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Small-Gain Theorem for ISS Systems and Applications* 

Z.-P. Jiang, t A. R. Teel,$ and L. Pralyt  

Abstract. We introduce a concept of input-to-output practical stability (IOpS) 
which is a natural generalization of input-to-state stability proposed by Sontag. It 
allows us to establish two important results. The first one states that the general 
interconnection of two IOpS systems is again an IOpS system if an appropriate 
composition of the gain functions is smaller than the identity function. The second 
one shows an example of gain function assignment by feedback. As an illustration 
of the interest of these results, we address the problem of global asymptotic 
stabilization via partial-state feedback for linear systems with nonlinear, stable 
dynamic perturbations and for systems which have a particular disturbed recurrent 
structure. 

Key words. Input-to-state stability, Nonlinear systems, Partial-state feedback, 
Global stability. 

I. Introduction 

Studying uncertain dynamical systems is not only practical but a means of ad- 
dressing the control problem for a large class of nonlinear systems based on a 
simplified model (see [BCL], [CL], [JP], and the references therein). In this paper 
we introduce some new design tools which, when combined together, allow us to 
address the problem of stabilizing systems with intricate structure. In particular we 
prove that the following uncertain dynamical system can be robustly stabilized by 
means of partial-state feedback: 

t 
" s i = x i +  1 + f i ( x  1 . . . . .  x i ,  Z i )  , 1 < i < n - 1, 

Xn "~" U "Jr f n ( x 1  . . . .  ,X n ,  Z n )  , (1) 

. 2 1  = q i ( x l  . . . . .  x i ,  Zi) ,  I < i < n, 

where u �9 E is the input, (Xl, . . . ,  Xn) T ~ I~" are measured components of the state 
vector, (Z1 . . . .  , Z,) are unmeasured components, and the qi's satisfy the following 
assumption: 
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(H) For each i in {1, . . . ,  n} the system 

21 = qi(xl . . . . .  xl, Z3 

is input-to-state stable with (xx, . . . ,  x,) as input. 

(2) 

The basic concept which is used throughout this paper is the input-to-state 
stability (ISS) property introduced by Sontag [$2], [$4]. This notion allows us to 
address dynamic uncertainties in addition to static uncertainties [KKM 1], [KKM2], 
[MT2], [FK],  and it allows us to deal with systems which, due to their overcompli- 
cated structure, we prefer to consider as uncertain. In particular we show that 
partial-state feedback can be designed this way for systems whose dynamics are 
related to a feedback form. Along the way, we generalize the standard "adding one 
integrator technique" (see, for instance, IT2] and [$4]). Some different approaches 
on global stabilization for interconnected systems using the notion of ISS may be 
found in IT3] and IT4]. 

In Section 2 we begin with a notion of input-to-output practical stability (IOpS) 
which is a natural generalization of ISS. It is worth remarking that the IOpS notion 
refines the classical input-output  L ~ operator approach by making explicit the role 
of initial conditions for stability analysis. With this concept, we establish a general- 
ized small-gain theorem. This theorem completes a recent and important result of 
Marcels and Hill [MH] about monotone stability under a nonlinear-type small- 
gain condition. It is also related to the "topological separation" concept introduced 
by Safonov in IS1]. Section 2 also contains a result on gain assignment by feedback. 
A consequence of these main results is that, for some special nonlinear systems, a 
partial-state feedback exists to render the system ISS with respect to input additive 
disturbances. This is in the spirit of a theorem for more general systems proved by 
Sontag [$2] stating that smooth stabilizability implies smooth input-to-state stabi- 
lizability by full-state feedback. In Section 4.3 we show how, by being able to 
propagate the ISS property through integrators, we have at our disposal a tool to 
design a stabilizing partial-state feedback for system (1). The result generalizes the 
result of [PJ] on output feedback stabilization. Section 5 is devoted to the proofs 
of the main theorems. 

Facts and Notations 

�9 Throughout this paper positive, negative, increasing, decreasing, smaller, etc., 
refers to the strict corresponding property. 

�9 I' [ stands for the Euclidean norm, and Id denotes the identity function. 
�9 In what follows we are concerned with measurable input functions. There, 

measurable has to be taken with respect to the Lebesgue measure. Also, as a 
consequence of dealing with this very general class of input functions, the results 
have to be considered only for almost every time. 

�9 For any measurable function u: N+ ~ N', ]lull denotes ess. sup. {lu(t)l, t > 0} 
and, for any pair of times 0 < tl <- t2, the truncation uttl,t21 is defined as follows: 

{;(t) if t~[ t l , t2] ,  
uttl,t21 = otherwise. (3) 
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In particular, Uto ' T] is the usual truncated function and to simplify the notation 
we let 

UT = Uto , rl" (4) 

�9 A function V: R" ~ E+ is said to be positive definite if V(x) is positive for all 
nonzero x and is zero at zero. 

�9 A function V: E" ~ E+ is said to be proper if V(x) tends to + ~  as Ixl tends to 
+ ~ .  A proper function is often called radially unbounded in the automatic 
control literature. 

�9 A function 7: E+ ~ E+ is said to be of class K if it is continuous, increasing, 
and is zero at zero. It is of class K~ if, in addition, it is proper. 

�9 A function fl: ~+ x E+ ~ E+ is said to be of class KL if, for each fixed t, the 
function fl(., t) is of class K and, for each fixed s, the function fl(s, .) is non- 
increasing and tends to zero at infinity. 

�9 For  any function 7 of class Ko~, its inverse function 7 -1 is well defined and is 
again of class K~o. 

�9 Completing the squares. For  any a and b in E", and for any positive real number 
e, we have 

< l a T a  + ebVb. (5) aq-b 

�9 Weak triangular inequality. For any function ? of class K, any function p of 
class K| such that p - Id is of class K~, and any nonnegative real numbers a 
and b we have 

7(a + b) _ 7(p(a)) + ?(p o (p - Id)-l(b)). (6) 

This inequality generalizes (12) of [$2] and is established by remarking that, 
for any function a of class Koo, we have 

7 (a+b)_<  max { ? ( a + s ) } +  max {?(s+b)}.  (7) 
O<.s<_a(a) 0<s~a-l(b) 

�9 GAS stands for globally asymptotically stable and LES stands for locally 
exponentially stable. 

�9 UO (resp. SUO) stands for (resp. strong) unboundedness observability (see 
Definitions 2.1 and 3.1 below). 

�9 ISS stands for input-to-state stable and IOpS stands for input-to-output practi- 
cally stable (see Definition 2.2 below). 

2. Definitions and Main Results 

2.1. Input-to-Output Practical Stability 

Consider the following control system having x as state, u as input, and y as output: 

{~=f(x ,u) ,  x ~ . " ,  u~W", 
h(x, u), Y ~ ~p, (8) 

where f and h are smooth functions. 



98 z.-P. Jiang, A. R. Teel, and L. Praly 

Definition 2.1. System (8) is said to have the unboundedness observability (UO) 
property if a function ~0 of class K and a nonnegative constant D O exist such that, 
for each measurable essentially bounded control u(t) on ['0, T) with 0 < T < +0% 
the solution x(t) of(8) right maximally defined on [-0, T') (0 < T' < T) satisfies 

Ix(t)[ < a~ + II(u~, y,r)TII) + O ~ Vt e [0, T'). (9) 

Definition 2.2. System (8) is input-to-output practically stable (IOpS) if a function 
fl of class KL, a function V of class K, called a (nonlinear) gain from input to output, 
and a nonnegative constant d exist such that, for each initial condition x(0), each 
measurable essentially bounded control u(') on [0, oo) and each t in the right 
maximal interval of definition of the corresponding solution of (8), we have 

ly(t)[ < fl([x(0)J, t) + y(llu[[) + d. (10) 

When (10) is satisfied with d = 0, system (8) is said to be input-to-output stable (lOS). 

Remark 1. 

1. For a multi-input system, it is sometimes very useful to specify one gain 
function for each different input (see (17) for instance). 

2. The notions of U O  and IOS introduced here differ slightly from the strong 
observability and IOS properties introduced by Sontag in (38) of [$2] and, 
respectively, (10) of [$2] in that dependence on the initial condition of the 
particular state space representation (8) is made explicit. In addition, the offset 
D O has been introduced in the U O  property. When y = x in (8), IOpS is called 
input-to-state practical stability (ISpS). In this case, if d = 0 in (10), then IOpS 
becomes input-to-state stability (1SS) as proposed by Sontag in [$2] and [$4]. 

