asymptotically
stable solution of (18) by a state feedback bounded by u and
zero at the origin.

B. Discussion of the Assumptions Al and A2

1) The peculiarity of (18) is that it is made of three
decoupled subsystems when w is set to zero. Assumption
Al expresses the fact that for these three subsystems, the
origin is respectively globally stable, globally asymp-
totically stable, and globally asymptotically stable. We
shall study in Section IIT a case where coupling terms
are present. Using the terminology of the introduction,
z1 and x5 represent the “integrating” coordinates. With
(19), the z; subsystem is not strictly dissipative so x;
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is a true “integrating” coordinate. With (20), this is not
the case of x5. In fact, at this stage, y and xo play the
same role. We have distinguished them for the sake of
coherence with Section III.

2) It is not easy to check when Assumption A2 holds.
However, sufficient conditions implying it are known.
For instance, the reader will find in [14] or [16] check-
able sufficient geometric conditions. Note that without
A2, asymptotic stabilization may be impossible. Indeed,
consider the system

fhm el e -l
Xy =X + [(X+ XF) — 1]u.
Assumption Al holds. But with Q(X;, Xs) = A? +

X2, Assumption A2 does not hold. In fact, asymptotic
stabilization is not possible since

X1(t) = cos(t), Xa(t) = sin(t)

(23)

(24)

is a solution whatever u may be.

This example shows that Assumption A2 is related to
the property that the control is able to force any solution
to leave any level set Q(x1) = ¢ > 0. From this remark
we get readily the following lemma.

Lemma I1.2: Let @ be a C' function and hy and H be
C° functions. If there exists a C° function A satisfying
A(z1,0) = 0, for all z;, and such that the system &; =
ho(z1) + Az, H(z1)) has no solution remaining for ever
in a fixed level set of () except 1 = 0, then 1 = 0 is the
only solution of
9Q

*(fl) ho(.’zl) =0.

j]l = ho(l‘l), H(l‘l) = 0, 3.1'1

(25)

So to check if Assumption A2 holds, it is sufficient to find
such a function A with

H(J}l) = g—z(.rl) hg(ml,0,0,0).

As a direct consequence we have the following lemma.

Lemma I1.3: Let M; be a matrix such that there exists a
positive definite matrix Q; for which Q; My + M @y is
negative semidefinite. If (M7, D;) is a stabilizable pair, then
X, = 0 is the only solution of

Xy= M X, X Qi Dy =0, X Q1 My X, =0.

(26)

(27

C. Proof of Theorem 1.1
We have

= —-W(y) — R(z1) — T(z2) + G(x1, 2,9, u) v

with the notation

(28)

oV
g(zlwx%yvu) = Ej(y)fZ(wlamZ:y:u)
98
+ a—m(xz)ez(ml;mz-,y,u)

0
+ ﬂ(ﬂ)%(m&m% u).

Oz @9
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Since V, @, and S are C* and f, €3, and hy are continuous,
the function G is continuous.

With (28), we see that global' stability holds if the control
w 18 chosen such that

G(x1, 29, y,u)u < 0. (30)

We propose two solutions for this inequality.
1) Static Solution:

Lemma I1.4: Let G(&,u) be a continuous function.
For any strictly positive real number #, there exists a
function A(£), as smooth as G(&, u) is, such that if

u(€) = =€) G(£,0)7 31)

then, for all £, we have
[W(©)] < 1, Gl&,u(€) u€) <~ NOIGE O ()

Moreover, if G is C1, then A is strictly positive on any
compact set.
Proof: See Appendix A.

2) Dynamic Solution®: From (28), the system with input w,
state (z1,z2,y), and output G(z1, z2,y, u) is passive. In
this context, instead of satisfying (30) for each time, it
is sufficient to meet it dynamically, i.e., it is sufficient
for u to be the output of a strictly passive system with
—G(z1,me,y,u) as input. However, we cannot forget
the constraint on u. By drawing our inspiration from
barrier methods as they are used in optimization theory
(see [7, ch. 3] for instance), we propose the following
dynamic feedback:

U=z, 2=—2— (ﬂ2 - 1Z|2)g($1:$27y7u)>

|z2(0)] < w. (33)
This system with input —G(x1,29,y,u), state z, and
output u is strictly passive and the set {z : |z| < 4} is
positively invariant. Indeed, we have

Viy)+ Q(z1) + S(z2) — %ln (a2 e

%)

= W) - Rlay) - T(as) — -5

2 —|z|?

(18),(33)

(34)

This equality proves the global stability of the origin of
the extended system as well as the positive invariance
of the set above. Moreover, we have

u=0= G(z1,22,y,0) = 0. (35)

2This idea is borrowed from [10] and is one possible interpretation of [21,
Th. 1].
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These two solutions give a feedback law upperbounded in
norm by @, as smooth as the function G is such that (35) holds.
Also the derivatives (28) or (34) are zero if and only if

y=0, 22 =0, R(z1) =0, u=0. (36)

It remains to prove global attractiveness. With Assumption
AQ, the right-hand side of the closed-loop system is only
continuous. So we do not have necessarily uniqueness of
solutions. To prove asymptotic stability, we use the following
generalized invariance principle.

Lemma I1.5 [20, Th. 2]: Consider the system

X = (&) (37

with & € R™ and ¢ a continuous function. Let V: R™ — R be
a Lipschitz continuous nonnegative function and W: R™* — R
be a nonnegative continuous function such that for all X’

Visn) (X) = = W(X). (38)
Then, all the bounded maximal solutions of (37) exist on
[0, 400) and converge to the largest quasi-invariant® set con-
tained in {X € R™: W(X) = 0}.

To apply this Lemma to the closed-loop system we have
obtained, we evaluate what is the largest quasi-invariant set
contained in

{(wla‘r27y): y=0, z2 =0, R(‘rl) =0, u= 0}

From (35), the definition (29) of G. and Assumption A2,
we see that this quasi-invariant set is reduced to the origin.
Therefore, our feedback provides global asymptotic stability.

+Note that the derivatives V(y) + Q(z1) + S(w2) () or

V(y) + Q(z1) + S(z2) — In(a” — 121°) 1), (83)

are made negative definite if, for all z; # 0

Iol8 1%}
‘—J)—(asl)ho(wl) —+——Q—(x1)hg($1,0,0,0) £0. (39
T aml
III. DESIGN TooL 1: LYAPUNOV DESIGN
A. Result

Let us now extend the Jurdjevic and Quinn approach to
a broader class of systems. Precisely, we modify (18) by
introducing coupling terms which are identically zero when
y is at the origin

&1 = ho(z1) + hi(z1, 22, y) y + ha(z1, 22,9, u) u
Tg = eg(ze) +e1(x1, v2,y) y + ea(z1, T2, ¥, ) u
v = foly) + filzr,22,9) y + folwr, z2,y,u)u

(40)

where y is in R, z; in R™', x5 in R™2 4 in R?. For this
new system, we modify Assumption AQ as follows.
3 A set £ is said to be quasi-invariant with respect to (37) if, for each X € &,

there exists at least one maximal solution of (37), defined on [0, +c0) and
remaining in &.
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Assumption AO: The functions hy, hyy, hs, €o, €1y, €2, fo,
hay, and fy are C° and hg, eg, and f, are zero at the origin.
Within the context of Theorem II.1, the coupling terms
hi, e1, and f; are inconvenient. However, global asymptotic
stabilizability may hold only because of the presence of these
terms. For instance, the linear system
Xi=aY, Y=-Y+4u (41)
is stabilizable if and only if @ # 0, i.e., there is a ccupling term.
On the other hand, we may hope that by choosing appropriate
coordinates, this system can be written with no coupling terms
as in the form (18). Indeed, by letting

z1 = X; +aY, y=Y (42)
we get the system
Ty = au, y=—-y+u (43)

which satisfies Assumptions Al and A2 if ¢ :# 0. Unfor-
tunately for the general case, it may be hopeless to find
a “computable” change of coordinates such that in these
new coordinates, there is no coupling terms. This leads us
to the question: are we allowed to replace an exact but
“incomputable” change of coordinates by a “‘computable” but
approximated one? In the following we answer positively to
this question. For this, we need to introduce the following
new assumption.

Assumption A3:

A3.1) There exist a function p which is defined, nonneg-
ative, and continuous on [0, +o00) and a function &
which is defined, strictly positive, and continuous on
(0,400) such that

A a5
%(m)hl(auwg,y) y' + E(&fg)tfl(xl,rz,z/)y

S VEWV )W () + p(Qar) + S(22)))
x [VE(V )W ()1 + p(Qr1) + S(az)))

+V/T(x2)] (44)
L g 12(0,+50)) (45)
1+p ’

Vep >0, Jegr {y € R™M\{0}, |y| <1}
= V(1) |3 )] < 2 46)
Moreover, V, W, and f; satisfy*
1
%(y) filwr,wa,y)y < ) W(u). 47)

A3.2) m(V(g/))%—z(gl),fg(a:l,wg.,y.,u) can be extended as a
continuous function on R™ x R™' x R™2 x R1.

