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Abstract." We show that smooth global (or even semi-global) stabilizability and complete uniform observability are sufficient properties 
to guarantee semi-global stabilizability by dynamic output feedback for continuous-time nonlinear systems. 
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Notat ion 

• Let (0) denote the number  of  the differential equation: 

= f ( x ) .  (0) 

For  any cont inuous  function V: A ~ R, with A c R p, we denote by ~oj the Lie derivative of  V along the 
field f when it exists on A, i.e. 

~o~(X) = l i m l [ v ( x  + t f ( x ) ) -  V(x)] V x e A .  (1) 
t ~ O  [ 

When V is continuously differentiable we have trivially 

dV 
~o~(X) = ~ x  (X) f (x). (2) 

• l" J denotes the Euclidean norm. 
• A function f :  A --* R+,  with A c NP, is said to be proper on A if 

lim f ( x ) =  0% (3) 
x -~  O A  

where OA denotes the boundary  of  the set A. Note  that, if f is proper  on A then, with 0 < cl < cz, 
{x: cl < f ( x ) <  cz}  is a compact  subset of  A. 
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• A function f :  A ~ I1~+ is said to be positive (negative)-definite on B, a subset of A, iff(x) is strictly positive 
(negative) for all x in B. 

1. Main result and discussion 

1.1. Main result 

It is well established that a sufficient condition for global stabilizability by dynamic output feedback for an 
equilibrium point of a linear time-invariant system is stabilizability + observability. For this particular 
problem, it turns out that the crucial feature of a linear system is the fact that, as long as the control is 
bounded, no finite escape time is possible. Indeed, it has been proved by Sontag [12] that the same (type of) 
condition is also sufficient for nonlinear systems which have no finite escape time. Unfortunately, if the finite 
escape time phenomenon is possible, then stabilizability and observability are no longer sufficient to get 
global stability. In [8], it is shown that the system on R2: 

"~1 = X2,  

22 = x~ + u, (4) 

y = X 1 ,  

with u in E as control and y in E as the only measurement, cannot be globally stabilized by a finite- 
dimensional dynamic continuous controller when the integer n is larger than or equal to 3. The objective of 
this paper is to show that stabilizability + observability is a sufficient condition for semi-global, instead of 
global, stabilization by dynamic output feedback• To make this statement precise, we need to specify what is 
meant by semi-global stabilizability, stabilizability and observability. 

Definition 1 (Semi-global stabilizability). An equilibrium x* of a dynamical system with measurement y and 
control u is said to be semi-globally-stabilizable by dynamic output feedback if, for each compact set • there 
exist a dynamic output feedback u = O~(y,~), ( =  Oz(y,~) and a compact set o,u{¢ such that the equilibrium 
(x, ~) = (x*, 0) of the closed-loop system is asymptotically stable with basin of attraction containing ~ x Jr;. 

Definition 2 (Stabilizability). An equilibrium point x* of a dynamical system 

= f (x, u), (5) 

w i t h f a  smooth function, x in ~" and u in ~ is said to be stabilizable if there exists a smooth ~ function ~ such 
that x* is a globally asymptotically stable equilibrium point of 

= f ( x ,  fi(x)). (6) 

Definition 3 (Complete uniform observability). A dynamical system 

= f ( x ,  u), (7) 

y = h(x), 

with f and h smooth functions, x in R", (u, y) in R 2, is said to be completely uniformly observable if there 
exist two integers n r and n, and a smooth function • such that, for each solution of 

Yc = f ( x ,  uo), 

UO -~ U l  , 

• ( 8 )  

In fact, it is sufficient for fi to be C t" + z with lu defined in (14). 
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we have, for all t where the solution makes sense, 

x(t) = ~(y( t )  . . . . .  y(n~)(t), Uo(t), . . . , Unu(t)) , 

where y"}(t) denotes the ith time derivative of y at time t. 2 

(9) 

T h e o r e m  1. I f  x*  is a stabilizable equilibrium point o f  a completely uniformly observable system then x* is 
semi-globally-stabilizable by dynamic output feedback. 