3. l fa  system has the UO property and is lOpS, then the system has the "bounded 
input bounded state (BIBS)" property. If a system has the U O  property and 
is lOS, then, in addition, the system has the "converging input converging 
output (CICO)" property. If a system has the U O  property with D O = 0 and 
is lOS then, in addition, it is stable in the sense of Lyapunov when u = 0 (see 
(12)). 

Associated with a detectability property, the U O  and lOpS properties imply 
global asymptotic stability (GAS). To state such a result, we recall the following 
definition: 

Definition 2.3. Let O(t, x, u) be the flow of system (8) at time t starting from the 
point x under the input u. System (8) is said to be zero-state detectable if, for all 
x ~ [~n, 

{ u - O , y ( t ) = O ,  V t>O}  =~ ~ l i m O ( t , x , O ) = O ~ .  (11) 
- -  .) [ . t ~  

Proposition 2.1. Assume system (8) has the UO property with D O = 0 and is lOS. 
Under this condition, the origin of (8) is GAS when u = 0 if and only i f  (8) is zero-state 
detectable. 
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Proof. Clearly, GAS when u = 0 implies zero-state detectability. For the suffi- 
ciency, stability follows from combining (9), with D O = 0 and u = 0, and (10), with 
d = 0 and u = 0, so that the norm of the solution, right maximally defined on [0, T'), 
is bounded by a class K function of the initial state: 

Ix(t)l < a~ + fl(lx(0)l, 0)), vt ~ [0, T'). (12) 

By contradiction, T' = oe. For convergence, the IOS property implies that y con- 
verges to zero when u = 0. Then, since the solution is bounded, it converges toward 
its m-limit set which is nonempty and compact (see Theorem 1.8.1 of [HI). By 
continuity this set is contained in the set {x: h(x, 0 ) =  0}. Thus, by zero-state 
detectability the solution converges to zero. �9 

Other properties of IOpS systems are given in Section 3. 

2.2. Main Results 

Consider now the following general interconnected system: 

X1 = f l (X1,  Y2, ui), Yi = hi(xl,  Y2, Ul), (13) 

)r ~- f2(x2,  Yl, U2), 22 = h2(x2, Yl, U2)' (14) 

where, for i = 1, 2, xi e N"', u i ~ ~"', and Yi e ~P'. The functions fa, f2, ha, and h E 
are smooth and a smooth function h exists such that 

(Yl, Y2) = h(xi, x2, Ul, U2) (15) 

is the unique solution of 

We have: 

Yl = hi (x1,  h2(x2,Yl, u2), Ul), 

Y2 = h2(x2, hi (x l ,  Y2, Ul), u2). 
(16) 

Theorem 2.1 (Generalized Small-Gain Theorem). Suppose (13) and (14) are lOpS 
with (Y2, ul) (resp. (Yi, u2)) as input, Ya (resp. Y2) as output, and (ill, (7~, ?'~), dl) (resp. 
(f12, (~:~, ?~), d2)) as triple satisfying (10), namely, 

]yl(t)l < fll(lxl(O)l,t) + ~f(llY2~ll) + Y~(lluall) + dl, 
(17) 

[Y2(t)l < flz(lx2(O)l,t) + 72Y(IlY~,II) + ~'~(llu211) + d2. 

Also, suppose that (13) and (14) have the UO property with couple (~o, D o) (resp. 
(~o, DO)). I f  two functions Pi and P2 of class Ko~ and a nonnegative real number st 
satisfying 

(Id + P2) o y r o (Id + Pl) o 7~(s) < s,~ Vs 
sl, (18) 

(Id + p~) o y~ o (Id + P2) o 7~(s) _< s,J 

exist, then system (13)-(14) with u = (Ul, uz) as input, y = (Yi, Y2) as output, and 
x = (xl, x2) as state is lOpS and has the UO property (is 10S and has the UO property 
with D ~ = O when s t = d  i = D  ~  
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More specifically, for each pair of class Ko~ functions (r3, P3), a function fl of class 
KL  and a nonnegative constant d (equal to zero when s t =dl  = D ~ -- 0 (i = 1, 2)) exist 
such that system (13)-(14) is IOpS with the triple (fl, r 1 + r E d- r3, d) where 

{r~(s) = (Id + p~-Z) o (Id + pa) 2 o [ ~  + 71 ~ (Id + p21) o (Id + p3) 2 o ~](s),  
(19) 

r2(s ) (Id + p2 ~) o (Id + p3) 2 o [7~ + 72 ~ (Id + p~-l) o (Id + p3) 2 o 7~](s). 

Remark 2. 

1. The two inequalities (18) are equivalent. Both are written here for ease of future 
notation. 

2. Condition (18) has been introduced by Mareels and Hill in [MH] to state an 
input-output  stability result in the operator setting without making the role 
of initial conditions explicit. This condition is a nonlinear version of the 
classical small-gain condition (see, for intance, [DV]). Sufficient conditions to 
check condition (18) are given in [MH]. Our task here was to complete the 
result of [MH] in order to take into account the effects of the initial conditions 
and to express the gain function 7 of the closed-loop system in terms of the 
gains of the two subsystems. Our result can also be used to conclude asymptotic 
stability for the internal variables under the conditions of Corollaries 2.1 and 
2.2. 

3. Theorem 2.1 deals with global practical stability. Its complement, local asymptotic 
stability, holds (as in [TP]) when di = D ~ = 0 and Vs _> s~ is replaced by gs _< s l 
in (18). 

4. The IOpS properties (17) and the small gain condition (18) with s t = 0 imply 
that the topological separation condition of Theorem 2.1 of [S 1] holds. Indeed, 
to each t in ~+ and each output pair (Yl, Y2), we can associate the real number 

d,(Yl, Y2) = [ly2,ll - ~(llyl,ll). (20) 

Then (17) implies readily that (2.3.2) of [S1] holds with the symbol v repre- 
senting x2(0 ), d2, and u2. Also (17) ansd (18) imply that (2.3.1) of [S1] holds 
for some function ff~ of class K~ and with the symbol u representing x~(0), dl, 
and u~. 

Corollary 2.1. Under the conditions of Theorem 2.1, i f  st = di -= D ~ = 0 (i = 1, 2) 
and systems (13) and (14) are zero-state detectable, then system (13)-(14) is GAS when 
u = 0 .  

Proof. The result follows readily from Theorem 2.1 and Proposition 2.1 after it is 
recognized that, if (13) and (14) are zero-state detectable, the interconnection (13)- 
(14) is zero-state detectable. �9 

Remark 3. When establishing GAS results using Corollary 2.1 we, in certain 
instances, assume that each subsystem is ISS (see Remark 1.2) since this is sufficient 
to guarantee that each subsystem has the UO property and is zero-state detectable. 
See Proposition 3.1 and Corollary 3.1 for another motivation of the ISS assumption. 
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As stated in Remark 1.2, IOpS (resp. IOS) is ISpS (resp. ISS) when the state is 
seen as an output. In this case the UO property with D O = 0 is obviously satisfied. 
The following corollary is a particular case of Theorem 2.1. 

Corollary 2.2. Consider system (13)-(14) with Yl = xl  and Y2 = X2, i.e., 

xl  = f l ( x l ,  Y2, U l ) ,  Yl = Xl, (21) 

22 = A(x2, Yl, u2), Y2 = x2. (22) 

Assume that both the x 1 and x 2 subsystems are ISpS (resp. ISS) with (Y2, ul) and 
(Yl, u2) considered as inputs, i.e., (17) holds. If, in addition, the small-gain condition 
(18) is satisfied, then the complete system (21)-(22) is ISpS (resp. ISS when s I in (18) 
is equal to zero) with (ul, u2) as input. 

Another interesting result relying upon the notion of IOpS is the following gain 
assignment theorem: 

Theorem 2.2 (Gain Assignment). Consider the control system 

{~=A(+B(H~+toO),F~ + Gu + to, (23) 

with u ~ ~ as input, ~ e Nt, ~ ~ R" as components of the state, (tOo, tO) ~ ~ x R" as 
perturbations, and ~ as output. Assume (A, B) is stabilizable, (F, G) is controllable, 
(F, H) is observable, and (H, F, G) has maximal relative degree. Under these condi- 
tions, for any function 7 of class K~, a smooth function u,((, ~), with u,(O, O) = O, 
exists such that system (23) in closed loop with u = u,((, ~) + v is: 

1. ISS with (tOo, tO, v) as input. 
2. IOpS with (tOo, tO, v) as input, ( as oufput, and the function ~, as gain. 

Moreover, i f  the inverse function y -1 of 7 is linearly bounded on a neighborhood of 
O, the closed-loop system (23) can be rendered IOS with (a) o, tO, v) as input, ( as output, 
and the function ~ as 9ain. 