#The particular value 1/4 in (47) is written to simplify the [urther notations.
Any real number in [0, 1) would be right.
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Theorem III.1: If Assumptions A0, Al, A2, and A3 hold,
then for any u in (0,+oc], the origin of (40) is globally
asymptotically stabilizable by a state feedback bounded by
@ and zero at the origin.

B. Discussion of Assumption A3

Assumption A3.1): Assumption A3.1) introduces restric-
tions on the coupling terms hy, e;, and f; without which
asymptotic stabilizability may be impossible (see Sections III-
B-4 and III-B-5).

Inequality (47) implies that the term f; cannot change
the asymptotic stability of y = 0 whatever the function
(21(t),w2(t)) is, as long as it is measurable and locally
essentially bounded.

The other conditions in A3.1) limit the behavior of the
functions h; and e;. The starting point is (44), Being able
to write such an inequality is by itself not a restriction. More
precisely, from Lemma B.1 in Appendix B, and since ) and
S are proper functions, there always exist nonnegative and
continuous functions 7y, and v, satisfying

3—:21 :E1)h1(x1,:172,y)y’ + g%(fl?z)el(flewmy)y

<yl (Jyh) (1 + 72 (Q(21) + S(x2)))-

48)

The restriction arises with the fact that we need to find:
1) a function p satisfying the nonintegrability condition
(45) and, for instance
P(8) 2 V1 +7:(s) - 1. (49)
This is a constraint concerning the behavior of the
functions hy and e; for (x1,x2) going to infinity;
2) a function x satisfying the regularity condition (46) and,
for instance

(V)W () >yl (y). (50)

In view of Lemma B.2, this is a constraint concerning
the order of the zeros of the functions /iy and e; at y = 0.
We shall see, in the proof of Theorem III.1, how this special
kind of restriction in terms of bounding functions allows a
Lyapunov analysis.
A case where our assumptions are satisfied is given by A0,
Al, A2, and the set of the following three assumptions, related
to the one considered in [10], assuming:

filzr,22,9) =0, (51)

HI1) There exists a nonnegative continuous function -y such
that for all (x1,72,y), we have’

{lhl(l’l,-’ﬂ‘z,y) 1+ 1171‘)'7(1?/')7 (52)

| <(
lex (w1, 22, y)| < (14 fa2l) v(lyl)-

3Note that we can extract from + a lower bound for the order of the zeros
of hy and ¢y at y = 0. This function is not necessarily zero at zero.
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H2) We have

oQ
(z1) |1z ]
EER
‘Q(ml) < Foo,
£ (w2) | lea|
< +00.

S(z2)

lim Sup!m |—+oo

(53)

lim sup|y, |- 400

H3) The solution y = 0 of g = fo(y) is locally exponen-
tially stable.

Indeed, (51) implies that (47) is trivially satisfied. Then,
with H1) and H2), we get

)gg(rl)hﬂxhl”z:y)y} + ‘g—s(xz)el(l”hx%y)yl
1 T2

{ 99 ol + s+ ‘%w
< L+ Qar) + Syl ()

IN

1+ |x2|>} ()
(54)

where c; is some positive real number. Hence, to meet (44),
it is sufficient:

1) to choose p, satisfying (45), as

p(s)=+vs+1-1 (55)
2) to find a function x satisfying (see (50) above)
er fylv(lyl) < w(V(y) W(y). (56)

This last inequality generalizes the notion of higher-order
terms considered in [25] and [24]. It illustrates how the
behavior of h; and ey for y near the origin, quantified by -,
should be related to the stability margin of the y-subsystem,
quantified by W. The smallest is the order of the zeros of hq
and e; at y = 0 and the stronger the Jocal attractiveness of
y = 0 for y = fo(y) should be.

In the case where H3) holds, an appropriate function &
meeting (46) and (56) always exists with no constraint on
v and therefore no constraint on the order of the zeros of the
functions h; and e; at y = 0. Indeed, let us first remark that
with Al and H3), an appropriate convex combination of the
function V, provided by Al, and a quadratic form, provided by
the local exponential stability, gives a new Lyapunov function,
still denoted V', which is C? on a neighborhood of the origin
and such that for all y with |y| < as, we have

arlyl? < V(y) < aalyl’, aslyl < W(y) < aaly (57
v T a*Vv
. )~y LE(0)]
lim sup L Y < 400 (58)
y—0 W(y)

where the «;’s are strictly positive real numbers. Hence to
meet (46), it is sufficient to choose, for s < 1

k(s) =

C2

NG

where c; is a strictly positive real number. With Lemma B.2,
the definition of x can be completed on (0,+4o00) in such a
way that (56) holds.

So we have proved that Assumptions A0-A2 and H1)-H3)
imply Assumptions AO-A2 and A3.1). ’

(59)
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Assumption A3.2): Assumption A3.2) is an extra smooth-
ness condition for y near the origin. Let us study this point
within the context of Assumptions AO-A2 and H1)-H3).

Satisfaction of A3.1) does not require v(0) = 0. But for
A3.2), we observe that if there exists a point (z1,u) satisfying

fz(xl,0,0,u) 7é 0

then with A0, (58), (46), (56), and (57), A3.2) cannot hold if
we do not have v(0) = 0. Conversely, we assume

(60

Y(lyD) = lylAyl) (61
with 4 some nonnegative continuous function. This means that
the zeros of hiy and ejy at y = 0 are at least of order
two. Then A3.1) and A3.2) are satisfied with (59) replaced
by s < 1, s(s) = co.

So, if the zeros of A1y and ey at y = 0 are at least of
order two and Assumptions AO-A2 and H1)-H3) hold, then
Assumptions AO-A3 are satisfied. However, in this discussion,
we have not exploited the positive definiteness of 7', or more
precisely the presence of \/T(z2) in (44). This explains why,
in some cases as in Theorem V.1, no restriction on the order
of the zero of e;y at y = 0 is needed.

Stability for the (x1,x2) Subsystem When y = 0 and u = 0:
Consider the system
(62)

T=mzx+ u, g=—ay -y -y u

with a a strictly positive real number. Assumptions A2 and
A3 are satisfied, but Assumption Al holds only if m < 0. In
fact, for all real number m > 2a, there is no asymptotically
stabilizing feedback. Indeed, in this case, the set

1 1
T — — <90
{(»L,y)Zyz s+ < }

is positively invariant whatever u may be. Since the origin
is not in this set, it follows that m > 2a implies there is no
asymptotically stabilizing state feedback. We conclude that in
the general case, we cannot have instability for the systems
1 = ho(x1) or &9 = eg(xy) without an extra assumption on
the system ¢ = fo(y).

Restriction on the Behavior of hy and ey for (z1,x2) Going
to Infinity: We have observed that the nonintegrability condi-
tion (45) implies a restriction on the behavior of h; and ¢;
when (21, 22) goes to infinity. To motivate this restriction, we
consider the system
u 2

:1+u2+y$’

T

1
) = —— 63
Y 5 Y (63)
with n > 1. Assumptions Al and A2 are satisfied.
Case n = 1: Assumption A3 holds with
L,

Qs) =V(s) = W(s) = 5 s,

3 p(s) = V2s,k(s) =2

(64)

so Theorem IIL.1 applies. In fact, Theorem IL.1 applies already
after the change of coordinate

X =exp(y?) z. (65)
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Case n > 1: We first observe that there is no function p

such that (—1_:——1))7 is nonintegrable and

2
]xyzz"‘ < y? (1 + p(%azz)> .

So we do not know how to check if Assumption A3 holds. In
fact, there is no globally asymptotically stabilizing feedback.
Indeed, the set

(66)

4
)i > Lyta™ > —— 43
{(m yrr>1y ——

is positively invariant whatever u may be. Since the origin is
not in the closure of this set, our conclusion follows.

Restriction on the Behavior of hy and ey for y Near the
Origin: Assumption A3 limits the behavior of the functions
h1 and ey for y near the origin. Indeed, consider the system

=y +u,  §=-y"+u (67)

Assumptions Al and A2 are satisfied. But, we observe that
the origin is a stable solution of (67) when u = 0 if and only
if n > 2. According to Lemma II1.2, this implies that A3.1)
does not hold when n < 2. On the other hand, A3.1) holds
when n > 3 with

T

2?, pls) = (2)

v n(s) = (28)77 .

Qz) =

Viy) =

(63)

=N =

With this choice, A3.2) holds when n > 3.