1.2. Discussion 

In the existing literature of which we are aware, little attention has been paid to semi-global stabilization 
by output feedback. Many recent results have been devoted to the global stabilizability case. However, due to 
the counterexample (4), we know that some restrictions must be introduced. The first class of restrictions 
concerns the growth of the nonlinearities: some kind of global Lipschitz condition or some more involved 
condition such as in [16] is imposed. In [7, 4,1, a second class of restrictions is imposed. These restrictions are 
of a more geometric nature and imply that the system is linear up to output injection• This last assumption 
has been slightly relaxed in [11,1. For other types of restrictions, see also [9, 10,1. 

The results more closely related to ours are 

(1) The work of Tornamb6 [14-1, where the same complete uniform observability property is assumed and 
the stabilizability property is implied by a feedback linearizability assumption• Unfortunately, the proposed 
controller involves a high gain and is such that the guaranteed basin of attraction may vanish while this gain 
goes to infinity. 

(2) The work of Khalil and Esfandiari [5-1, where the function • in (9) of the complete uniform 
observability assumption depends only on y and its derivatives and, as for Tornamb~, the stabilizability 
property is implied by feedback linearizability. In this case, semi-global stabilizability is established. 

Our work extends these two results by combining, in the controller, the observability property (9) and the 
dynamic extension (8) of Tornamb6 [14,1 with the high-gain observer (22) and the saturated state estimates 
(23) of Khalil and Esfandiari [5,1. Also, as we shall see, our result is only one of the many possible applications 
of the tools for semi-global stabilization we have proposed in [13]. 

Two key assumptions are involved in this result: 

• Global (or semi-global) stabilizability: No general condition is known to determine whether global or 
semi-global stabilizability holds. However, this property is known to hold for many special cases 
including globally feedback-linearizable systems or locally stabilizable homogeneous systems. 

• Complete uniform observability: This condition has been studied very precisely by Gauthier and 
Bornard [3]. According to their corollary of Section IV, in the case of a system affine in u, one way to 
know if the complete uniform observability property holds is to check if the system can be globally 
written in the following form, with ~ = ( ~ , . . . ,  X,), 

• g 2 ( • 1 ,  X2) 
-- + u. (10) 

X, 

F(Z) \an(X1 . . . . .  ~n) 

Y=Z1 

2 If u is not present in (9), we let n= = - 1 in the following. 
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Note  that, in this form, Zi is the ith time derivative of y when u is zero. Also, the triangular structure of  the 
r ight-hand side allows us to see readily that a function • can be found so that (9) holds. 

2. Proof  of  Theorem 1 

Let the system under considerat ion be described by 

= f ( x ,  u), (11) 

y = h(x),  

w i t h f a n d  h smooth  functions, x in N" and (u, y) in N2. We choose the coordinates so that  the equilibrium 
point  x* is the origin. 

2.1. Des ign  o f  a d y n a m i c  s ta te  f e e d b a c k  

By taking successive derivatives with respect to time, we can write y and its time derivatives in terms of 
u and its time derivatives and x. More  precisely, with ny given by the complete uniform observability 
assumption, there exists a smooth  function ~0 and an integer number  mu < ny such that, for all t where the 
solution makes sense, 

yt"~ + 1)(0 = ~o(x(t), u(t) . . . . .  ulm°)(t) ). (12) 

Then, following the idea of Tornamb6 [14], let us consider the problem of designing a state feedback 
stabilizing controller for the extended system: 3 

= f ( x ,  Uo), 

rio = ul ,  (13) 

ill. = v, 

where 

l, = max {n,, m, }. (14) 

The solution to this stabilization problem is well-known and relies on a now very s tandard technique (see 
[15, 2], for example). 4 It follows, from this technique and the stabilizabili ty assumption, that  we are 
guaranteed the existence of a smooth  state feedback v(x ,  uo . . . . .  ut.) so that  the dynamic state feedback 

riO = U l ,  

~to = v(x ,  Uo . . . . .  u O,  (15) 

U ~ /A0, 

makes the origin a globally asymptotically stable equilibrium point  of  (11). 