Remark 4. 

1. There is no contradiction between the ISS and IOpS properties. The "practi- 
cal" in the latter means only that, in general, 7 is actually assigned only outside 
a neighborhood of 0. 

2. The first point of Theorem 2.2 guarantees that the closed-loop system (23) with 
(too, to, v) as input and ( as output has the UO property with D o = 0 and is 
zero-state detectable. In fact, it has the stronger SUO property (with d o = 0) 
of Definition 3.1 below. 

3. The motivation for assigning a gain function with an inverse that is linearly 
bounded on a neighborhood of 0 comes from Theorem 2.1 together with 
Lemma A.2. 



102 Z.-P. Jiang, A. R. Teel, and L. Praly 

The proofs of Theorems 2.1 and 2.2 are given in Section 5. To illustrate the interest 
of these two theorems, let us consider the following single-input system: 

{~ S f (x 'z)  + (x, z), (24) 

where (u, x, z) is in R x ~ x Re, and f and q are smooth functions. When ~ = q(x, z) 
is ISS with x as input the whole system (24) is made ISS with v as input by a feedback 
law such as 

u := - x - f (x ,  z) + v. (25) 

This follows, for example, from the first part of Proposition 3.2 which is a special 
case of Theorem 2.1. However, making system (24) ISS with a feedback law as 

u = 8(x) + v (26) 

is still an open issue. Nevertheless, the next corollary shows that system (24) can be 
made ISpS with a partial-state feedback control 9(x). 

Corollary 2.3. 

1. I f  in (24) the z-subsystem is ISpS with x as input, then we can find a smooth 
partial-state feedback O(x) which is zero at zero and such that, with 

u = ~(x) + v, (27) 

system (24) is ISpS with v as input. 
2. I f  the z-subsystem, with x as input, is ISS and, with f (x ,  z) as output, is 10S with 

a gain function linearly bounded on a neighborhood of O, then, with (27), system 
(24) becomes ISS with v as input. 

3. I f  the z-subsystem, with x as input, is ISS, f(O, O) = O, and the matrix (aq/t3z) (0, O) 
is asymptotically stable, then ~9(x) in closed loop with (24) gives GAS and LES. 

Remark 5. The conditions of point 3 of this corollary are sufficient, but not 
necessary, to give the conditions of point 2. See Lemma A.2. 

The proof of this corollary is given later. This result extends to the partial-state 
feedback case or dynamic uncertain case the "adding one integrator technique" 
(compare with Theorem 4 of I-T2]). In Section 4.3 we see that Corollary 2.3 can be 
used as one of the tools to design a stabilizing partial-state feedback for system (1). 

3. Further Facts About the lOpS Property 

The main purpose of this section is to establish other properties of IOpS systems. 
We first point out that the notions Of IOpS (resp. IOS) and ISpS (resp. ISS) are 

strongly related. Indeed, consider again system (8) where f and h are smooth 
functions. 
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Definition 3.1. System (8) is said to have the strong unboundedness observability 
(SUO) property if a function rio of class KL, a function ?o of class K, and a 
nonnegative constant d o exist such that, for each measurable control u(t) defined 
on [0, T) with 0 < T < oo, the solution x(t) of(8) right maximally defined on [0, T') 
(0 < T' _< T) satisfies 

Ix(t)l _ ri~ t) + T~ yG)TII) + d ~ Vt ~ [0, T'). (28) 

Remark 6. The SUO property implies the U O  property and, when d o = 0, the 
zero-state detectability property. 

We have, similar to Propositions 3.2 and 7.1 of [$2], and in the spirit of Proposi- 
tion 2.1: 

Proposition 3.1. I f  the x-system is ISpS (resp. ISS), then system (8) with y as output 
has the SUO property (resp. the SUO property with d o = O) and is lOpS (resp. 10S 
if, in addition, h(O, O) = 0). Conversely, i f  system (8) is lOpS (resp. lOS) and has the 
SUO property, then the x-system is ISpS (resp. ISS if, in addition, d o = 0). 

Proof. With the help of (6), the first assertion is directly proved just by remarking 
that two functions ~x and c~, of class K exist such that, for all (x, u), 

Ih(x, u)l _< Ih(0, 0)1 + ax(lx[) + ~,(lul). (29) 

For instance, ct~ and a, in (29) may be taken as 

a~(s) = s + max Ih(x, u) - h(0, 0)l, (30) 
lul_<lxl_<s 

~,,(s) = s + max Ih(x, u) - h(0, 0)1. (31) 
Ixl_<lul_<s 

Conversely, if system (8) is lOpS and has the SUO property, then, by a contradiction 
argument from inequalities like (32) and (34) below, we can show that, for every 
measurable essentially bounded input u on [0, oo), y and x exist and are bounded 
on [0, oQ). Moreover, two functions ri and rio of class KL, two functions 7 and 7 ~ of 
class K, and two nonnegative constants d and d o exist such that, using time 
invariance and causality, for all t > to -> 0, 

]y(t)l < ri(lX(to)l, t - to) + T(IIu[I) + d, (32) 
o u y T T d o" Ix(t)l < ri~ t - to) + ~ (11( , Ytto,,~) II) + (33) 

By substituting (32) with to = 0 into (33) with to = t/2, we obtain 

I x ( t ) J _ < r i ~  , 2 ) + 7 O ( H u l l + r i ( l x ( 0 ) l ,  2 ) + ? ( l l u l l ) + d ) + d O "  (34) 

Moreover, from (32) and (33), we have, for any function p of class K~ and all t > 0, 

. ~ < [ri~ 0) + 7 ~ o (Id + p-~)2(ri(Ix(O)l, 0))] 

+ 7 ~ o (Id 

: =  Soo. 

We can conclude by replacing Ix(t/2)l in (34) by the bound soo given in (35). 

+ p) o (Id + 7)(llull) + ?o o (Id + p - l )  o (Id + p)(d) + d o (35) 

(36) 
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Remark 7. We remark that, by following the same lines as in the proof of Theorem 
2.1 (see (98)-(109)), from (35) and (34), we can obtain the following more precise 
statement: 

For any pair of class K~-functions (r, p), a function fix of class KL and a 
nonnegative constant d~ (d~ = 0 when d = d o = 0) exist such that 

Ix(t)[ < fix(Ix(0)[, t) + (r + ~oo (Id + p) o (Id + ~))(IluH) + dx. (37) 

Corollary 3.1. Under the conditions of Theorem 2.1, i f  systems (13) and (14) have 
the SUO property, system (13)-(14) is ISpS (resp. ISS i f  st = d ~ = di = 0 (i = 1, 2)). 

Proof. The result follows readily from Theorem 2.1 and Proposition 3.1 after it is 
recognized that if (13) and (14) have the SUO property (resp. the SUO property 
with d ~ = 0), then the interconnection (13)-(14) has the SUO property (resp. the 
SUO property with d o = 0). �9 

In Theorem 2.1 we gave a small-gain condition under which the interconnected 
system made of two IOpS systems is again IOpS. In some cases this condition is 
trivially checked. Precisely, when system (13)-(14) takes the following form, 

{~ = f(x,z,u),  (38) 
= o ( z ,  u), 

as a straightforward consequence of our previous results, we have: 

Proposition 3.2. I f  the x-subsystem of (38) is ISpS (resp. ISS) with (z, u) as input and 
the z-subsystem of (38) is ISpS (resp. ISS) with u as input, then system (38) is ISpS 
(resp. ISS) with u as input. 

This proposition shows that the ISpS property is closed under composition. This 
fact has already been noticed by Sontag [$2, Proposition 7.2] for input-output  
stability. 