In fact, for n < 3 this system is not globally asymptotically
stabilizable by continuous dynamic state feedback. Indeed, it
does not satisfy Brockett’s condition (see [1, Th. 7.1]).

C. Proof

Proof of Theorem II1.1: We begin with some preliminary

remarks.

1) By adding 1 to & if necessary, we can assame that this
function is not in L([1,+oc)).

2) With (46) and A0, the functions x(V(y))W(y) and
/@(V(y))%—‘;(y)fl(xl.,xg,y)y can be extended as con-
tinuous functions on the whole space.

3) With « being continuous on (0, 4+0cc) and V being C?
and positive definite, we have, with y(s) = y1 + s(y2 —
y1)

V(y2) o1 oV
[ s = [Vt o) i

(69)

for all y; and yo in R™ and such that the origin is not
in the segment [y, y2).

4) Condition (46) implies j'()]'/{(V(sy))%—fJ:(sg/)yd=9 is a
well-defined Riemann integral.

1565

These various points allow us to conclude that the function

27—+ 00 vi(i

Viy)
k(y) = lim /( )n(s)ds Yy # 0, k(0)=0 (70)

is well defined, proper, and Lipschitz continuous on R" and
satisfies

Kya) — k() = /0 w(V(y(5)) %(y@) (yo — 2)ds

(71)
for all y; and y in R™. With (14), (46), this identity,
and the continuity of the functions [fy + fiy + feu] and
n(V)%—‘y/[fo + fiy + fou], we can establish the equation

a0y (w1, T2, ¥, w)
oV
= r(V(y)) 8—y(y)
X [foly) + fi(zr, 2o, 9)y + folwy, z2,y,u)ul.

Now, we denote by [ the function which is zero at zero, cl,
positive definite, and proper on [0, +00) whose derivative I’
is [see (45)]

(72)

1
0<ll=——.
o (T+p)?

With these notations, we introduce the following candidate
Lyapunov function:

(73)

U(z1,22,y) = 1(Q(x1) + S(z2)) + g k(y). (74)

It is positive definite, proper, and Lipschitz continuous. Also
the function Uyg) (21, z2,y,u) is well defined and continuous.
Moreover, with (44), we get

U(40>(x1,1;2,y,u)
< —g (V)W (y) + G(z1,22,y, u)u
+UI'[-R(z1) = T(z2)
+V/e(V()W ()1 + /T (x2)]
+ 3RV, ey
U RV @)W+ )

where I’ and p are evaluated at Q(x1) + S(z2) and with G the
continuous function (see A0, Al, and A3.2) defined now as

(75)

G(r1,m2,,0) = Gr(V () G (1)l a.9.)

0
+ {3—2@1)’12@31’ 72, 0)

08
+ 51.72(-7;2)62(.731,?62,3}, u)} (76)

By completing the squares, we get finally
U(I1,1B27 Y, u)(40] < g(xh z2,Y, u)u
1
- (@) + S(a2) [ Rar) + 5 Tlo)

1

= V)W (). a7
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This inequality is the key point of our analysis. It has been
established by using only Assumptions Al and A3.1), with
A3.2) helping only for getting continuity of G. It allows us to
conclude the proof by following exactly the same arguments
as those invoked in the proof of Theorem II.1. d

Since (77) holds under Assumptions A0, A1, and A3.1), we
have proved the following.

Lemma I11.2: If Assumptions A0, A1, and A3.1) hold, then
the origin is a globally stable solution of (40) with v set equal
to zero. Moreover, all the solutions converge to the largest
quasi-invariant set contained in {(z1, 22, v): R(z1) = 0, 22 =
0, y = 0}

Let us finally remark that the feedback depends only on
G(x1,z2,y,u), where the functions eg, €1, ho, h1, fo, and
f1 are not used. It follows that Theorem IIL.1 also gives a
kind of robust global asymptotic stabilizability result. Indeed,
with the functions @, S, V, hs, es, f2, K, and p fixed, i.e.,
with G(z1,2,y,u) fixed, we have a globally asymptotically
stabilizing feedback for any system of the form (40) whose
functions eg, €1, ho, h1, fo, and fi are such that AQ to A3
hold.

A Larger Class of Stabilizing Feedback: For proving The-
orem IIL.1, we have used a feedback law which makes the
product G(z1. 22, y, u)u nonpositive for each time, in the case
of the static feedback, or in an integral sense, in the case of the
dynamic feedback. This constraint of nonpositiveness follows
from not taking advantage of the negativeness already pro-
vided by the term —}x(V (y))W (y). By using this property,°®
we shall be able to propose a broader family of feedback laws.
The interesting fact about this new family is that it contains
elements which can be written without the explicit knowledge
of the function V. This may be helpful when Theorem III.1 is
used repeatedly in a recursive design.

To show how this new family can be obtained, we work
within a smoother context than for Theorem III.1. Namely, we
modify Assumptions A0, Al, and A3.2) into the following.

Assumption A0’ The functions fg, fi, e1, and hy are C°,
the functions fa, eg, €2, ho, and hy are G, and hg, eo, and
fo are zero at the origin.

Assumption Al’: There exist functions @, S, and V satis-
fying Al and of class C2.

Assumption A3.2': m(V(y))%—Z(y)fg(wl,Ig.,y,u) is a C?
function on R™ x R™ x R™ x RY.

We introduce the following compact notations:
Ly(ar,22,) = 35 (y) fal21,22.9,0),
Do, aa,y) = 1(Qla:) + S(a2)
X [ag ($1)/12($17$2sy>0) + %(x2)€2($1-,$2,%0>]~
(78)

Note that I, depends on V and

Ty(x1,22,0) = 0. (79)

The function I', on the other hand, does not depend on V' but
depends on [’. However, !’ can be determined, via (73), (48),
and Lemma B.1 from the data of the (z1, z2)-subsystem only.

$For the sake of simplicity, we do not take advantage of the nonpositiveness
of —I"(Q(x1) + S(x2 )T (a2).
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The new Assumptions A0, A1/, and A3.2’ imply that the
function G, defined in (76), is C1. It follows that there exists
a continuous function G satisfying

<g(l’1, Z2:Y, u)v u) = g(ml‘, Z2,Y, IL) - g(xb Z2,Y, 0) (80)
With these notations, (76) and (77) become simply

g(zl-,iﬁ%yau) = h*(v)rv +I'+ <g~7u>

- %/@(V)W

+ [s(V)Ly + T+ (G, u)]u. (82)

1)

1
Ulzy, 29, y,u) a0y < =1’ [R + ET}

So, global asymptotic stability can be concluded if u satisfies
the constraints

1
lyl #0 = {R+ —;—T} — TR(V)W

+ [K(V)D, + T+ (G u)]u<0  (83)
{y=0, T £0} = [+ (G, u)]u<0 (84)
{y=0, P =0} = u=0. (85)

Proposition II1.3: Assume (40) satisfies Assumptions A0,
A1, A2, A3.1), and A3.2’. Under this conditich, for any %
in (0, +o0], the origin can be made a globally asymptotically
stable solution by a static state feedback bounded by % and
of the form

U($1,$27y) = —5<$1;LL’27?!>
X [O{(‘Tl:I?Jy)K(V(y))FU(Il)x%y)

+ Dz, 20,9)] 7 (86)
where « and 4 are any continuous functions satisfying
Br1,22,4) 20 (87)
[(z1,22,0) £ 0 = [(z1,72,0) >0 (88)
W(y) 2 3[3(:[1,1'2,:[/)[&(151,(1527@/) - 1}2
N 1
’g(l’laﬁ‘ze?J:“‘(m17«772-,y))|ﬁ(xl~,1727y) S é— (90)

and /3 is such that |u(x(,z9,y)| is upperbounded by 4.

Proof: We first remark that (79), (88), and (90) imply
(84) and (85). So it remains only to establish (83). Since, for
any real numbers «, (4, b, and ¢, we have

(a—1)2b2_ (a+1

—(b+c)ab+c) = 1 5

with (86), (83) is implied by

2
b—l—c) 1)

1 . ,
[yl # 0 = —u(V)W + 826 as(V)T, + 1)
o —1)? .
8| vy
a+1 ?
~ |5 RV)Ty +T) | <0 (92)
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The function (V)W being positive definite in v, with (87),
(89), and (92) holds if

9l # 0= FIGllan(V)T, + T ~ o — 1%(V)?IL,
2

1
et o, 4T

2

93)

<0.