3 Typically, n~ = m~ - 1 and the dimension of the dynamic extension could be reduced by 1 but at the price of more involved notation in 
the following. 

4 We note that only a semi-globally stabilizing controller for (13) is needed in the following. Thus, it would be sufficient here to apply the 
semi-global backstepping tool [13, Lemma 2.3]. Further, from this tool, we realize that the global stabilizability assumption of 
Definition 2 can be replaced by semi-global stabilizability. 
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In the following, we denote  by z the extended state vector  in •" x ~l.  + l, i.e. 

z = (x T, Uo . . . . .  Ul,) T. (16) 

By applying a converse L y a p u n o v  theorem (see [6], for example), we know the existence of a C 1 function 
V: R In + t, + 1) ~ 1/~+ which is positive-definite on (R In + i, + 1))\ {0}, p roper  on R In + l, + 1) and satisfies 

~l(Iz])  -< V(z),  ~1x),~15) = - W(z ) ,  (17) 

where the function c q : R +  --. ~+  is strictly increasing and onto  and the function W: B In + t, + 1)__, R+ is 
cont inuous  and positive-definite on ~tn + to + a)\ {0}. Also, let o¢ ~, be any compac t  subset of  R I" + 1 containing 
the initial condi t ion (Uo(0 ) , . . . ,  ut,(O)) which is at our  disposal. If  X is the compac t  subset of  ~"  given in the 
semi-global  stabil ization problem,  we know the existence of a positive real n u m b e r  c > 1 such that  

x × ~ ,  = {z: V(z) <_ c}. (18) 

Let us finally define the compac t  subset of  R tn + t. + 1). 

F -  {z: V(z)  <_ c + 1}. (19) 

2.2. Design of a dynamic output feedback 

Since x is not  measured,  the control ler  (15) cannot  be implemented.  But f rom (9) in the complete  uniform 
observabi l i ty  condition,  we know that  an implementa t ion  can be obta ined  if the t ime derivatives of  y are 
available,  the t ime derivatives of  u being given by (15). We remark,  by denot ing 

Yi = yO~, (20) 

that  (12) can be rewrit ten as 

P0 = Yl, 

Y , , -  1 = y , , .  (21) 

3~,, = ~o(x. Uo . . . . .  u,,.). 

Y = Yo. 

So, following the idea of Khali l  and Esfandiari  [5], let us p ropose  the following 'observer ' :  

f~o = Yl  + L l o ( y  - )3o), 

Y n , -  1 = Yn, + L n ' l n , -  I(Y - J3o), (22) 

Ln,+ 1 . Yn, = ln,(y -- Yo) + q~(x, Uo . . . . .  urn,), 

= sat (4~(33o . . . .  , )3n,, Uo . . . . .  un,)), 

where L > 1 is a real number  to be made  precise later, the l~'s are the coefficients o f a  Hurwi tz  po lynomia l  and 
'sat '  is the bounded  and globally Lipschitz function defined as 

{1 Xmax}('), (23) s a t ( . ) = m i n  ' I '[  

with Xm,x the m a x i m u m  value of Ix J on the compac t  set F. It  is impor tan t  to note  that  (22) is an observer  in 
quotes. Perhaps  a more  appropr ia t e  term would be to say that  the ~3~'s are dirty derivatives of  the measured  
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output made less 'dirty' by increasing L. The consequence is that during the transient, made faster by 
increasing L, the estimates f~'s may exhibit extremely large values. However, we know a priori, from the data 
of the semi-global stabilization problem, that the actual values y") do not have enough time to leave a given 
compact set corresponding to x being initialized in the compact set rid. In fact, as we shall see below, we shall 
be able to guarantee that z defined in (16) evolves in the compact set F. Consequently, an estimation ofx  with 
norm larger than Xm~, does not make sense and should be disregarded• Khalil and Esfandiari [5] have 
proposed using the saturation function 'sat' to disregard such values. 

