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Abstract: We show by means of examples that global complete observability and global stabilizability by state feedback are not 
sufficient to guarantee global stabilizability by dynamic output feedback. We show that a main obstruction is related to 'unboundedness 
unobservability'. This is that some unmeasured state components may escape in finite time whereas the measurements remain bounded. 
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1. Introduction and problem statement 

These last years have seen very important progress made on the solution of the problem of global 
asymptotic stabilization by output feedback. Results imposing explicit restrictions on the rate of growth of 
nonlinearities were known for a long time (see, for example, [8] or [14]). But, with a seminal paper [9], 
Marino and Tomei have exhibited and characterized a whole class of systems where no growth condition is 
explicitly needed. This class has been extended to encompass systems for which there exists a globally defined 
set of coordinates in which, in the single input single output case, the system can be written in the following 
form: 

= h(z ,  x l ) ,  

Xi = Xi+ l  "3t'f/(z, x1), (1) 

Xr = U "3ufr(z, X1), 

y ---- Xl,  

where u in R is the input, y in R is the output, the xi's are some of the state components, the remainder being 
in the vector z in R n, and the functions f{s and h are smooth and satisfy 

f, (0, 0) = 0, h(0, 0) = 0. (2) 

Since [91 many authors have contributed to the study of the output feedback problem for such systems. 
Kanellakopoulos et al. [6] have given another solution to the problem solved in [9]. Also, extensions to the 
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unknown parameter case [11, 4, 5, 7] and to the robust case have been provided [10, 12, 13]. For example, 
one can now state the following theorem. 

Theorem 1 (Praly and Jiang [12]). If, for  the z-subsystem of(I). 
(1) there exist two functions, fl o f  class o,~f'~ and 7 o f  class ~ , ~  such that, for  any initial condition Zo and any 

measurable essentially bounded function x l ( ' )  defined on [0, + or), there exists a solution z ( . )  defined on 
[0, + oo) and satisfying, for  all t in [0, + ~),  

[z(t)[ _< fl(IZo[,t)+ 7 (  sup Ixl(z)[), (3) 
\te[O.t] / 

(2) the zero solution o f  this z-subsystem is locally exponentially stable when x~ is identically zero, then the 
zero solution of( l )  can be globally asymptotically stabilized by a dynamic output feedback. 

But one may wonder if the results, available for the form (1), could be extended to the much less restrictive 
normal form shown below, characterized by Byrnes and Isidori [1]: 

= .,~ (z, Yl . . . . .  Y,), 

))i = Yi + 1, (4) 

))r = ~ ( z ,  y l  . . . . .  Yt) + C~(z, Yl . . . . .  yt)u, 

Y = Y l .  

The objective of this paper is to show that, in fact, no extension can be done without introducing extra 
assumptions. Indeed, we shall prove the following results in the next section. 

For  any integer n strictly larger than 2: 
• System 1: the zero solution of 

= z" + xl, ~1 = z + u, y = xl (5) 

cannot be globally asymptotically stabilized by dynamic output feedback. In fact, this system fails to satisfy 
assumption (1) of Theorem 1. 

• System 2: the zero solution of 

= - z  + z"x~, iq = z + u, y = x t  (6) 

cannot be globally asymptotically stabilized by a dynamic output feedback. Again, assumption (1) of 
Theorem 1 is not satisfied although the zero solution of the z-subsystem is globally asymptotically stable 
when x~ is held at 0. 

• System 3: the zero solution of 

))1 = Y2, ))2 = Y~ + U, Y = Yl (7) 

cannot be globally asymptotically stabilized by a dynamic output feedback. This time, assumption (1) of 
Theorem 1 is trivially satisfied since there is no z-subsystem. But, for n strictly larger than 2, this system, in the 
form (4), cannot be written in the form (1). 

Although these three systems fail to satisfy the assumptions of Theorem 1 for different reasons, we shall see 
below that, in fact, they all share the same 'unboundedness unobservability' problem. It is important to 

See [3] for a definition. 
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remark, however, that the zero solution of each of these three systems can be globally stabilized by static state 
feedback. Also, these systems are written exactly in the form of I-2, Theorem 2-1. It follows that they are 
completely observable, i.e., for any C ~° input u(t), the state initial condition can be reconstructed from the 
output function y(.) .  