We finally note the following useful fact: 

Fact 1. I f  the system 

2 = f(x ,  v), v �9 ~ ' ,  (39) 

is ISpS with v as input, and if  q): R" ~ R" is a continuous function, then (39) is also 
ISpS with u as input when 

v = q~(u). (40) 

Proof. With y = x, let (fl, 7, d) be the triple given by the ISpS property (see Remark 
1.3) of (10). Let 

do = Iq,(0)l. (41) 

The system 

ic = f(x ,  ~o(u)) (42) 
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is ISpS with u as input and with (fl, 7 ~ 270, d + ?(2d0)) as triple satisfying (10) where 
7o is the function of class K defined as 

?o(S) = max {[q~(u) - ~p(O)[} + s, Vs > O. �9 (43) 
lul<_s 

4. Applications 

4.1. A Detour from the Center Manifold Reduction Theorem 

Consider the following system: 

f(C) + co(z, O, 

with (z, C) e NP x N" as state and co e R" as coupling nonlinearity. Assume: 

1. 

. 

(44)  

The vector field f is homogeneous with degree r and ( = 0 is an asymptotically 
stable equilibrium point of ( = f (0 .  
The z-subsystem with ( as input and co(z, () as output has the SUO property 
with d ~ = 0 in (28) and is IOS with gain ?z(S) < #Is] r for some nonnegative 
real number #. 

Proposition 4.1. Under these conditions and i f  # is sufficiently small, the zero 
solution of (44) is GAS. 

This result generalizes the lemma on p. 442 of [I] or Lemma 4.3 of [BI] where 
the local counterpart of this result is proved by applying the center manifold 
reduction theorem which imposes f(~) = F(  with F an asymptotically stable matrix. 
System (44) has been treated in a different way in Section 4 of [JP]. 

Proof. 
four positive real numbers c a to c 4 exist so that, for all (, 

From JR] for example, for any k > 1, a homogeneous C a function V and 

I ~-(()1 < c3t~Ik-a, (45) ca l(f ~ < v ( o  < c21~i ~, 

~V 
t3~- (~)f(0 < - c4 I([k +,-a. (46) 

Now, for all measurable essentially bounded co(t) defined on [0, + ~ )  and any initial 
condition ((0), let ((t) be the solution of the (-subsystem right-maximally defined 
on [0, T). Along this solution, we get 

(47) ~< - c ,  I(I k+r-1 -4- c3 [CI k-a Icol 

<~ -�89 k+r-a - Ifflk-a(~C41([ r -- C3 ICOl)- (48) 
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It follows from [$2] that the ~-subsystem with ~o as input is ISS with gain 

]J~(S)=(C211/k2C3[s[ 1/r. (49) 
\ c l /  cr 

Our conclusion follows readily from Corollary 3.1. �9 

4.2. Linear Systems with Nonlinear, Stable Dynamic Perturbations 

Consider the following system: 

i = q(z, (), = A~ + B(H~ + C~o(Z, ~)), (50) 

= F~ + Gu + o~(z, ~), 

with u ~ ~ as input, (z, ~, 4) ~ ~P • ~t x ~" as state, and (COo, CO) ~ ~ x R n as cou- 
pling nonlinearities. Assume: 

1. (A, B) is stabilizable, (F, G) is controllable, (F, H) is observable, and (H, F, G) 
has maximal relative degree. 

2. The z-subsystem with ~ as input and (COo, CO) as output has the SUO property 
with a d ~ = 0 in (28) and is IOS with a gain function 7z linearly bounded on 
a neighborhood of 0. 

Proposition 4.2. Under these conditions, we can design a smooth partial-state global 
asymptotic stabilizer u((, 4) for system (50) such that system (50) with u = u(~, 4) + v 
is ISS with respect to v. 

This proposition belongs to the class of results known for these so-called partially 
linear composite systems studied, for example, in [-SK], [SKS], [$5], [T1], and 
[-LS3. As proved in [$53, when l > 1, extra assumptions must be imposed on the 
z-subsystem to guarantee controllability to the origin even when (A, B) is con- 
trollable and the coupling terms (COo, CO) are not present (see also Theorem 3 of 
[SKS]). These extra assumptions are in place to guarantee that the state z remains 
bounded while the state ~ converges to zero, as in [$33. For example, growth 
conditions on q may be imposed [SKS, Proposition 53, [-SK, Theorems 6.2 and 6.4]. 
Here, to address the coupling terms, we impose the SUO and IOS properties on 
the z-subsystem with (COo, co) as outputs. According to Corollary 2.1, this could be 
relaxed to UO + IOS + zero-state detectable if only GAS is desired. 

Proof. From Corollary 3.1, the result holds if we can find a control law u(~, 4) 
which makes the ((, ~)-subsystem, with (coo, co) as input and ( as output, IOS, 

0 with gain function (27z(2s)) -1 and to have the SUO property with a d(r 0 
in (28). However, such a fact is proved under the assumptions of Proposition 4.2 in 
Theorem 2.2. �9 
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4.3. Pure Feedback Systems with Dynamic Uncertainties 

Let us now consider the single-input system mentioned in the introduction: 

I 
' l l  = x~+l + f~(Xi, Z~), 1 < i <_ n -  1, 

5. = u + L ( X . , Z . ) ,  (51) 

. Z i  = qi(Xi, Zi), 1 < i < n, 

where, for each i in (1 . . . . .  n}, the vector Xi in ~i is defined as 

X,  = (xl ,  . . . ,  xi) (52) 

and is part of the measured system state components, Zi in ~ "  is part of the 
remaining unmeasured state components, u in E is the input, and the f~'s, q,'s are 
smooth functions. 

Our objective is to design a control law u, involving the components (x~ . . . . .  x,) 
only and rendering any trajectory of the closed-loop system (51) globally bounded 
and if possible to guarantee global asymptotic stability. 

We make the following assumption about the unmeasured dynamics of system 
(51): 

(HI)  For each i in {1 . . . . .  n}, the system 

2 i = qi(Sl ,  Zi)  

is ISpS with X~ as input. 

(53) 

For proving not only boundedness but also asymptotic stability of an equilibrium 
point, we need the following extra assumption: 

(H2) For each i in {1, . . . ,  n}, (c?qi/OZi)(O, O) is an asymptotically stable matrix, we 
have 

and the system 

is ISS with X i as input. 

f~(O, O) = O, (54) 

Zi = qi(Xi, Zi) (55) 

This type of system has been extensively studied by many researchers with 
different viewpoints including state feedback stabilization, or (dynamic) output 
feedback stabilization (see [-KKM2], [MT1], and the references therein). In the 
absence of the dynamic uncertainties characterized here by z, results on the global 
stabilization of (51) are available in [ K K M  1], [KKM2],  [MT2], and [FK].  

To solve our problem the idea is to use, recursively, Corollary 2.3, Proposition 
3.2, and Fact 1 established in the previous sections as three basic tools. 
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Step i (2 ___ i < n). 
the system 

~2 - * * 
"1 = xi + f i - i ( X i - l , Z i - 1 ) ,  (59) 

( Z L 1  = Cti-l(xL1, Z*l) 

is ISpS with x* as input if 

xi = x* + ~i-l(x*l) .  (60) 

Here, by induction, (xT, x~, . . . ,  x*-2) are part of the components of Z*-I. 
Consider the new variable 

x* = xi - oa(x*_i) (61) 

and let 

Z.*, = (Zi, (x*-l, Z*-~)T) r. (62) 

We can rewrite the system 

t Zi = qi(xl, . . . ,  xi, Zi), 
~i*-1 = x~ + ~-1(x~'1, Zi*l), (63) 

"* - -  ~ * :I: 

[ .  Z i - 1  - qi-1 (Xi-1, Z i - 1 )  

as 

, �9 �9 �9 , ] qi(xl,  ~1(xl)  + x2, . . . ,  ~ i - l ( x i - 1 )  + x~ ,  Z 3  

/ 
2 *  = ~ x *  * * " * Z *  ' qi( , , Z * ) : =  (xi +~i-~(x,-1)+f~-l(x~-l ,  ,-1)) [ (64) 

~ x* Z* \ q i - l (  i - i ,  i - i )  J ] 

Since the zcsubsystem of (51) is ISpS with (x 1, . . . ,  x~) as input, and the map which 
transforms (xt, . . . ,  xi) into (x* . . . . .  x*) is a global diffeomorphism preserving the 
origin, a direct application of Fact 1 shows that the system 

Zi = qi(x*, ~l(x*) + x*, . . . ,  ~i l (x*l)  + x*, Zi) (65) 

X~ := X1, Z~ := Z l ,  ql [= ql- (58) 

Assume that we have designed a smooth function ~-1 so that 

Consider first the subsystem of (51): 

{21 = x2 + f l (x l ,Z l ) ,  
(56) 

21 = qi(xl ,Zi) .  