Since (90) implies we have here a negative semidefinite
quadratic form in (x(V)I', ar(V)T, 4+ T), our conclusion
follows. (I

An important aspect of the expression (86) is that if we can
set o = 0, the feedback law becomes simply [sez (78)]

u(wy, 2,y) = =Pz, 22, y)l'(Q(z1) + S(z2))

X %(ml)hZ(T/l:x%ya 0)
as
+ 5;-2(.’5’2)62(1'17‘%'27?})0{!. (94)

Therefore if an expression, not depending on V', can be found
for /3, we have reached our objective of finding a feedback
law not requiring the explicit knowledge of V. So our new
task is to find such a function 5.

From Proposition IIL.3, this function £ must satisfy
(87)—(90). With (88) and (89) and v = 0, a necessary condition
for the existence of such a function g is

o Wy)
T(x1, 22,0 0=1 f . >0
(1,72, 0) 7 0 = Bt oI (o, w2, )12
(95)
which, with the definition (78), is guaranteed if
W
lim inf ) 96)

- av 2
0 R (V()| 5y )]
In fact this latter condition is also sufficient. To sce this, let R
and % be two strictly positive real numbers, and let us introduce
two functions independent of V.

1) Let ¢ be a smooth nonnegative function onto [0,1]

such that
er(0)=1,  @r(ly) =0 Yy lyl= R 9]
2) Let ¥r4 be a smooth function satisfying
Yral2r,z2) > maxg 1, sup {1/3(:51,.1727‘1/, uw)} (98)
h<h
with the function 1/3 defined as
12)(1)171727y7u)
_ T\ fa(wr, w2, y,u) — folw1, 72,9, 0)
3 U
0Q (0 Vholx — holz 0
o (x1)[ha(21, 22, Y, u) — ha(z1, 72,3, 0)]
+ u
%(M){Q(Il,ﬂ/‘%y,u) - 62(17173627.1/’0)]
+ |2 ” =1 (99)

which makes sense since the functions fa, ha, and e
are O (see A0').
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Proposition II1.4: Assume (40) satisfies Assumptions A0,
Al’, A2, A3.1), and A3.2". Under this condition, if

lim in ———Mf
=0 w6V ()| G5 ()]

then, for any @ in (0,400), there exists a positive real
number p* in (0,4] so that the origin of (40) can be made
a globally asymptotically stable solution by a static state
feedback bounded by @ and of the form

(100)

U(l’h T2, ?J)
por(ly*)L (21, 22, y)

Yra(@y, 22)(L+ [Tz, 22, ) )1 + | fa(z1, 22,5, 0)]?)
(101)

where g is any real number in (0, p*] and ', g, and ¥r g
are defined in (78), (97), and (98), respectively.
Proof: Since (101) is obtained from (86) by letting

{a(xlvm%y):()u 5

: _ wer(lyl?)

BlE1,22,Y) = G G T (s e ) D F T (21 5 00
(

02)

it is sufficient to check that (87)-(90) hold. Clearly (87) and
(88) are satisfied and, with ¢ < u, we have

—

lu(z1, 22,y)| < @ (103)

To check that (89) holds, we observe that since W' is positive
definite, (100) implies the following real number £y is strictly
positive:

W(y)
LR (V) 2 ()2
WISR 5(V ()| 52 (v)]
Then, since o = 0 and (102) implies that 8(z1, z9,y) is zero

when |y| is larger than R, the Schwartz inequality and (78)
yield

=&w > 0. (104)

361, 22, )V () Lol 22, 9)] < ?f‘gﬂwm (105)
w

Hence (89) holds if 1 < 2&w.
_ To check that (90) holds, we observe that the definition of
G, (80), (76), (73), (98), and (103) imply

Wl < B —> ((a1, 22,9, uler, 22,9))]
< <W<y>> ; 2)¢R,a<x1,x2>. (106)

oV
a_y(y)
This yields, for all (z1,29,y)

1,‘/)]?,11('271:22)[3('7;1,1’2)?/)

> €516 (21, w2, y, u((21, 02,9)))|B(x1, 22, y)  (107)

with the notation

. 1
0 i {mwy»)%g—(y)} +2}‘ o
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But (102) gives

wR,ﬁ(-rh m?)ﬂ<z17$27 y)

- per(lyl?)
= Wt T )1+ ol g op - F 0

So p satisfying

1
R (110)
is sufficient for (90) to hold.
Finally, by taking
0 < p<p*=min if l£~ U (111)
l'[/—u - 49‘W73‘g7

the assumptions of Proposition III.3 are met which implies the
conclusion of Proposition III.4 holds. O
Remark II1.5:
1) As already mentioned, the interest of the feedback law
(101) is that it does not depend on the functions V' and
k. But we have the parameter 4 to be tuned.
2) Requirement (100) is satisfied in the context of the
discussion in Section ITI-B, i.e., if Assumptions A0/,
Al’, A2, and H1) to H3) hold with ~ satisfying (61).
3) If fo. eq, and ho do not depend on wu, then G is zero and
(101) can be simplified to

u(xl.,xg,y)
por(ly*) (21, 22, y)
(1 + |F($1,$2y)|)<1 + |f2(x1,x2.,y.,0)|2) '
(112)

IV. DESIGN TooL 2: CHANGE OF COORDINATES

A. The Context

With Assumption A3, we have defined a context within
which the Jurdjevic and Quinn approach can be applied to (40).
Our task now is to investigate if there exists an appropriate
change of coordinates so that the modified coupling terms fi,
hi, and e; satisfy A3. Stated this way, the problem is difficult.
Today, we have no general answer. To solve it here, we limit
the field of investigation to a particular subclass of systems in
the form (40). In [17], another subclass is considered.

So, now we restrict our attention to the set of assumptions
considered in Section III-B.1 and for a system where the
undriven z; and xo subsystems are linear and there is no
coupling term f;

X = M1 Xy + Hi (X1, X2, Y)Y + Ha (X1, Xo, Y, u)u
Xo = Mo Xy + By (X1, X2, Y)Y + Ea(Xy, Xo, Y, u)u
Y = Fy(Y) + Fo(X1, Xo, Y u)u
(113)
where YV is in R™, X; in R™, X5 in R™2, u in R?. We use
capital letters to distinguish the initial coordinates (X1, X2,Y)
from the transformed ones (21, 22, y) in which Theorem TII.1
is applied. We assume the following.
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Assumption BO: The functions Hy, Ha, E, Ey, Iy, and
Fy are C3, and [y is zero at the origin.

Following the discussion in Section III-B, we know that
H,Y, at least, should have a zero at Y = 0 of order strictly
larger than one and possibly of order two. This is generically
not satisfied. So the problem we are addressing now is to find
a global diffeomorphism

(X1, X2,Y) = (w1, 72,y)

such that in the new coordinates, the coupling term h; is of
largest possible order or even that it is absent as it was the
case for (41).

B. Change of the X1-Coordinate

For (113), since with Assumption BO the function H1Y is
C3, it can be decomposed as

H1<X1,X2, Y)Y = Hlo(Y) + Hll(Y)Xl + H12(X1,XQ,Y)

(114)
where Hy, is a C? function and
Hl()(Y) = HI(0,0,Y)Y,
0H, (115)
Hi(Y)Y={(—(0,0Y),Y ).
1Y) <0X1(0‘0’ ), >

To simplify our task, we look for an appropriate change of
coordinates for an auxiliary system

X1 = My Xy + Hyo(Y)+ Hi (Y)X1, YV = F(Y). (116)

To preserve linearity in Xy, we restrict ourselves with the
following class of transformation:

<x1> _ <0XP(—P2(Y))[X1 + Pl(Y)])

) v (117)

where the matrix function /% and the vector P, are to be
chosen. With these new coordinates (116) is rewritten

&1 = Myzy + hio(y) + hi1(y)z1, ¥ = fo(y) (118)
where, by using the identity’
—_——
exp(—Po(y)) = — exp(—Pa(y))
-1 /'/\\
< [ exp(Pala)s) o) explPalw)s)ds
0
(119)
we have

h11(y) = =My + exp(—Pa(y))
1
X 1:M1 + Hu1(y) — /
x @%(ymw))oxp(—fa(y)s)ds
x exp(P2(y))

exp(Pa(y)s)

(120)

TWhich is obtained from the identity

d
s exp(—Py(y)7) = —Pa(y) exp(—Pz(y)7).
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hio(y) = exp(—Pa(y))

x |Hio(y) + %%(y)Fo(y)

— (M1 + Hyy(y) 1 (y)
foly) = Foly).

This leads us to the following questions.

1) Given two functions H1; and F{y, what can be done on
h11 defined in (120) with a function Py?

2) Given four functions Hyi, Fy, Hqg, and %, what can
be done on hio defined in (121) with a function P;?