With the estimated derivatives of y given by the observer (22), we may propose the following dynamic 
output feedback: 

f~o = fq  + L l o ( y  - Yo), 

f~n,- 1 = f;n~ + L n ' l n , -  I(Y - 33o), 

; Zn~ + y . ,  = l l . , ( y  -- flo) + ¢p(:~,Uo . . . . .  urn.), 

(24) 
l J  0 = U  1 , 

c~t. = v(~,  Uo . . . . .  u O,  

= sat (q'(3~o . . . . .  3~.,, Uo . . . . .  u..)), 

t /  ~-~- U 0 . 

Denoting by ( the vector in R n, ÷ t. + 2 given by 

= (3~o . . . . .  3~.,, Uo . . . . .  ut.) (25) 

and by off; any compact subset of ~", + t. + 2 containing the initial condition 

0~o(0) . . . . .  ~. ,(0),  Uo(0) . . . . .  ut.(0)), 

we have defined a candidate output feedback as well as a candidate compact set for meeting the semi-global 
stabilizability property. To prove that these candidates are appropriate, we follow the two-step analysis used 
in [11, 1, 13]. Namely, we first establish that, with an appropriate choice of L, the solution enters an 
arbitrarily small neighborhood of the origin in finite time. This is a semi-global practical stability property. 
The proof of semi-global stability is then completed by showing that the origin is locally asymptotically 
stable. 

2.3.  S e m i - g l o b a l  p rac t i ca l  s tab i l i t y  

First note that, by taking successive derivatives of y = h(x)  with respect to time, one can find functions q~'s 
so that y and its derivatives satisfy, with (20), 

Yi = q~i(z), i = 0 . . . .  , n r. (26) 

Therefore, with e the vector in R n, + 1 whose components are defined by 

ei = L n" - i ( Y i  - 33i) = L n' - i(q~(z) - 33i), (27) 

the dynamics of the closed-loop system (1 1), (24) are completely described by 

= ~x (z, e), (28) 

= L A e  + q61(z,e), 
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where A is the Hurwitz companion matrix of the li's and the functions ~bt and ~b2 are given by 

f ( x ,  uo) 

~ l ( z ' e ) =  (V(X 

with, using (16), 

ul j 
• , 4 ~ 2 ( z ,  e )  = , 

ut. d 2 (z, e) 
+ A l ( z , e ) ,uo  . . . . .  Ul.) 

319 

(29) 

(( eo )) 
A x (z, e) = sat • ~Oo(Z) L" , '  . . . .  ~on,(z) - e,, ,  Uo . . . . .  u,.  - x,  (30) 

( ( (  eo )) ) 
A2(z , e )=~o(X ,  Uo . . . . .  u m . ) - q ~  sat ~ ~0o(Z) Ln , ,  . . . .  q % ( z ) - e , , , U o , . . . , u ,  u ,Uo . . . . .  um . 

(31) 

Since the function 'sat' is bounded, the set F is compact and we have the identities, using the complete 
uniform observability condition (9), 

. ,  . .  U T X = ~ ) ( ( p o ( Z ) ,  . . (tOn,(Z), U 0 . . . . .  Unu), Z = ( X  T,  U O ,  • , t.) , ( 3 2 )  

we obtain the existence of a positive real number fl~ and a bounded, continuous function 7 with y(0) = 0 both 
independent of L and satisfying 

Idh(z,e) - gh(z,O)l _< v(lel) '~ V(z,e)eF x R ",+ 1, VL > 1. (33) 
I4~2(z,e)l </~1 ) 

Recall also, from (17) and the definitions of 'sat' and F, that, for the system 

= ~bl (z, 0), (34) 

we have 

V(34)  = - -  W ( z )  Vz~_F.  (35) 

From this we could conclude semi-global practical stability by applying [13, Lemma 2.4]. For the sake of 
completeness, we reproduce here the proof of this lemma. 