By applying Corollary 2.3 to system (56), we get a smooth function 3l(xt) which is 
zero at zero and such that, with 

x2  = ~ 1 ( x l )  + x~ ,  (57) 

system (56) is ISpS with x* as input. Moreover, if (H2) holds, this system is also ISS 
with x* as input and LES when x* is zero. We denote 
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is ISpS with (x* . . . . .  x*) as input. So, by applying Proposition 3.2, we see that system 
(64) is ISpS with x* as input. The ISS and LES properties also hold if (H2) is satisfied. 

Also, our change of variable gives 

~:* = x~+~ + fi(Xi,  Z~) - VO~_~(x*_~)(x* + f~_,(x*_~, Z*_~)), (66) 

where V~,_~ stands for the gradient of 0~_1, or, in a form compatible with Corollary 
2.3, 

Yc* = xi+l + fi(x*, Z*), (67) 

where y~ is given as 

~(x*, z D  = A(x*, 0 , ( x * )  + x*, . . . ,  ~,_~(x*_~) + x*, z , )  

- V,-q,_l(x*_l)(x* + f~_l(x*_,, Z*_I)). (68) 

Now we apply Corollary 2.3 to system (67) and we get a function ~gi(x* ) which is 
zero at zero and such that, with 

xi+l = Oi(x*) + X*+a, (69) 

system (67)-(64) is ISpS with x*+l as input. It is also ISS and LES if (H2) holds. 

Step n. As above, we get a control law ~9,(x,*) such that 

u = 0n(XD + V (70) 

makes the system, derived from the previous n - 1 steps, 

":,Ir _ _  ~ * * f x .  - u + L ( ~ . ,  z . ) ,  
(71) 

( z *  = ~n(X*, Z*) 

ISpS with v as input. Therefore, the solutions (x*,(t), Z*(t)) of (71) with 

u = 0n(x*) (72) 

are uniformly ultimately bounded. Since the map which transforms (x*, Z*) into 
(xn, Z,,  . . . ,  xl ,  Zt)  is a global diffeomorphism and preserves the origin, this implies 
that, for any initial condition, the solutions (x, z) of the closed-loop system (51) are 
bounded. The ultimate bound for the transformed coordinates * * (x,,, Zn ) depends 
mainly on the d~'s associated with the Zi's subsystem. However, for the original 
coordinates (Xn, Z,,  . . . ,  xl,  Zx), their ultimate bound depends also, and in a very 
intricate manner, on the controller. We even have the possibility that, by trying to 
push the ultimate bound for (x*, Z*) to zero, the ultimate bound for (x,, Z . . . . . .  xl,  
Z~) will go to infinity. This is known as the peaking phenomenon [SK]. However, 
if assumption (H2) holds, system (71) with 

u = ~gn(x* ) + v (73) 

is ISS with v as input and LES when v is zero. 
We summarize with the following result: 

Proposition 4.3. Under assumption (H1), we can design a smooth partial-state feed- 
back u(xl . . . . .  x .)  such that, for any initial conditions, all the trajectories of  system 
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(51) in closed loop with 

u = u(xl . . . . .  x ,)  (74) 

are bounded. Moreover, i f  assumption (H2) holds, we can design a global asymptotic 
partial-state stabilizer u(xl ,  . . . ,  x,)  for system (51). 

5. Proofs  

5.1. Proof of  Theorem 2.1 

A first fact to be noticed is that  (18) implies the existence of a nonnegative real 
number d 3 such that  

72 o (Id + Pl) o ?~(s) _< (Id + p2)-~(s) + d3,~ u >_ 0, (75) 
o (Id + P2) o y (s) _ (Id + pl)-l(s) + d3, 3 

with d 3 - 0 when st = 0. 

Step 1: Existence and Boundedness of Solutions on [0, oo). For  any pair of measur- 
able essentially bounded controls (udt), u2(t)) defined on [0, +oo), for any initial 
condition x(0), by hypothesis of smoothness, a unique solution x(t) of (13)-(14) right 
maximally defined on [0, T) with T > 0 possibly infinite exists. Also, since (13) and 
(14) are lOpS, for any z in [0, T) and any 

0 __~ t l 0  ~ t20 ~__ tal <- t21 < T -- z, (76) 

we have, using time invariance and causality, 
- -  Y ly l ( t l l  + z)l < f l l(Ixi( t io + z)l, t l l  - rio) + 7x(llyEt~lo+~,,,l+~lll) + 7~(11u~tl) 

+ dr, (77) 

ly2(t2t + V)l ~ fl2(lXz(t20 q- T)I, t21  - -  t20) + 7~(llYl[tzo+~,t21+~]N) + 7~(Hu2H) 

+ d 2. (78) 

For ease of notation, set 7i -- 7r and vi = 7~'( Iluill ). Then pick an arbitrary T o in [0, T) 
and let 

Z = tlo ----- t2o ---- 0, t21 = To, t~1 ~ [0, To]. (79) 

By applying (6) and using (75), we get successively 

JlY2Toll --< f12(Ix2(0)[, 0) § 72(fll(IXl(0)], 0) § 71(llYEroll) + vx + di) + 0 2 

§ d 2 (80) 

< flz(lxz(O)], 0) + 72 o (Id + 101) o Yl(]tYeroN) 

+ Y2 o (Id + p;~)(fla(lx~(O)l,O) + v 1 + d~) + v2 + d2 (81) 

_ fi20x2(O)l, O) + (Id + p2)-~(llY2ro[I) + da 

+ 72 ~ (Id + p?~)(fii(lx~(O)[,O) + vi + d~) + v2 + dE, (82) 

(Id + p~-i)(fl2(lx2(O)l, O) + d3 

+ 72 ~ (Id + p-~)(fl~(Ixl(O)[, O) + v~ + d~) + v2 + d2). (83) 
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Since To is arbitrary in [0, T) and the right-hand side of (83) is independent of To, 
y2(t) is bounded on [0, T). By symmetry, the same argument shows that y~(t) is 
bounded on [0, T). Since the xl-subsystem and x2-subsystem satisfy the UO prop- 
erty, we conclude that x~(t) and x2(t) are bounded on [0, T). It follows by contradic- 
tion that T = + ~ .  

Step 2: The lOpS Property. Continuing from (83), we can establish bounds on the 
outputs in the following manner. From (6), for any function Pa of class Ko~, we have 

ly2(t)l < (Id + p~x)(fl2(Ix2(O)l, O) + d3 + ?2 o (Id + p~-') 

o (Id + p~-l)(/~l(IxdO)l, 0)) 

+ 72 o (Id + p~-l) o (Id + p3)(vl + dl) + v2 + d2) (84) 

_< (Id + p21) o (Id + p31)(f12(lx2(O)l, O) + 72 o (Id + pi -1) 

o ( I d  + p ; 1 ) ( f l l ( l x l ( O ) [  , 0))) --[- (Id + p21) 

o (Id + p3)(d3 + Y2 o (Id + p~-~) 

o (Id + p3)(Vl q- dl) + v2 + d2). (85) 

So, by symmetry, we have established 

{yl(t){ < 61([x(0)[) + A1, 

with 

]y2(t)[ _< r ) + A 2, 

61(s ) = (Id + p~-l) o (Id + p;a)(fll(s, O) + 71 o (Id + p21) 

o (Id + p;1)(fl2(s, 0))), 

62(s ) = (Id + p21) o (Id + p a l ) ( f 1 2 ( 8  , O) + ]22 o (Id + p~-l) 

o 

A1 = (Id + p~-l) o (Id + p3)(d3 

+ 

A 2 = (Id + p21) o (Id + p3)(d3 

+ 

(Id + p~l)(fll(s, 0))), 

+ Yl o (Id + p2 i) o (Id + p3)(V2 + d2) 

vl + di), 

+ 72 o (Id + p~-~) o (Id + p3)(vl + dl) 

V 2 H- d2). 