Lemma 1V.1: Assume BO holds and let A derote

(121)
(122)

OFy
A=—=(0).
5 (0) (123)
If the spectra of A and M, are such that
)‘Aq‘, + )‘Mu‘ # ’\Mu- (124)
Aa; # Ay, (125)

for any (i, 7, k), then there exist smooth functions P; and Py
which give hyi, in (120), and hqg, in (121), having zeros of

order two® at y = 0, ie., there exists a C' “unction hy,
satisfying
hio(y) + hui(y)zr = (hay(z1,9), v)u. (126)
Proof®: We remark that by denoting
OHy13,5)
Vi = —5, = (0) (127)

by letting (Pyy,i ;) be the solution of the linear system
U= VHii(r,)
+ 3 M Pakrgy = Paweiy Mo
1

= Poin A i) (128)
and by defining the matrix P» as (see [15, I (10.10)])
>k Po(hin i) Uk
(exp(Pa(y)) — D)s) = ki) (129)

130 5 I 0 Paghiy sl

we obtain a function hj; with a zero of order two at y = 0.
Arguments similar to those used in [2, Proof of Lemma 1.1]
show that (128) can be solved in general if and only if (124)
holds.

More simply, the function Ay in (121) has a zero of order
two at 4 = 0 if we choose”

DPi(y) = Py

8By exploiting Poincaré normal form theory one can make these functions
of higher orders by introducing other nonresonance conditions (see the proof
of [2, Th. 3.1]).

9 The formulas (129) and (130) may not be the most appropriate for practice.
The only important point to retain about the functions I’y and P is that

087;1 (0) and %}(0) are imposed.

10(130) is the change of coordinates proposed by Teel in 26, (21)].

(130)
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where P is the solution of the linear system

PA—-MP+ (0)=0 (131

dy
which can be solved in general if and only if (125) holds (see
[8, Sec. 8.1]). D

When Hii(y) = 0, in (121), we get hig(y) = 0 if we can
find a function P; solving the following partial differential
equation:

oP
“MiPA@) + o) + 5 Fb(y) = 0. (132)
This case is interesting since the Jurdjevic and Quinn approach,
i.e., Theorem II.1, applies in the new coordinates. We remark
that if (132) holds, then the graph {(X1,Y): X1+ P, (V) = 0}
is an invariant set of

X1 =MX1+ Ho(Y), Y =F(Y). (133)

If the matrix A is asymptotically stable, this graph is a subset
of the stable manifold of the origin and even the stable
manifold itself if all the eigenvalues of M; have zero real
part. So, in this latter case, the partial differential equation
(132) has a solution at least on a neighborhood of the origin.
In fact, here we can exploit the triangular structure of (133)
to prove that when the following integral makes sense:

P (Y) :/ exp(—sM1)Hio(®(s,Y))ds (134)
0
and is C, with ®(¢,Y") the solution of
%f(a Y)=F(2(t,Y)), 20Y)=Y (135)

then I’ (Y') is a solution of (132) [see (249)]. This has been
remarked by Yang in [29]. Precisely, given (134) and out of
the context of this paper, we have the following.

Lemma IV.2: If the matrix %LYO(O) is asymptotically stable,
the matrix — M, is stable and the function Hiq is C*, then P,
given by (134), makes sense and is C* and a solution of (132).

Proof: See Appendix C.
Remark IV.3:
1) When M is equal to zero, (134) gives

—N
Pr(Y ) (153 = —Hio(Y) (136)

meaning that Hio(Y") is a total derivative. This prop-
erty is of prime importance in the applications. It will
be extensively used for the cart-pendulum system in
Section V-C.

2) The existence result, given by Lemma IV.2, has been
exploited by Yang in [29], and Sontag and Sussmann
in [23], to prove global asymptotic stabilizability by
saturated feedback of globally null-controllable linear
systems via a Lyapunov technique similar to the one
used in Theorem IL.1 (with x replaced by X + P (Y)).

3) When X is of dimension 1 with M; = 0, the matrix A
is asymptotically stable and the function Hi,(Y) is C?,
the (scalar) function Ps, given as

Py(Y) = — /Ooo Hi(0(s,Y))ds  (137)
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with ®(s,Y), the solution of (135), well defined (see
Appendix C). In this case, we get [see (120)]

hi1(y) = 0. (138)
We remark also that (137) gives
—N
P2(Y)(133) = Hy1(Y) (139)

meaning that H11(Y') is a total derivative.

V. APPLICATIONS

With the tools we have proposed in the previous sections, we
are now equipped to grapple with various global asymptotic
stabilization problems as those stated in the first section. We
begin with a generalization of the question of adding one
integration [see (2)]. This will be followed by a solution
for feedforward systems [see (3)]. Finally, we shall illustrate
the various aspects of the proposed design by studying the
cart-pendulum system.

A. Adding Integration

Result: We consider (113) again under Assumption BO,
with the notation (123) and the decomposition (114). We
introduce the following assumptions.

Assumption Bl:

B1.1) The point Y = 0 is a globally asymptotically stable
equilibrium point of the Y'-subsystem when u is set
to zero.

The matrices A and My are asymptotically stable, the
matrix M, is stable, and the spectra of these matrices
are such that for any (4,7, &)

B1.2)

Aag + Ay, # A, A F A (140)

Assumption B1.2) implies the existence of positive definite
symmetric matrices ¢J; and (Jo satisfying

QM+ MQ1 <0, QaMy+ M) Qs <0 (141)

and of PP and Ps, solutions of, respectively, (131) and (128).
(See Lemma IV.1). Then let Hy be

HQ(Xl)U = —<7)27.F2(X1,0,0, 0>u>4¥1
+ [H2(X1,0,0,0) + PFy(X1,0,0,0)]u. (142)

Assumption B2: X; = 0 is the only solution of

X; =M Xy, X{ Q1M X, =0, X Q1 Ha(X1) = 0.
(143)
Assumption B3: The functions Hi2 and F; are such that
there exists a nonnegative continuous function <y satisfying

Hip(X1, Xo, V) < Y[ Xof + [V](1 4 Xy | + [X2])]7(Y)
El(Xl,XQ,Y) < (1+|X1|+|X2|)’)’(Y) (144)
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Theorem V.1: If'! assumptions BO to B3 hold, then for any
@ in (0, +o0], the origin of (113) can be made a globally
asymptotically stable solution by a C*® state feedback bounded
by u and zero at the origin. Moreover, if the linearization
of (113) is stabilizable, the linearized closed-loop system
is asymptotically stable. Finally, in the case where the X
component is not present, the origin of (113) with v = 0 is
globally asymptotically stable.

Discussion:

1) Assumptions Bl and B3 give guidelines on how to
decompose the “integrating” coordinates X into X and
Xo. First, the coupling terms H; and E; can grow at
most linearly in X at infinity. Second, the decomposition
must be done so that matrix M, is asymptotically stable
and matrix M is only stable but satisfying the spectral
separation (140). Finally, the remainder H» in (114),
when divided by |Y|, should vanish with X, and Y.

2) We observe that Assumption B2 involves the function
‘H2(X1) and not the function H»(Xy,0,0,0) as would
be the case with A2. This is a consequence of the change
of coordinates. Unfortunately, there is no guarantee that
B2 holds if A2 holds and vice versa. For instance,
consider the following system proposed in [10]:

X, =Y>-Y+4+u Y=-Y+4u (145)
Assumption A2 is satisfied but not A3. The change of
coordinates given by Lemma IV.1 is

=X -y, y=Y. (146)
Then the system is rewritten as
i=1% y=-y+u (147)

This time Assumption A3 holds but not A2."?

3) Another important constraint imposed by Assumption
B1.1) is the asymptotic stability of A. It is known to be
superfluous in some cases. In our general context, the
properties of A are used:

a) to make Hig and Hy; have a zero of order two at
y = 0, as discussed in Lemma IV.1. But in this case,
we need only the nonresonance condition (140);

b) to guarantee that (57) holds to make sure that we
can find a function s satisfying the requirements in
Assumption A3. But, if we can make the change of
coordinates (117) so that H1o and H;y; have a zero
of high order at y = 0, then Assumption A3 may
hold without the need of asymptotic stability of A.
However, the existence of this particular change of
coordinates will involve more nonresonance condi-
tions than simply (140).

UTIf there is no term Hy2( X1, X2,Y") in the decomposition (114), we can
replace C® by C? in BO. The resulting feedback is C? in that case.