Let P be the solution of the Lyapunov equation 

A T p  + P A  = - - I .  (36) 

With c and V given in the conclusion of Section 2,1, we define the function 

V(z) In(1 + eTpe)  
Ul(Z,e)  = c + # ( L ) # ( L )  (37) 

c + 1 - V(z) + 1 - ln(1 + eTpe)  

where p(L) is the function given by 

/~(L) = ln(1 + 7eA~ax{p}L2") ,  (38) 

with, using the notation (25): 

ye = sup • (39) 
(z,~)~r ×~r, \~o.,(z) - Y", / I 

5 If needed, Ye is increased so that, for all L > 1, we have #(L) > 1. 
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Note the following three facts. 

F a c t  1 

L 
lim ~ ,  

F a c t  2 

(z, ~)e~ x ~ 
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_ > 0  V L e [ L o ,  + ~) .  (40) 

Ul(z ,e)  < c z + g(L2). (41) 

This means that the initial conditions are in the set {(z, e): Ul(z ,e)  < c z +/~(L)2}.  

Fact 3. By defining the set Ax as 

A~ = {z: V(z) < c + 1} x {e: ln(1 + eTPe) </~(L) + 1}, (42) 

we have that, for  each L > 1, U l ( z , e ) : A  1 ~ ~+ is positive-definite on AI\{0} and proper on A1. 

With these facts, we shall prove the following lemma. 

Lemma 1. For each real number 6 pc(0,2],  we can find a strictly positive real number L , ( p )  such that, for  
all L e [ L , ( p ) ,  + ~ ) ,  

p < Ul(z ,e)  < c 2 + #(L) 2 ~ 01¢2s)(z,e) < 0. (43) 

Also, the initial conditions o f  the closed-loop system (11), (24) which are in the set 3ff x o,~ satisfy 

Ul(z ,e)  < c 2 + #(L)  2. (44) 

See the appendix for the proof. 

2.4. Local stability 

To study the local properties of the closed-loop system (11), (24) or equivalently (28), we restrict our 
attention to the set 

Ap - {(z,e): Ul(z ,e)  < 2p}, (45) 

where p < 2 is now fixed so that, for all L in [L,(p) ,  + ~) ,  

( z ,e )~A,  =~ s a t ( ~ ) = ~  (46) 

where 

( eo ) 
)~ = 4~ q~0(z) Ln ,, . . . .  q~n,(z) - e~,,Uo . . . . .  u~, . (47) 

Such a choice for p is possible since, with (17), (37) and c and #(L) larger than 1, we have, for all L in 
[L,(p), + oo), 

Ul(z ,e)  <_ 2p ~ {Izl -< e-l(4p),  eXPe <- e x p ( 4 p ) -  1}. (48) 

Also the function e is strictly increasing and onto [0, + oo), and the functions • and ~ol are continuous and, 
from their definitions, zero at zero. 

6 p < 2 i m p l i e s p < c  2 + # ( L )  2. 
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With (30)-(32) we have also the existence of positive real numbers ~l and v, not depending on L, such that 
(cf. with (33)) 

[~bx(z,e)- ~bl(z,0)[ _< 7ale[~ V(z ,e)~Ao.  (49) 
I q ~ 2 ( z , e ) l  ~ vlel ) 

With these inequalities, we could conclude local asymptotic stability directly by applying 1-13, Lemma 2.5-1. 
A more explicit proof is provided in the following. 

The inequalities (49) imply that 'w/~-Pei2a~ is well defined on Ap and 

V(28) -~ - -  W(z) --~ f12 7 x le I ) 

• I V(z,e)~A o (50) 
~ 2 s )  L eXe 2 +  vfel <_ 

This leads us to introduce another Lyapunov function candidate. We let 

Uz(z,e)  = V(z) + ex/-e-~-~. (51) 

Indeed, by defining L4 as 

L4 = max{L,(p), [2 2x/~ {P} (1 + f12~l) -~ 22max{P}v]}, (52) 

we obtain, for all L in [L4, + oo), 

(z,e)eAp =~ U 2 ( 2 8  ) ~__ - W(z) - [ e l .  (53) 

With the properties of U2 and W, this implies that the origin is a locally asymptotically stable equilibrium 
point of the closed-loop system. 