(86) 

(87) 

With these bounds on the outputs we can use the UO property to establish bounds 
on the states xi. In particular, let (~o, DO), i =  1, 2, be two couples satisfying (9) 
respectively for the subsystems (13) and (14). In this case any solution x(t) of (13)-(14) 
satisfies, for all t _ 0, 

[Xl(t)l "< 0~0(]XI(0)] -~ [](U:t , y2Tt, ylTt)T[]) -1-- O O, (88) 

IXz(t)l < ce~ + II(u2 v. y~t, Y2T,)TI[) + D~ (89) 
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From (86), [gg), (89), and (6), we have 

tlx]t < (~o + ~o) o (2Id + 261 + 262)(Ix(0)1) 

+ [(a ~ + ~~ + 2A 1 + 2A2) + D O + D ~ 

:= 6,(/x(0)l) + A, 

:= so (90) 

with 6i and Ai (i = 1, 2) defined in (87). 
Wi~h this hotrod on the st~.te, inequalitie~ (B6) can he completed as follows: Let 

tlo -= ~, t2o = ~, t2i = t ,  t l l  ~ , t , ( 9 1 )  

and sub~titttte (77) in (78), so that we have, for any t >_ 0 and r 2 0, 

(, ) +V2 ~ ( l Y z w , §  s~, + o  l +d~  , (92] 

Thus, by applying (6) and using (75), we obtain, for all t > 0 and z > 0, 

t) ((  ,))1 [.V2(t+z)l~< fl: =,~ + y T _ o ( l d + p t  1)o(Id+p~-t )  fla s~,j, 

-1 
+ (Id + Pz) ( Yz[t/4+r ~)11) -k- 72 o (Id + p;~) o (Id + p3)(v~ + d~) 

+ v 2 + d z + d 3. (93) 

Note tttat the term between brackets ir~ (93~ is a function of c~ass K L  with respect 
to (so, t). Farther, 

~2 o (Id + p~-~) o (Id + p3)(v~ + d~) + v2 + d2 + d~ 

= [(Id + p~-~) o (Id + p~)]-a(z~z). (94) 

So we apply Lemma A.I to (93) with T fixed, z(t) = lyz(t + r)l,/~ = �88 2 = (ld + P3), 
and p = (Id + p2) -1, It follows, using symmetry, that two functions/~1 and J~2 of 
class K L  exist such that, for all t > 0 and z > 0, 

(9s) 
[y2(t + z)l < flz(s~, t) + A2. 

Then from (86) on one hand and (95) on the other hand, we have, for all t > 0, the 
two inequalities 

]y(t)l < ~x(so~, 0 +/~2(s~, t) 4- A~ + A2, (96) 

[y(t)l <_ (61 + 62)(1x(0)1) + A1 + A2. (97) 

This is not yet the IOpS property since s~ (in (90)) depends not only on x(0) but 
also on u and the dis. To split this dependence, we define the foitovr function 
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on ~a+: 

a(s, A, t):= min{(/~l +/~2)(63(s) + A, t), (61 + 62)(s)}. (98) 

Then, for any function a of class K~o and for each (s, A, t), we have 

a(s, A, t) < a(s, ~-i (s), t) + a(~(A), A, t) (99) 

-< (/~1 + f12)(63(s) + ~-l(s), t) + (61 + 62) o a(A). (100) 

The first inequality follows from considering the two cases, A _< ~-l(s) and s _< a(A), 
and using the fact that, for each t, the function a(s, A, t) is increasing as s and A 
increase. 

In view of (90), (98), and (100), (96) and (97) imply, for all t _> 0, 

[y(t)/_< a(Ix(0)l, A 3, t) + A 1 + A 2 (101) 

(ill -b ~2)(63([X(0)[) q- ~-l(Ix(0)l), t) + (61 + 62) O ~(A3) --]- A 1 ---[- A2. (102) 

The first term on the right-hand side of (102) is a class KL function of ([x(0)[, t). The 
definitions ofA i in (87) and (90), the fact that  u = (u~, u2V) T, and simple computat ions 
based on (6) give, using the notat ion (19), 

aa < rl(rlull) + dl,  (103) 

A 2 ~ r2(llull ) q- t~ 2, (104) 

Aa < (ao + ao) o (4Id + 4rl + 4r2)(][ulP) + (ct ~ + a~ + 4d2) + D O 

+ D ~ (105) 

where 

dl = (Id + p~-l) o (Id + P3) o (Id + p f l ) [ d  I + d3 + 7~ o (Id + p21) 

o (Id + P3) o (Id + p31)(d2)], (106) 

d2 = (Id + p21) o (Id + P3) o (Id + p~-l)[d 2 + d a + ~Y o (Id + p l  1) 

o (Id + P3) o (Id + pal)(dl)] .  (107) 

Then, using (6) again, we have 

(61 + 62) o a(A3) < (61 + 62) o a o (2~ ~ + 2~ ~ o (4Id + 4r 1 + 4r2)(llu]l ) 

+ (61 + 62) o a((2~ ~ + 2~~ + 4d2) + 2D ~ + 2D~ (108) 

Now, given any function r 3 of class K~o, we can pick a such that  

(61 + 62) o ~ o (21 ~ + 21 ~ o (4Id + 4r 1 + 4r2)(s ) _< r3(s), Vs > 0 (109) 

(for example, ~ = (Id + 61 + 62) -1 o r3 o (Id + (21 ~ + 21 ~ o (4Id + 4r 1 + 4r2))-1). 
This in conjunction with (102), (103), (104), and (108) implies the IOpS property for 
system (13)-(14) with the triple (fl, r 1 + r 2 + r3, d), where 

fl(S, t) = (~1 71- ~2)(63(S) -[- 0~-l(s), t), (110) 

d = d l + d 2 + ( 6 1 + 6 2 )  o~((2~ ~ 1 7 6  o + 2 D o ) .  (111) 
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When d, = D ~ = 0 (i -- 1, 2) and d 3 = 0 (i.e., s~ = 0), we get d = 0 implying the IOS 
property holds. Finally, the UO property for the interconnection follows from the 
UO property for each subsystem. �9 

5.2. Proof  of  Theorem 2.2 

Theorem 2.2 is a direct consequence of Lemmas 3.2-3.4 of [PJ]. 
Introduce the new variables 

(~l, . . . ,  ~,) = (P~, (~1 . . . . .  ~,) = (Pro, ~o = COo, (112) 

where (P is the (invertible) observability matrix of (F, H): 

(P = [ H T F T H  T ' ' "  (FT)"- lHV]V.  (113) 

By hypothesis, system (23) is rewritten as 

f 
~ = A~ + B(~ 1 + o0), 

~, = ~,+i + o,, 1 < i < n, (114) 

~, = (HV"- iG)u  + HF"~ + ~ , .  

Note that our assumptions imply that H F " - I G  # O. 
Following Lemma A.I of [PJ], for any function h of class K~o and each positive 

real number ~/, a smooth function ko of class K~o exists such that 

ko(s + rl) > Yl(s), Vs > 0. (115) 

Then we define 

f? k(s) = s sup (t) + ko(t ) &. (116) 
O_<t_<l 

This function is of class K~, is convex, and satisfies 

k(s + tl) > ko(s + tl) >_ h(s) ,  S~s(S ) >_ k(s), Vs > O. (117) 

In (115) ~/can be chosen as 0 whenever h is linearly bounded on a neighborhood 
of 0. Since (A, B) is stabilizable, a matrix K exists such that A - B K  is stable. Let 
P be the positive definite solution of 

(A -- B K ) T p  + P(A -- BK)  = - - I  (118) 

and consider the function 

Along the trajectories of 

Vo( 0 = k(~vP~). (119) 

= A~ + B(u o + Oo), (120) 

the time derivative of V o satisfies (using (117)) 

l) o - dk(~vP~)[-~T~ + 2~VPB(uo + K~ + ~o)3 
a s  

(121) 

_< -2max(P) -1Vo + ~Zo (122) 



Small-Gain Theorem for ISS Systems and Applications 115 

provided that we take 

u o = - K ~  - ~s (~TpOBTp~"  (123) 

By applying recursively the generalization of the adding one integrator technique 
given in Lemmas 3.2 and 3.3 of [P J], we get a smooth, positive definite and proper 
function V,(~, ~i . . . . .  ~,) and a smooth function u,(~, ~i . . . . .  ~,) such that (see [PJ]  
and p. 135 of [J]) 

u,(0) = 0, Vo(0 < V~(~, ~1 . . . . .  ~,), V(~, ~1 . . . . .  ~.) ~ ~+". (124) 

Along with the solutions of (114) in closed loop with u, + v, the derivative of this 
function V~ satisfies 

('n(t) <-- --  2max(P) -1Vn(~(t), ~1 (t) . . . . .  ~n(t)) 

(n + t ) ( n  + 2) 
+ sup {(l~(t)l + ]v(t)l) 2} (125) 

2 i~(o,i ...... } 

for all t in [0, T), the domain of definition of the right maximal solution (~(t), ~(t), 
. . . ,  ~,(t)). A direct application of the Gronwall lemma implies, for all t in [0, T), 

2)),max(P) ( )2 (n + 1)(n + sup {r l~l l  + Ilvll} �9 V.(t) _< e-am~x(m-"V.(O) + 2 \i~ {o,i ...... ) 

(126) 

Since V, is positive definite and proper, two functions aa and a2 of class K~ exist 
such that 

al(l(~, ~1,. . . ,  ~,)sl) < V,(~, ~ ,  . . . ,  ~,) _< az(](~, ~ ,  . . . ,  ~,)vl). (127) 

From (126) and (127), it results that the solutions (~(t), ~(t),  . . . ,  ~,(t)) are bounded 
on [0, T) and then T = + ,c .  In fact, the closed-loop system (114) is ISS with 
(~o, ~a . . . . .  ~, ,  v) as input. Finally, by (112), we conclude that the original system 
(23) is ISS with (COo, CO, v) as input. 