12 A possible solution is simply to change the control as u =Y — Y3 4 v
and to apply Theorem IL.1.



Proof of Theorem V.1:
1) Global asymptotic stability: To prove the first point
of Theorem V.1, we check that after a change of
coordinates, Theorem IIL.1 applies

Using (114) and the fact that Hy is C®, B3 implies
the existence of continuous functions Hioy and Hiox
such that

Hip(X1,X2,Y) = [(Hioy (X1, X2,Y),Y)

+ (Hizx (X1, X2, Y), A)]Y. (148)
Then, since the spectra of A and M verify (140),

Lemma IV.1 gives functions P; and P> so that by
applying the change of coordinates, linear in (X7, X»)

T exp(=P2(Y))(X1 + A (Y))
T2 | = Xo (149)
y Y

(113) can be rewritten, with (126) and (148), in the form

&y = Mizy + (hay(21, 22, %), ¥)y
+<h1z(1’1;$27y)>$2>y + h2(1171’2-/y7u>u
To = Maxe + e1(z1, T2, y)y + 2wy, o, y, w)u

7= foly) + falz1, 22, y,v)u
(150)

where ho, eo, and f, are C® and all the other functions
are at least continuous so that Assumption A0 holds.
Then, we have that B1.1) and (141) imply that Al
holds with, as mentioned in Section III-B 1, functions
V and W satisfying (57) and V of class possibly C%.
Second, we remark that P; and %, given by Lemma
IV.1, satisfy

P,
—(0
aYy 0)
It follows that A2 in the new coordinates is nothing but
B2 with:

Py(Y) = PY, =P,. (151)

Q(z1) = |11, ,
hg(.’)’,’17070,0) = Hz(:l?l)

ho(z1) = Mz,
(152)

where Ho is defined in (142).

Third, we see, with B3 and the linearity in (X7, X5)
of -(149), that there exists a nonnegative continuous
function 4 such that

|hiy(z1, 22, y)] < (14 21| + |22)¥(y)  (153)

[h1z(z1, 22,9) < 3(y) (154)

ler(@1, 22, y)| < (1 + [o1] + |z2)A(y).  (155)

This yields

|$IQ1<h1y($1«,wz,y)ay>y|

< cyPy@)lza|(1+ l21] + J2o]) (156)

- 2

<) (14 flnfd, + leal,) A5
|21 Q1(haz(z1,22,9), 22)y]

< clyl¥(y) |z ||z ~asy

< ey )laal (1 + Jloaf, + lozf?, ) (159

2)
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‘l‘;@?el(zlamZay)y)

< elylilaal(1+ fleaff, + 122l ). (160)

So by taking
p(s) = Vs (161)
lyi*[(y)* + ()]
1 3 B e P 162
oz g (T oo

the main inequality (44) of A3.1) holds. We also have
the following.

a) The function p is nonnegative and continuous on
[0, 40c) and satisfies (45).

b)  With (57) and the fact that W is positive definite,
the function s can be chosen nonnegative and C3
on [0, +0c0) and to satisfy (46) and A3.2.

We conclude that A3 holds.

Theorem II1.1 applies and guarantees the existence of
a C3 globally stabilizing feedback law. Note that since
B1 implies that (100) holds, a possible feedback law is
(101). Let us finally recall that (74) gives an appropriate
Lyapunov function with negative definite time derivative
if

|27 Qi Myz | + o] QuHa(z1)| #0 Vay #0. (163)

Local exponential stability: To prove the asymptotic
stability of the linearized closed-loop system, we write
the linearization of (150) at the origin

T, = Mz + Dlu, T = Moxo + DQU./ y = A’Zj + Bu
(164)
with the notations
B =£5(0,0,0,0), Di = hy(0,0,0,0)

ur(z,y) = —Ho (l‘éoﬂoBT

Dy = €5(0,0,0,0). (165)

To prove that the linearization of the control given, for

instance by (86), is stabilizing this system, we proceed

in two steps.

a) We apply Theorem II.1 to obtain a linear feedback
uy, for this linear system (164).

b) We check that this linear feedback uy, is nothing but
the linearization at the origin of (86).

Step 1: We first remark that (164) is of the form (18).
Then Assumption B1.2) implies that Al holds. Also,
the assumed stabilizability of the linearization of (113)
implies the stabilizability of the pair (My, D). This
fact with Lemma IL.3 implies A2 holds. From (86) in
Proposition II1.3, the following linear feedback globally
asymptotically stabilizes the origin of (164):

0*v
5 (0)y+l0DTQx) (166)
with the notations

T _ D _ Q
- (@) 2 @) o8

0
Q2> (167)
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and where:

a) V is the Lyapunov function satisfying (21) and
(57) and therefore

?v T+ OV

Oy? Oy?
b) ko and [y are any strictly positive real numbers;
¢) g and [y are any real numbers satisfying

(0)A+ A (0) <0 (168)

/80 > O> 02y T a2y }
 Amin Gy (00A+A T T (0) 2 (169)
K0 Amax {yﬂ;w\{ (0)BBT 5827\2/(0)} 2 360[050 1] .
Step 2: With (87)-(90), we can take
(), h=1(0)
- —K —
o= g 0 (170)
g = Oé(0,0,0), ﬂo = ﬂ((): 070)

to satisfy (169). So, the linear approximation of (86) at
the origin is equal to (166).

3) No Xy component: When X is not present and u is set
to zero, (141) and (144) imply that the X, subsystem
with Y as input is convergent input bounded state
(CIBS) as defined in [22]. It follows that the last point
of Theorem V.1 is a direct consequence of [22, Th.] and
that asymptotic stability of A is in fact not needed in
this case. £

B. Feedforward System

Theorem V.1 can be used repeatedly to prove that the
following system is globally asymptotically stabilizable:

'jjn = hOn(yn—l)mn + hln(@/n/l) + h’Q’ﬂ(‘TTHyn*l? U)U

&1 = ho1(yo)w1 + h11(yo) + ha1 (21, Yo, v)v
to = folyo) -+ fao(yo,v)v

(171)
where yg is in R", z; in R™, « in RY, and with
T
vi= (2l @l 2l ug) (172)

We introduce the following assumption.

Assumption CO: The functions fy, hg;, hi; are C2, the
functions fag and hg; are C2, and hy; and f are zero at
the origin.

This assumption allows us to introduce the following no-
tations:

{Ml = hol'(o>7 Cz = %T(O), D.L = hgi(o,0,0),

Ag = 312(0), By = f20(0,0).

Theorem V.2: Assume CO holds and:

C1) There exists a C? feedback law v (o), with v(0) = 0,
which globally asymptotically stabilizes the origin of
the yp-subsystem of (171) and so that the linearized
closed-loop system is asymptotically stable.

C2) For any 7 in {1,---,n}, the matrix M; is such that
there exists a positive definite matrix @); satisfying

(173)

(174)
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C3) The pair

Mn Cn D
0 Mn—l Cn—l Dn—l
D,
M, Bo
0 Ag

is stabilizable.
C4) For any ¢ in {1,---,n}, the function hy, satisfies, for
all (@i, yi-1,v)

Oha;
iy Vs = 0:
P (2:,0,0)

82h2i

o (175)

(JUi,yifl,U) =0.

Under these conditions, for any # in (0, +o00], the origin can be

made a globally asymptotically stable solution of the system

(171) by a C? state feedback bounded by u+sup,, {|vo(vo)!},

and the linearized closed-loop system is asymptotically stable.
Remark V.3:

1) Going back to (3), we see that the assumptions of
Theorem V.2 are satisfied if £ = fi(z,u) is glob-
ally asymptotically stabilizable with local exponential
stability and the linearization at the origin of (3) is
stabilizable.

2) Theorem V.2 is just one of the many statements which
can be obtained by repeatedly applying Theorem III.1.
Note in particular that (174) is restrictive. This is made
with the purpose of verifying more easily that the
spectral condition B1.2) holds.

Proof of Theorem V.2: We prove this theorem by induc-
tion. We will call ¢-system the subsystem of (171) whose state
vector is y; = (yo,21,...,2;) and which we rewrite in more
compact form as

Yi = filyi) + failyi, v)v. (176)

Induction Assumption: The functions f; and fu; are C2,
and the origin can be made a globally asymptotically stable
solution of the system (176) by a C? state feedback w;(y;)
bounded by —;;ﬂ + sup,, {|vo(yo)|}, with v;(0) = 0, and the
linearized closed-loop system is asymptotically stable.