2.5. Semi-global asymptotic stability 

To get the conclusion of our theorem, it remains to connect our semi-global practical stability result with 
this local asymptotic stability. To do so, we consider the semi-global Lyapunov function candidate 

U3 (z, e) = a(Ux (z, e)) U1 (z, e) + z(1 - a(U 1 (z, e))) V2(z, e), (54) 

where z is a strictly positive real number to be made precise later and a: R+ --. [0, 1] is a C 1 function which 
satisfies 

{~ if 2p___/, 
a(x) = if x _ p, (55) 

a ' ( x ) < 0  i f p < x < 2 p ,  

where ~' is the first derivative of a. With Lemma 1 and (53), we have established for all L in [L4, + oo), 

0 < Ux(z,e) < c 2 + p(L)  2 =*. /)3t2s) < cr ' (Ul(z ,e))(] l t2s)[Ul(z ,e)  - "rU2(z,e)]. (56) 

By denoting by ~R the support of a', i.e. 

~R - {(z,e): p < Ux(z,e) < 2p}, (57) 

the semi-global stabilizability property will be established if we can find z strictly positive so that 

U l ( z , e ) -  zUz(z ,e)  > 0 ¥(z,e)~gL (58) 
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But the functions U 1 and U2 being continuous and positive-definite on Ot, such a z exists and is given as 

z = min ~Ul( z , e )~  (59) 
(z,e)~ (U2 (z, e) J '  

3. Concluding remarks 

We have proved an existence result for semi-global output feedback stabilization. Our controller involves 
a high-gain observer and for this reason its practical interest is unclear. Our assumptions do not go beyond 
standard stabilizability and observability. However, for the time being, this observability has to be uniform 
with respect to the control. As far as the stabilizability is concerned, it can be extended to the case where the 
feedback fi involved in the stabilizability assumption is time-varying and dynamic. This feedback can even be 
only semi-globally stabilizing. Indeed, using the tools in [13], we know that if (15) is smoothly, semi- 
globally-stabilizable by state feedback then (8) is also semi-globally-stabilizable by state feedback. Then the 
global Lyapunov function given in (17) is replaced by a Lyapunov function defined on the basis of attraction 
of the extended system (11), (15). The existence of such a Lyapunov function comes from the results in [6]. 

As we have mentioned, the result presented here is a direct application of the tools described in [13] where 
both academic and more practical applications of this result can be found. 

Appendix: Proof  of  L e m m a  1 

Let AL denote the following subset of AI: 

AL-- {(z,e): p < Ul(z ,e)  < c 2 + g(L)Z}. 

First we note that 

c 2 + #(L) 2 
V(z) _< (c + 1)c 2 +/A(L)2 + c '  

Ul(z ,e)  < c 2 + #(L) 2 =*" 

C 2 + /a(L) 2 
ln(1 + eTpe) <_ (#(L)  + 1)c2 + #(L) 2 + #(L) '  

c c(c + 1) (c 2 + #(L)  2 + c) 2 

<- c(c + 1) c + 1 (c --~ 1 -- V(z)) 2 -~ 

#(L)  #(L) ( l t (L)  + 1) 
< 

u(L) + 1 - (.u(L) + 1 - In(1 + eTPe)) 2 <- 

We also have 

• c ( c  + 1) • 
Ult2s~ = (c + 1 - V(z)) 2 Vt28) + 

I~(L)(I~(L) + 1) r 
Ca(L) + 1 - ln(1 + eTpe))  2 ln(l + eTpe)(28). 