D e f i n i t i o n  1 (The unboundedness observability property). A system 

Yc =f(x,u),  y = h(x) (8) 

with state x in ~", input u in R v and output y in R"  is said to have the unboundedness observability property 
if, for any solution x( . )  right maximally defined on [0, T), with T finite, corresponding to a bounded input 
function in u( ' )  in L~°([0, T); R), we have 

lim sup I h(x (t))t = + oo. (9) 
t--* T 

In words, this property means that the system cannot have one of its solutions escaping to infinity in finite 
time without having its input or its output escaping also at infinity at the same time, i.e. the finite escape time 
phenomenon can be observed. As mentioned above, our three systems do not satisfy this property. In 
particular, for system 3, we readily see that if u is identically zero and the initial condition Y2 (0) is strictly 
positive, we have the following results. 

• For  n > 2 and all t in [0, 1/y2(O)"-l(n - 1)), 

1 
y(t) = yx(t) = yl(0) + y2(0)2-" n 

2 

y2(0) 
y2(t) = 

(1 -- y2(0)"-X(n -- 1)t) l / t~-lr  

Therefore, we have 

- -  [1 -- (1 -- y2(O)"-X(n -- 1)t)t"-2)/t"- a)], (10) 

(11) 

f liml ~ \Y2(Y(t)~( y l ( O ) + y 2 ( O ) 2 - n l ~ ] ( t ) ]  = n - - 2  . 

l t -~ y~/O)"- q. - 1)1 + oo 

So the unmeasured state component Y2 escapes to infinity whereas the output remains finite. 
• For  n = 2 and all t in [0, 1/y2(O)), 

y(t) = yx(t) = yx(O) - log(1 - y2(O)t), 

y2(0) 
y2(t) = 

(1 - y~(O) t )  

Therefore, we have 

(12) 

(13) 

(14) 

,im ,15, 
~t-. 1 ~ \y2(t)J 
t y~-~J 

So the unmeasured state component Y2 escapes to infinity with the output. 
It follows that system 3 does not have the unboundedness observability property if n is strictly greater 

than 2. But it does ifn = 2, although, in this case, the finite escape time phenomenon does exist for Y2. But the 
key point, as mentioned above, is that it is now seen from the output y. In fact, in this latter case, a globally 
asymptotically stabilizing output feedback does exist. 
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l_emma 1. The zero solution o f  

J ) l  = Y2, ))2 = y2 + u, Y = Yl 

is 91obally asymptotically stabilized by the following dynamic output feedback: 

= -(3;(  + 4y)exp(y), 

u = -(5;(  + 7y)exp(2y). 

Proof. Consider the positive-definite and proper function 

V(yl ,y2,;(  ) = ½(y2 + [;( + yl]2 + [;( + Yl -- y2exp(--  Yl)]2). 

Its Lie derivative, l?, along the vector field given by (16)-(17) satisfies 

l ?=  - y 2 e x p ( - Y l )  - (g + Yx)2 exp(y~) • 

The conclusion follows readily from LaSalle's theorem. [] 

(16) 

(17) 

(18) 

(19) 

2. Main result 

The fact that the zero solutions of systems 1-3 cannot be stabilized by a finite-dimensional dynamic output 
feedback will be proved with the help of two technical lemmas. 

The first lemma gives estimates on the solution of the following differential inequality: 

ax" > Y¢ > bx ~, (20) 

where a, b and n are strictly positive real numbers. 

Lemma 2. l f  n is strictly #reater than 2, then any solution of(20), with strictly positive initial condition Xo, has 
a f inite escape time T satisfying 

1 
T < (21) 

b(n - 1)x~- l" 

Moreover, for  all t in [0, T), we have 

x(t) < a(n - 1 ) ( T -  t)]  (22) 

Finally, for  any real number m in (0,n - 1) and all t in [0, T), we have 

[x(s)]mds < -a-(~- 1)/ n - m - 1 T t ~ - m - l ~ / t " - l ~  (23) 

Proof. We remark that, for all n > 2, the differential equation 

ff = cw  ~, w(O) = Wo, (24) 

where Wo and c are strictly positive real numbers, has a unique C O solution given by 

w(t) = Wo (25) 
(1 - c w g - l ( n  - 1)t) 1/~-1)' 
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Therefore, from standard comparison theorems we find 
(i) the inequality on the escape time T, and 

(ii) that any solution of the differential inequality (20) can be estimated as 

x(z) 
x(t) < (1 -- ax(z )n - l (n  -- 1)(t -- z)) 1/(n-1)' (26) 

where t and z are in (0, T). The two inequalities (22) and (23) follow. [] 

The second lemma states that, under some appropriate properties, the following system admits solutions 
whose component x2 only escapes within finite time, 

~1 = f l ( x l ,  x2,z), ~2 = f2(xx,  x2,z), ~ = ¢ (x l ,  z), (27) 

where (xl,x2) is in R 2, z is in ~ for some k and f l ,  f2 and ~k are continuous functions. 