It remains to prove the IOpS and IOS properties. In view of (117), (119), and 
(124), we have 

(~,7~(v,(C, ~, . . . ,  ~,)) + ~)~/~ 
ICI -< 2min(p)l/2 , V(~, ~ . . . .  , ~,) e R ~+". (128) 

Then, using (6) and (126), we obtain, for all t > 0, 

1 #1112 
~(t)l _< 2min(P)ll2 7ii(2e -i"a'(e) 'tVn(O))i/2 q- 2min(p)l/~ 

1 
+ 2 ,p-i/z I-Yil(( n + 1)(n + 2)2max(P)(1 q- Iqb[)2(]I(co T, 090, v)Tl i )2)]  i/z, 

mint ) 
(129) 

with @ in (113). By (127) and (112), the first term on the right-hand side of (129) is 
a function of class K L  of ([(((0), ~(0)) T f, t). The second term is equal to zero if 7i is 
linearly bounded on a neighborhood of 0 since, as we saw, ~/= 0 in this case. Then, 
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given any function 7 of class K~, it is possible to choose a function 71 of class Ko~ 
such that 

1 
)vmin(p)l/2 [Tt-l((n q- 1)(n + 2)2max(P)(1 + [Ol)2s2)] 1/2 < 7(s), Vs >_ 0, (130) 

and such that 71 is linearly bounded on a neighborhood of 0 whenever 7 -1 is. From 
this, the third term on the right-hand side of(129) is dominated by 7( [1( c~ v) v I1). �9 

5.3. P r o o f  o f  Corol lary  2.3 

From Proposition 3.1, the z-subsystem with f ( x ,  z) as output and x as input has the 
SUO property and is IOpS. Let 75 be its gain function which, without loss of 
generality, we can assume to be of class K w. By applying Theorem 2.2 to the 
x-subsystem of (24) with 

l = 1 ,  n = 0 ,  A = 0 ,  B =  1, (131) 

and 

H ~  = u, ~o o = f ( x ,  z), 7 = �89 -1 := 7~, (132) 

we get a smooth feedback law u,(x),  which is zero at zero, such that the x-subsystem 
of(24) in closed loop with u = u,(x)  + v is IOpS with ( f ( x ,  z), v) as input, x as output, 
and 7~ as gain function. We remark that by defining 

~(x)  = u,(x)  - K x ,  (133) 

with K any nonnegative real number, the same result holds with u -- ~9(x) + v. So, 
in particular, the small-gain condition (18) is satisfied between ~'z and 7~ with sz = 0. 
With Remark 4, we know that the x-subsystem has the SUO property with a d ~ = 0 
in (28). Hence the first point of Corollary 2.3 follows from Proposition 3.1 and 
Corollary 3.1. 

Point 2 follows in the same way since, in this case, the x-subsystem of (24) in 
closed loop with u = O(x) + v is made IOS with gain 7~. 

Next, under the conditions of point 3 and according to Proposition 3.1 the 
z-subsystem with x as input and f ( x ,  z) as output is IOS. Moreover, from Lemma 
A.2, the z-subsystem is ISS with a gain which is linearly bounded on a neighborhood 
of 0. From the smoothness of f,  we can obtain a gain from input to output which 
is also linearly bounded on a neighborhood of 0. The GAS property follows readily. 

Finally, to prove the LES property, we observe that, when we regard x as the 
output of system (24), (24) is hyperbolically minimum-phase with relative degree 1 
(see [BI]). From Theorem 24.I of [L1] on the conditions for stability supplied by 
the first approximation and the root locus technique of [E], by choosing K large 
enough, the partial-state feedback 0(x) renders the zero solution of (24) LES. �9 

6. Conclusions 

The notion of input-to-output practical stability (IOpS) introduced in this paper is 
a natural generalization of Sontag's input-to-state stability property. We have 
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shown that the notion IOpS allows us to establish a generalized small-gain theorem 
(see Theorem 2.1 and Corollary 2.1) and a gain assignment theorem (see Theorem 
2.2). The first one extends the small monotone gain theorem proved by Mareels and 
Hill in [MH] by including a stability result of Lyapunov type. With these results, 
we have been able to prove a result in the spirit of the center manifold reduction 
theorem (see Proposition 4.1), to give conditions under which a linear system with 
nonlinear, stable dynamic perturbations is globally asymptotically stabilizable (see 
Proposition 4.2), and finally to show that the ISS property can be propagated 
through integrators by choosing an appropriate partial-state feedback (see Corol- 
lary 2.3). The latter provides an interesting tool for control design. In particular, for 
a class of nonlinear control systems composed of a chain of dynamically perturbed 
integrators, we showed how to design a robust partial-state feedback to render all 
the trajectories of the system bounded. A sufficient condition for the global asymptotic 
stabilization of the whole system is that the ISS inverse dynamics are locally 
exponentially stable. 
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A p p e n d i x  

The following technical lemmas have been used in the proofs of Theorem 2.1 and 
Corollary 2.3. 

Lemma A.1. Let fi be a function of class KL, let p be a function of class K such 
that Id - p is of class K~, and let 12 be a real number in (0, 1]. For any function 2, 
such that 2 - Id is of class K~, a function fl of class KL exists such that, for any 
nonnegative real numbers s and d and any nonnegative real function z(t), defined and 
essentially bounded on [0, + ~ )  and satisfying 

z(t) ~ fl(s, t) + p(llzt.,.~)ll) + d, Vt ~ 1-0, + ~ ) .  (134) 

we have 

z(t) ~ fl(s, t) + (Id -- p)-i o 2(d), Vt ~ [0, + ~ ) .  (135) 

P r o o f .  
~(t) to any function z(t) satisfying (134): 

~(t )  : =  z(t)z(IJzt~,~o)ll - ( I d  - p ) - x  o 2 ( d ) ) ,  ( 1 3 6 )  

where Z(x) = 1 if x > 0 and g(x) = 0 if x < 0. Note that, since 0 < # < 1, 

Ipzt~,,~)ll - ( Id  - p ) - i  o 2 (d )  _< 0 ~ z(t) < (Id - p ) - i  o 2(d) ,  (137)  

Ilzt.,.~)ll - (td - p ) - i  o 2(d) > 0 ~ d < 2 -~ o (Id - p)(llzt.,.~)l[). (138) 

With the function 2 fixed as stated in the lemma, we associate a function 
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F rom (134), (136), and (138), the function ~ satisfies 

~(t) _< fi(s, t) + p(lizb,,oo)ll), V t e  [0, +oe), (139) 

where p is defined by 

:= p + ~-t  o (Id - p). (140) 

Note  that  the function ~ is of class K~ such that  Id - ~ is of class K~o. If we find a 
function/~ of class KL such that  

~(t) _< D(s, t), vt  > o, (141) 

then, by definition of ~ and (137), (135) holds for z. The proof  of existence of such a 
funct ion/ )  follows exactly the same lines as in Lemma 2.1.4 and Proposi t ion 2.1.5 
of [L2]  (see also proofs of Lemma 3.1 and Proposi t ion 2.5 of [LSW])  once the 
following claim is established: 

Claim. For any r and e > O, a nonnegative real number T exists such that if  ~(t) 
satisfies (139) with s <_ r, then we also have 

~(t) _ ~, Vt _> T. (142) 

Proof.  Let to = 0 and t t ~ 0 be the first t ime instant such that  

fl(r, t l ) < _ ( I ~ ) o ( I d - ~ ) - ~ ( f l ( r , O ) ) .  (143) 

Then, for any integer n _> 1, let t ,+l > 0 be the first time instant such that  

( ~ - ~ )  ( I d  2 P)"  fl(r, t ,+l)  _< o - -  o (Id - -fi)-~(fl(r, 0)). (144) 

Since fi is a function of class KL, such a t~+l exists. Then  we define a sequence of 
nonnegat ive real numbers  {t,}n~_l as follows: {1} 

to = 0, t ,§  = max t ,+i,  ~ t ,  �9 (145) 

Finally, we remark that, for each x > 0, ((Id + ~)/2)"(x) is a decreasing sequence 
and converges to zero as n goes to m. 