But, from (35) and the bounds in (33), we can write 

V¢28~ ~ - W(z) + flEy(lel) 

t 

ln(1 + eTpe)<28) < 
1 

Llel  2 1 + e T p e  -4- L/~maxir~I)l lel~ 

V(z ,e )~F x ~n, + t, 

(c: + #(L) 2 + g(L)) 2 

pIL)I ,u(L) + 1) 

(6o) 

(61) 

(62) 

(63) 
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where f12 is a positive real number  which bounds d V/Sz on the compact  set F. So, we get 

c(c + 1) 
~-)1(28) ~ (C 4 i "-~ V(z)) 2 { -  W(z) -~ fl2y(lel)} 

p(L) (#(L)  + 1) 1 { - L [ e l  2 + 22m~{P}fl~le[}. (64) 
+ (/~(L) + 1 - ln(1 + eXPe)) 2 1 + eTpe 

Now fix L1 so that/~(L~)2 = c 2 + c. Such a positive real number  L~ exists because the function #( - )  is on to  
[0, + ~ ) .  Then  using the bounds (61), c __ 1, and choosing L _> L1 we have 

1 c ( c  + 1) 
- (c + 1 - V(z)) 2 < 2p(L)4" (65) 

Thus, we can rewrite (64) as 

• c ( c  + 1) ( 
UI(2a) < (c -~]  -- ~ z ) )  2 ~ -  W(z) + fl2)'(lel) 

~(L)(~(L) + 1) , [ t ~ ]} 
+ (tz(L) +-1 ~ - 0  + eTpe)) 2 1 + eTpe 2 / z~ ) "  [el + 42m..{P}fl~ [el • (66) 

Since, from (61), c(c + l)/(c + 1 - V(z)) 2 is positive and bounded away from zero, it suffices to consider the 
expression 

p(L)(/z(L) + 1) 1 
E ( z , e ) -  - W(z) + f127(lel) + (#(L)  + 1 - ln(1 + eTpe)) 2 1 + eTpe 

x 2p(L)4lel2 + 42m,~{P}flllel • (67) 

We are interested in evaluating this expression on the set AL defined in (60). We do so by considering the two 
sets 

A1 - {(z,e): V(z) < c + 1, 1 < ln(1 + eTpe) < p(L) + 1} 
(68) 

{ cV(z) } 
Ao - {(z,e): V(z) < c + 1, ln(l  + eTpe) < 1} n (z,e): p < + ln(1 + eTPe) 

- - - c + 1 - V ( z )  

after observing that  

At. c (At u Ao), (69) 

since 

cV(z) 
{ln(l + eTee) <_ 1, p < Ul(z,e)} =~ p < + ln(l  + erPe). (70) c + 1 - V(z) 

(i) About the set AI: From (40), there exists a real number  L2,o > Lo such that, for each L >_ L2,o, we have 

L 
(z,e)ffA1 =~ 4p(L)4 lel + 42max{e}flX < 0. (71) 

Therefore,  with the positivity of W, the boundedness  of 7, #(L)  > 1 and (61), we have 

1 L 1 e x p ( 1 ) -  1 
(z,e)eA~ =~ E(z,e) < f12 e~R nySup+ 1 {~'(lel)} - 8/~(L)*Xma~{e} exp(1) (72) 
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So, from (40) again, there exists a real number L 2 >_. Lo such that, for each L >_ L2,  

(z,e)eA1 ~ E(z,e) < 0. (73) 

(ii) About the set Ao: We follow here the same lines as in the proof of [1, Theorem 2], although we could 
have applied [13, Lemma 2.1]. The set Ao is independent of L and a compact subset of R In + t. + 1) × Rt,~ + l) 
and we have 

( z ,e )e  Ao ~ E(z,e) < - W(z) + flzy(lel) + 82max{P}flllel 

To obtain this, we have used 

1 I~(L)(u(L) + 1) 

L ]el 2 

4#(L)" exp(1)' 

{/~(L)>__ 1,1n(1 + e X p e ) <  1} ~ ~ < ( # ( L ) +  l - - I n ( 1  +eXPe))  2 <2" 

Also we remark that there exists a strictly positive real number ~ such that we have 

(74) 

(75) 

c V(z) } 2p 
e = 0 ,  p <  + l n ( l  + e T p e )  ~ - - <  V(z), (76) 