This assumption is satisfied for ¢ = O thanks to assumptions
CO and C1). To prove that it holds also for ¢ + 1, we first
remark that the functions

3 oy [ hoitr(yd)Tivs + Ry (vi)
f2+1(y2+1) N < fz(yb) > (177)

7 hoiv1(@itr, yi v
i = (T

are C? as a direct consequence of the induction assumption
and CO. Then let us show that Theorem V.1 applies.
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1) With v; the feedback law given by the induction assump-
tion, we introduce following notations:

(u = v — v;(y;)

ho(yi) = hoi+1(y:) + <%’%ﬁ(0, Yis vi(yi?)),vi(yi)>
Ri(yi) = haiv1(ys) + hoie1 (0, i, vi (y3) )va(yi)
ho(iy1, yiiu)h: hoi1(Tigs yis vi(yi) + w)

+(f, g 22 (g1, i, bu+ vi(a) L), viyi))

folyi) = filys) + failyir vi(yi))vi(ys)
Ja(yi, w) %1f2i,(yi; u+v;(yi))
V(o B (i b+ vily)dl), i)

(178)

Also note that f; does not depend on z;y;. All the
functions appearing on the left-hand side are C?. Since
(175) implies that ho;4 1 is linear in ;4 1, the 141 system
can be written in the form

{¢i+1 = ho(yi) + ha(y)zig1 + ha(@igr, yi, u)u

Vi = folyi) + fa(yi, w)u (179)

which is a simpler version of (113), with, in particular

M =M1, C=Civ1+Dip1 Ky, D=Dip1 (180)

and
M; C; D;
A= ' Ve
M, C Dy
0 Ag By ,
D; (181)
B = f(0,0)=1 -
£2(0,0) D,
\ Bo
where
dv;
K. = . 182

2) Assumption B1.1) follows from the induction assump-
tion.

3) Since the matrix A is given by the linearization of the
closed-loop system

Ui = filyi) + failyi, vi(yi))vi(y) (183)
its asymptotic stability is given by the induction assump-
tion. So with (174) Assumption B1.2) holds.

4) Assumption B2 is a consequence of Assumption C3),
Lemma I1.2, and the fact that (175) and f¢, not depend-
ing on %41, imply

H2(-Ti+1) = h2i+1(Tz’+170,0) =D. (184)

5) Assumption B3 is trivially satisfied.
So, with Theorem V.1, we get w;i1(yi,®i11), a C? state
feedback, bounded by %a, such that the induction assumption
is satisfied for the 7 + 1 system. This completes the proof of
Theorem V.2. O
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C. The Cart-Pendulum System

The cart-pendulum system, whose dynamics can be ex-
pressed as in (6), is a good example to illustrate some aspects
of the designs which can be done by combining the tools
described in Sections II, III, and IV.

The procedure proposed in Section V-B goes with first sta-
bilizing the (6o, wo) subsystem. Then we add one integration
for the stabilization of the (sg,6o,wp) subsystem. Finally, a
last integration will give us the full system. However, we
remark that for the first step, the (fg,wp) subsystem is living
in the cylinder S* x R. The topology of this manifold as well
as the presence of cos(fy) multiplying ug lead us to restrict
our attention to (—%,%) x R. Then to make our problem a
global stabilization problem we let

to = tan(fo), ro = (1+t3)wp. (185)
This allows us to rewrite (6) as
o o o
zo= 5072802 ug, to=ro (186)
ro= 1:?12 +t0\/1+t(2)—uO\/1+t(2)

Following Section IV, at each step of adding an integration,
an appropriate change of coordinates will be needed. With
Remark I'V.3, we know that this change of coordinates is easily
found when total derivatives are known. So let us start by
writing a repertory of some total derivatives not depending on
the control

Zo= S0, to= To,
pr—— 5
80+—Tfy—=to<1+;r°—;>

1+145 (1+23)* (187)

2 ). T
\hl <t0+\/1+t0>— \/li—fg

The (tg, o) Subsystem: Since the control ug is integrated
in (186), we propose the following feedback which, from the
list of (187), is a total derivative:

2

wo(to,ro) = 2to | 1+ —0—— | +ro. (188)
(1+#)°
It is stabilizing as can be seen with
{Vo(to,ro)zr(z)'f'%((l‘i't%)% —1) + roto, (189)
Vo(ase, sen< — 3 (1 +13)V/1+ 5.

The (sg,tg, o) Subsystem: To write this subsystem in the
form (18), we let, using (187)
1 =xzp+2In (to + 1 +t(2)),

$1 = S + 2—F2= + g,

\1+t3

tl = t07 ’)"1 - 7‘0, (190)
Ul :u0—2t0(1+ Tg > —T0.
(1+t§)%
This yields a (s1,1,71) subsystem in the form (18)
{32012 $1—t1, S1= —u;, t1=711 _ (191)
r = —(t1+T1)\/1+t%—ul\/1+t%
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So the technique of Theorem IL.1 applies. In particular, an
appropriate Lyapunov function is
‘/1(81',tlyrl) -

Vo(ts,m1) +1(s3). (192)

However, once again, in designing the feedback u;, we have
to think of the next step where s; — ¢1 is integrated in the
system (191). Then we remark that by letting

1
— s (193)

’LLl(Sl,t17T‘1) = 10

we get a new total derivative, depending this time on the
feedback we use

o 1
§1= —==81.

10 (194)

This feedback is stabilizing as can be seen by taking
I(s3) = 5s7 +

1
~6—\31’3. (195)

Indeed, in this case, we get

o 1 1 .
Viaon, sy < “§(T% + t%)\/ 1+ - {53 + —26|51|3}
1
+ 5[27“1 + ]/ 1+ t3s1.

But we have, using Young’s inequality

(196)

[2r1 + t1]/1 + s (197)

:|2r1+t1j{y/1+t%—1}51—0—[27’1-1—251[51 (198)
Vi) :
2 = 3 2

g( 30) [T%+t§]“[1/l+tf~l}

—|sl|3 i[r% + 7] + 5s? (199)
(2[) [r? + 2] /1 +1;2111|J
T[T 8 +1)7 [ 42
Is1]® + %[r + 3] + 5s? (200)

(201)

. 1 :
x [r] +t7] \/;t/%-‘r 557 + §|Sl‘3'

We conclude

=V1((191),(193))

1 1
s _Z(T%Jrﬁ)\/l*"t% - 53%'

—Wi(s1,t1,71)

(202)
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The (xg, S0, to,T0) System: From Lemma IV.2, we know
there exist coordinates allowing us to write this system in the
form (18). But we have not found the explicit expression for
the change of coordinates. Instead, we look for obtaining the
form (118). For this, inspired by (116) and Lemma IV.1, and
using (187) and (194), we let

To = z1 + 1081 + <80+ m)

8o = 851, tgztl, To =71, (203)
Ug = U] — 1—10—31‘
We get
:%2: '—].OUQ ‘I’ tz’fz 3
(1+)"
2= —s50 — U2, (204)
to= T2,
o}
Tro= —-(tz + 79 + %52)\/1+t§ —UQ\/1+t%.
This is the form (118) with a third order term tzrg)g . Using
14+t2)2
(202), we get ’
tg?"g 4
—| < =Wi(sa2,t2,72) (205)
1+ 3
which follows from the implication:
3
f<@-menosa-m
= {3t] < 4|(2—[t]+1) < (1+6)°). (206

So the technique of Theorem III.1 applies. In particular, a
possible Lyapunov function is

2]
I/Q(ZZ?Q, 827t277’2) = 2V1<52./t277‘2) +/ O'(S)dS (207)
0

where o is any continuous odd function satisfying

(0)=0, 0<so(s)<|s]Vs#0,
lminf,_ 4o o(s) > 0.

By using (205), we get

(208)

o 2
Vo < —§W1(52)7f277‘2)

A )

+ 100(:1:2)} Ug. (209)

So, by choosing the function us(zs, 82,2, 79) with sign op-
posite to the sign of

- {2 ([27~2 +ta]4/ 1415+ 52 [10 + %\SQID + :LOa(a:Q)J

when the term between brackets is not zero, we finally get a
globally stabilizing feedback for (186) as

u = uo(to, 7o) +u1(s1,t1,71) + ua(®2, 52,t2,72).  (210)

For the cart-pendulum system this implies that asymptotic
stability can be guaranteed provided the initial deviation from
the upward position for the pendulum is strictly less than 90°.
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Remark V4.

1) This result of asymptotic stabilization on the upper half
space is not new and can be found at least in [3].

2) For the sake of clarity, we have not introduced any
parameters in our feedback law. By introducing them
we would get degrees of freedom allowing us to modify
the behavior.

3) We have tried to take full advantage of the dynamics of
the system with the systematic use of total derivatives in
our change of coordinates. But, for both the (sg, g, 7o)
and the (zo,sg,l0,70) Systems, we could also have
solved the corresponding linear equation (131) and used
the feedback law given by (101) which, in this particular
case where h1, ho, and fo depend only on y, can be
simplified in

u(w1,y) = —ppr(jyl)(z1,y) (211)
with T' defined in (78) where, using (208), we can
choose I'(s) = ”(‘[) . Proceeding this way the following

feedback law can be obtained:

w = ug(to,r0) + s r, (1§ +75)
X 05(80 + 219 + to) + pe PR, (53 + t(Q) + rg)

X O'Z(.Cb'o—}—Qto—{- m (é()—|—27“0—|—t0)+ 50+To)
212)

where the functions ¢r, and @p, satisfy (97) with R,
and R, any strictly positive real numbers, the functions
o and o, satisfy (208), and the real numbers u, and
14, are to be chosen strictly positive and not too large.