Now we prove by induction that  if g(t) satisfies (139) with s ___ r, then we have, for 
all n > 0, 

~(t) _ - -  o (Id - ~)-l(fl(r,  0)), Vt _> t-,. (146) 

Indeed, s _< r and (139) imply 

~(t) _< (Id - ~)-l(fl(r,  0)), Vt >_ 0. (147) 

This implies (146) for n = 0. Then  suppose (146) holds. With (139), we get ( ; ;  1 
5(t)  <_ fl(r, t) + -fi o --Id P o (Id  - -fi)-~(fl(r, 0)),  Yt > - f . .  (148)  

# 
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This in conjunction with (144) implies 

~(t) < o (Id - ~)-l(fl(r, 0)), gt > t,+x. (149) 

Therefore, (146) holds for every nonnegative integer n. This concludes the proof of 
the claim and, as mentioned above, the proof of the lemma with Lemma 2.1.4 and 
Proposition 2.1.5 of [L2] or proofs of Lemma 3.1 and Proposition 2.5 of [LSW]. 
(An idea about these results can be found in Appendix B.3 of [K].) �9 

The following lemma follows straightforwardly from Theorem 4.10 of [K] (see 
also Theorem 1 of [VV] and Lemma 6.1 of [$2]): 

Lemma A.2. Let ~ = q(z, u) be an ISS system with u as input, and assume that 
(Oq/~z)(O, O) is an asymptotically stable matrix, then a function fl of class KL, a 
function 7 of class K, and two positive real numbers t l and k exist such that 

?(s) ___ ks, Vs e [0, t/I, (150) 

and, for any measurable essentially bounded control u, 

[z(t)l _< fl(lz(0)[, t) + ~(llull). (151) 

[BCL] 

[BI] 

[CL] 

[DV] 

[E] 
[FK] 

[H] 
[I] 
[J] 

[JP] 

[KKM1] 

[KKM2] 

[K] 
[El] 

[L23 

References 

B. R. Barmish, M. Corless, and G. Leitmann, A new class of stabilizing controllers for 
uncertain dynamical systems, SIAM J. Control Optim., 21 (1983), 246-255. 
C. Byrnes and A. Isidori, Asymptotic stabilization of minimum phase nonlinear systems, IEEE 
Trans. Automat. Control, 36 (1991), 1122-1137. 
Y. H. Chen and G. Leitmann, Robustness of uncertain systems in the absence of matching 
assumptions, lnternat. J. Control, 45 (1987), 1527-1542. 
C. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties, Academic Press, 
New York, 1975. 
W. Evans, Control Systems Dynamics, McGraw-Hill, New York, 1953. 
R. A. Freeman and P. V. Kokotovi6, Backstepping design of robust controllers for a class of 
nonlinear systems, Proc. IFAC NOLCOS "92 Symp., pp. 307-312, Bordeaux, June 1992. 
J. K. Hale, Ordinary Differential Equations, Krieger, 1980. 
A. Isidori, Nonlinear Control Systems, 2nd edn., Springer-Verlag, Berlin, 1989. 
Z. P. Jiang, Quelques r6sultats de stabilisation robuste. Applications fi la commande, Docteur 
en Math6matiques et Automatique, Ecole des Mines de Paris, 1993. 
Z. P. Jiang and L. Praly, Technical results for the study of robustness of Lagrange stability, 
Systems Control Lett., 23 (1994), 67-78. 
I. Kanellakopoulos, P. V. Kokotovi6, and A. S. Morse, Systematic design of adaptive control- 
lers for feedback linearizable systems, IEEE Trans. Automat. Control, 36 (1991), 1241-1253. 
I. Kanellakopoulos, P. V. Kokotovi6, and A. S. Morse, A toolkit for nonlinear feedback design, 
Systems Control Lett., 18 (1992), 83-92. 
H. K. Khalil, Nonlinear Systems, Macmillan, New York, 1992. 
A. Liapounoff, Problkme 9~n~ral de la stabilitd du mouvement, Annales de la Facult6 des 
Sciences de Toulouse, deuxiSme s6rie, Tome IX, 1907, Traduit du Russe par M. t~douard 
Davaux. 
Y. Lin, Lyapunov function techniques for stabilization, Ph.D. thesis, Rutgers University, 
1992. 



120 Z.-P. Jiang, A. R. Teel, and L. Praly 

[LS] 

[LSW] 

[MH] 

[MT1] 

[MT2] 

[P J] 

[R] 

[SKS] 

[$1] 

[$23 

is3] 

[$4] 

[s5] 

[SKI 

[T1] 

[TP] 

[T2] 

[T3] 

[T4] 

[vv] 

Z. Lin and A. Saberi, Robust semi-global stabilization of minimum phase input-output 
linearizable systems via partial state feedback, 1EEE Trans. Automat. Control, submitted. 
Y. Lin, E. D. Sontag, and Y. Wang, Recent results on Lyapunov theoretic techniques for 
nonlinear stability. Report SYCON-93-09. 
I. M. Y. Marcels and D. J. Hill, Monotone stability of nonlinear feedback systems, J. Math. 
Systems Estim. Control, 2 (1992), 275-291. 
R. Marino and P. Tomei, Dynamic output feedback linearization and global stabilization, 
Systems Control Lett., 17 (1991), 115-121. 
R. Marino and P. Tomei, Self-tuning stabilization of feedback linearizable systems, Proe. 
IFAC ACASP "92, pp. 9-14, Grenoble, 1992. 
L. Praly and Z. P. Jiang, Stabilization by output feedback for systems with ISS inverse 
dynamics, Systems Control Lett., 21 (1993), 19-33. 
L. Rosier, Homogeneous Lyapunov functions for homogeneous continuous vector fields, 
Systems Control Lett., 19 (1992), 467-473. 
A. Saberi, P. V. Kokotovi6, and H. Sussmann, Global stabilization of partially linear compos- 
ite systems, SIAM J. Control Optim., 28 (1990), 1491-1503. 
M. G. Safonov, Stability and Robustness of Multivariable Feedback Systems, MIT Press, 
Cambridge, MA, 1980. 
E. D. Sontag, Smooth stabilization implies coprime factorization, 1EEE Trans. Automat. 
Control, 34 (1989), 435-443. 
E. D. Sontag, Remarks on stabilization and input-to-state stability, Proc. 2&h IEEE Conf. 
on Decision and Control, pp. 1376-1378, 1989. 
E. D. Sontag, Further facts about input-to-state stabilization, IEEE Trans. Automat. Control, 
35 (1990), 473-476. 
H. Sussmann, Limitations on the stabilizability of globally minimum phase systems, IEEE 
Trans. Automat. Control, 35 (1990), 117-119. 
H. Sussmann and P. Kokotovi6, The peaking phenomenon and the global stabilization of 
nonlinear systems, 1EEE Trans. Automat. Control, 36 (1991), 424-440. 
A. Teel, Semi-global stabilization of minimum phase nonlinear systems in special normal 
forms, Systems Control Lett., 19 (1992), 187-192. 
A. Teel and L. Praly, Tools for semi-global stabilization by partial state and output feedback, 
SIAM J. Control Optim., to appear. 
J. Tsinias, Sufficient Lyapunov-like conditions for stabilization, Math. Control Signals 
Systems, 2 (1989), 343-357. 
J. Tsinias, Sontag's "input to state stability condition" and the global stabilization using state 
detection, Systems Control Lett., 20 (1993), 219-226. 
J. Tsinias, Versions of Sontag's "input to state stability condition" and the global stabilization 
problem, SIAM d. Control Optim., 31 (1993), 928-941. 
M. Vidyasagar and A. Vannelli, New relationships between input-output and Lyapunov 
stability, IEEE Trans. Automat. Control, 27 (1982), 481-483. 