- c  + 1 -  V(z)  3 - 

=, 0 < e _< W(z), (77) 

:* E(z, e) < - ~. (78) 

Hence, by continuity and compactness, there exists an open set ~ containing the set {(z, e): e = 0} such that 

(z,e)e'U c~Ao ~ E(z,e) < - ~. (79) 

Also, the set Ao\~U is compact such that [eL is bounded away from zero. Let 

M -  max { -  W(z) + fl2y(lel) + 8)~max{P}flllel } 
Ao\ ~ 

and 

(80) 

m- min { lel2 
Ao\¢ 4 exp(1)J > 0. (81) 

Since the function ~ is increasing on [Lo, oo) and tends to ~ ,  there exists a positive real number L 3 ~> Lo 

such that, for each L > L3, 

L L 3 
(z,e)eAo\~e" ~ E ( z , e ) < M  kqLV~'7"'~m<M--# "L'4m[ 3) - < - 2 "  (82) 

We then take L ,  = max{Lx ,L2 ,L3} .  

References 

[-1] A. Bacciotti, Linear feedback: the local and potentially global stabilization of cascade systems, in: Proc. IFAC Nonlinear Control 
Systems Design Symposium, Bordeaux (1992) 21-25. 

[2] C.I. Byrnes and A. Isidori, New results and examples in nonlinear feedback stabilization, Systems Control Lett. 12 (1989) 437-442. 
[3] J.-P. Gauthier and G. Bornard, Observability for any u(t) of a class of nonlinear systems, IEEE Trans. Automat. Control 26 (1981) 

922-926. 
[4] I. Kanellakopoulos, P.V. Kokotovic and A.S. Morse, A toolkit for nonlinear feedback design, Systems Control Lett. 18 (1992) 

83-92. 



A. Teel, L. Praly / Semi-global stabilizability by output feedback 325 

I-5] H.K. Khalil and F. Esfandiari, Semi-global stabilization of a class of nonlinear systems using output feedback, in: Proc. 31st Conf. 
on Decision and Control (1992) 3423-3428. 

[6] J. Kurzweil, On the inversion of Lyapunov's second theorem on stability of motion. Amer. Math. Soc. Transl. Ser. 2 24 (1956) 
19-77. 

[7] R. Marin• and P. T•mei• Dynamic •utput feedback •inearizati•n and g••ba• stabi•izati•n• •ystems C•ntr•l Lett. • 7 ( • 99 • ) • • 5- • 2 •. 
1-8] F. Mazenc, L. Praly and W.P. Dayawansa, Global stabilization by output feedback: examples and counter-examples, Systems 

Control Lett., submitted. 
[9] J.-B. Pomet, R.M. Hirschorn and W.A. Cebuhar, Dynamic output feedback regulation for a class of nonlinear systems, Math. 

Control Signals Systems, to appear. 
1-10] L. Praly, Lyapunov design of a dynamic output feedback for systems linear in their unmeasured state components, in: Proc. IFAC 

Nonlinear Control Systems Design Syrup. (1992) 31-36. 
1-11] L. Praly and Z.P. Jiang, Stabilization by output feedback for systems with its inverse dynamics, Systems Control JEett., to appear. 
[12] E.D. Sontag, Conditions for abstract nonlinear regulation, Inform. and Control 51 (1981) 105-127. 
[13] A.R. Teel and L. Praly, Tools for semi-global stabilization by partial state and output feedback, SIAM J. Control Optim., 

submitted. 
[14] A. Tornamb6, Output feedback stabilization of a class of non-minimum phase nonlinear systems, Systems Control Lett. 19 (1992) 

193-204. 
1-15] J. Tsinias, Sufficient Lyapunov-like conditions for stabilization, Math. Control Signals Systems 2 (1989) 343-357. 
[16] J. Tsinias, A generalization of Vidyasagar's theorem on stabilizability using state detection, Systems Control Lett. 17 (1991) 37-42. 