Lemma 3. I f  the functions f l  and f2 are such that there exist nonempty open sets U c ~ and V c  R k, and positive 
real numbers a, b, c, d, n, m such that: 

2 < n, m < n -  1, b < a, (28) 

for  all Xl in U, all x2 strictly greater than d and all z in V, we have 

I f l ( x l , x 2 ,  z)l < cx•, bx"2 <f2(xl ,x2,7 . )  < a x e ,  (29) 

then system (27) admits a solution whose component x2 only escapes within finite time. 

Proof. Fix initial conditions xl(0) = Xlo and z(0) = Zo in U and V, respectively. We will show that for large 
enough initial condition x2(0) = x20 the system has a finite escape time. 

• First, let Ux and V1 be open balls of radii 61 and 62 around Xlo and Zo, respectively, and such that their 
closures CI(U0 and CI(V0 are subsets of U and V, respectively. Let s be a strictly positive real number 
small enough so that, for any continuous function v : [0, s] ~ CI(Ux), the differential equation 

= ~ ( v ( t ) , z ) ,  z (O)  = Zo, (30) 

admits a solution z(t; Zo, v) which remains in V1 for all t in [0, s]. Continuity of ff and boundedness of 
U1 imply that this is possible. 

• Second, let us consider the following two real functions on R +: 

1 
T(Z)  = (b(n - 1)g) " -1 '  (31) 

l(a 1 ]3)-/,.-. n-1 
I ( x )  = c (n - n - m - 1 T(g)t"-m-1)/("-l)" (32) 

• Finally, pick any positive real number X2o > d large enough so that 

T(x2o) < s, 1(X2o) < 61. (33) 

We claim that any solution (Xl(t), x2(t), z(t)) of the system with initial condition (Xxo, X2o, Zo) will be such 
that 

(i) there exists r in (0, T(x2o)) such that Xz(t) tends to + oo as t tends to z, 
(ii) the components (xl( t) ,z( t))  remain in U1 x V1 for all t in I-0, z). 
Indeed, let (Xl(t) ,x2(t) ,z(t))  be any of these solutions and let i-0, T) be its right maximal domain of 

definition. Let 

a = min {s, T, inf {te[0, T): Xl(t)~ U1}}. (34) 
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By continuity, a is strictly positive. The definition of s and (29) imply 

z ( t ) ~ V l , X 2 ( t )  >- X2o -> d Vt~[O, tr). (35) 

With (29), (21) and (33), we get by contradiction 

a < T. (36) 

But then, (29), (23) and (33) imply 

tr = T, (37) 

which concludes the proof again with the help of (29), (21) and (33). [] 

This lemma gives the condition under which the 'unboundedness unobservability' probem occurs. Indeed, 
we see that, under conditions (28) and (29), there exist initial conditions so that the state component 
x2 escapes in finite time whereas the other components xl and z remain bounded. So if x2 is not involved in 
the output function, its escape is not observed. This is exactly what is occurring with systems 1-3 of the 
previous section. And, in fact, as mentioned above, they are not globally asymptotically stabilizable by 
a finite-dimensional dynamic output feedback. To see this, let us consider an arbitrary continuous dynamic 
output feedback controller: 

= q~(y ,z ) ,  u = o ( y , z ) ,  (38)  

where z is in R k for some k and ~b, 0 are two continuous functions. It is easy to see that all of systems 1-3, in 
closed-loop with this controller, satisfy the hypotheses of Lemma 3. Therefore, none of them is stabilizable by 
continuous dynamic output feedback. 

3. Conclusion 

We have given three examples of systems which are globally observable, globally state-feedback-stabiliz- 
able, and even strongly globally minimum-phase for two of them. But none of these is globally asymptotically 
stabilizable by any continuous dynamic output feedback control law. We explained these negative results by 
exhibiting a phenomenon that we have called 'unboundedness unobservability', i.e. some unmeasured state 
components may escape in finite time whereas the measurements remain bounded. 

In fact, by following the same idea as in our construction of these counterexamples, we can easily see that 
a wide class of systems will have this 'unboundedness unobservability'. For example, for the following system 
in the normal form (4), 

= 9~(z,  y l  . . . . .  yr), 

Yx = Yi+ 1, (39) 

~, = y~ + ~ ( z ,  y l  . . . . .  Y , -1 )  + ~9(z, y l  . . . . .  yr-1)u ,  

Y ~ Y l ,  
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the 'unboundedness observability' and the global asymptotic stabilizability by continuous dynamic output 
feedback do not hold if 

r 
n > - -  (40) 

- - 7 " - -  1" 

This shows that, for global asymptotic stabilization by output feedback, we cannot go very far beyond 
linearity for relative degrees r > 2. 
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