VI. CONCLUDING REMARKS

We have proposed a Lyapunov design for deriving a
state feedback law for a class of systems in the form
& = h(z,y,u),y = f(y,u), assuming global asymptotic
stabilizability for the y subsystem. We have also shown that
if a saturated control is sufficient for this subsystem, the same
holds for the overall. We have called our technique adding
integration, since the required assumptions on the x subsystem
are mainly implying that the  components integrate functions
of y and u.

This key technical tool can be used in combination with
others. In particular, the availability of a Lyapunov function
makes it very well suited for association with the technique of
adding one integrator or for the design of adaptive feedback
(see [19]) or output feedback. For instance, in [17], the
problem of stabilization of the VTOL aircraft is solved with
position measurement only.

We have applied this tool repeatedly to prove global asymp-
totic stabilizability for systems having a special recurrent
structure called feedforward form and which are generically
not feedback linearizable.

Due to space limitations we have concentrated our attention
mainly on presenting a new technique. But the interested
reader will find in [18] an application to a problem of sta-
bilization of a partially linear composite system and in [5]
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an application to the problem of orbit transfer for a satellite.
More generally, the dissertation [17] contains many results,
extensions, and applications about the technique proposed
here.

APPENDIX

A. Proof of Lemma I1.4

We need the following technical lemma.

Lemma A.1: Let G be a O° function. For each integer
k, we can find two functions o and ~y;, strictly increasing,
continuous, and onto [0, +-00) such that for all (£, u), we have

|G(&u) = G(€,0)] < vo(juD[L+m (€] + [u®)]  (213)
and moreover y; is CF.
Proof: Let
G(E,u) = |G(£,u) — G(€,0)]. (214)

We define two functions 4 and 7, as follows: for s > 0, we let

- _ G(gu)
{%(S) Pl <) {1+|£\+é<£7u>2 } (215)
Y1(8) = SUP (g uptep2 w2 <oy {11 1€+ G(E )%}
and for s = 0, we let
H0(0) =0, 71(0) = 1. (216)
Since G is a continuous function and IT\Q_EZ%)_? goes to

zero as & goes to oo, the functions 4y and 4, are well defined,
nondecreasing, and continuous at s = 0. This allows us to
define two new functions

{ —1j25~ dt+s>’yg(s)+s
fyl(s —f )= Ddt+5> (F1(s) — 1) + s.

They are strictly increasing, continuous, onto [0,-+oc) and
satisfy, for all (&, u)

217)

G w)

a ~ 2
G(§u) < TTie t CE [1+ ¢+ G(& )]
< Fo(Jul) [T+ 5117 + ul?)]. (218)
Finally, we let
{%(é) (1 +v21<1>m< ),
’Yl(b fO ’ " f() St 1’13,5/.?}21))d3kd5k_1 N -dsl.
219)

The function 1 is C*, and (213) holds since we have

Yo(lu) [1+ 31 (€7 + [uf*)] < vo(jul) [T+ e + [u]*)]
(220)

which follows from the fact that for all s > 1, we have

Y1(s)

Bt 221
L4+ 31(1) @20

711(8) >

O
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Remark A.2: 1If G is C', we have

.1
!maw—G@nnsw/ s)|ds.  (222)
0
This yields
{%(5) =s,
Y1(8) = Max((e uyel* +ul? <s} {1 + Jo |82 (¢, ru ldT}
‘ (223)

We now prove Lemma I1.4. Since G is continuous, Lemma
A.1 gives two functions 7o and -y, such that with (31), we
have

G(E, u(&))u(€) < —ME|G(E,0)
+ 1 (AE[G(E0)) MEIG(E,0)]
x [L+ 71 (€17 + MEPIG(E0)[))]. 224)

To get (32), it is therefore sufficient to find A a solution of

AE)IGE,0)]
=% (z1+fn<|s|2+A<5>21G<§,0>;2>>' (22)

When G is C1, using (223), (225) gives

1 1
O pimgernereeon @
Since ~y; is strictly increasing, a possible solution is
A¢) = ! ! . (227)
1+%(l£l2 + AIG(E,0)7) 1+ [G(E,0)]?
with
Ao = min{%, 211}. (228)

Since 1 can be obtained as smooth as we want, this function
A is as smooth as G(&, 0) is. Moreover, the strict positiveness
of A and (32) hold.

When G is G, a possible solution for (225) which satisfies
(32) is

AE) = IIllIl{ TG, 0}
<; |G(&,0)] ) L }
21+ (€2 +a2) ) 1+ |G(E0) S

(229)

B. About (44)

To check if (44) holds, the following two Lemmas may be
useful.

Lemma B.1: For any function F(z,y) with a zero of order
p at y = 0, with p possibly zero, we can find two nonnegative
and continuous functions -y, and 7, such that for all (z,y)

[F (a9l < TPy (lyDIL + 72 (|2])]. (230)
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Proof: Since F has a zero of order p at y = 0, there
exists a positive continuous function F such that for all (z, y)

F(2,9)] < Flz, )l (231)
At this point, we could conclude the proof by using the same
construction as in the proof of Lemma A.1. But this leads to
a too conservative function ;. Another solution is to define
the following nonnegative and continuous function:

X,9)}-

Y(s) =1+ sup {F(
{(X )| X|<|w|<s}

(232)

Then, since we have

F
(2,9) < max{q 1, sup
7 (191) (X )1l <1 <]}

ﬁ(x,z/;)}} (233)

the following function is well defined, nonnegative, continu-
ous, and such that (230) holds
- 1} } (234)

p max {0,
{(X,9):[ X< s}
O

ve(8) = su

Lemma B.2: Let V and W be continuous functions such
that V is positive definite and proper and W is positive
definite. Let -y be a nonnegative continuous function satisfying

hI;ljélp {%} < +00.

Under these conditions, there exists «, a positive definite and
continuous function on [0, +00) which satisfies

(V)W) = 7(ly])-

F(X,9)
1o (1)

(235)

(236)

Proof: The requirement (235) imposed on v, the continu-
ity of this function, and the fact that V' is a positive definite and
proper function guarantee the existence of a strictly positive
real number ¢ such that

¥(ly])
——= < Yy: V{y) <ec. 237)
W) v V(y) (
We define on [0, +o0) a function & as follows:
_ v(lyl)
B(v) = sup {max{c./ —ZL S (238)

It is positive, nondecreasing, and constantly equal to c, a
sufficiently large positive real number on a neighborhood of
the origin. So we may define another positive function on
[0, +0c0) by
~v+1
r(v) :/ R(s)ds. (239)
v

This function is continuous, positive definite, proper, and
satisfies (236). O
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C. Proof of Lemma IV.2

Let © be an open bounded subset of R™. We first remark
that since the matrix A = %—1;9(0) is asymptotically stable, the
function U defined as

) 1
U(s,Y) =exp (—iAs)@(s,Y) (240)

is bounded on [0,+00) x © as well as is S£. This implies
in particular

hm s ®(s,Y)| < 400

§-—

(241)

uniformly in Y € ©. Also, since Hy(Y) is C*, zero at the
origin, and |exp(—Ms)| is bounded, we have

lim 5% exp(—sM)Hyo(®(s,Y))| < +00 (242)
8— 100
uniformly in ¥ € ©O. This yields
+o00
/ lexp(—sM)H1o(®(s,Y))| < 400 (243)
0

which proves that P, given by (134) is well defined.
To prove that this function is C', we check that the
assumptions of [6, Th. 3.150] hold.
1) For each s € [0,+00), exp(—sM)Hio(®(s,Y)) is a
continuously differentiable function in ¥ € ©.
2) We have

D fexp(—sM) Hyo(8(s, Y))]

9%
:exp(—sM)an((I)( Y))a (5,Y) (244)
a
= exp(—sM) aym(q)(s,y))
1.\ ov
X exp(~2—As) dY(S Y) (245)

where |exp(—sM)2Ee(2(s,Y))| and |2%(s,Y)| are
functions bounded on R > 0 x ©O. This implies the
existence of a strictly positive real number ¢ such that

exp (éAs) ‘

(2406)

8—8}; lexp(—sM)Hqp(P(s,Y))]| < ¢

for any (s,Y) in [0,+00) X O.
3) The function | exp(3 As)| is integrable on [0, +00).
These three points imply that the function P; is C! with

Py, [T o
S == [ e SR @) S Vs
(247)
We remark also that
O(s, @(t,Y)) = B((s +1).Y) (248)
for all (s,¢) implies
o® . 8@
Fy (& YY) =F(2(s,Y)) = (s, Y). (249)
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