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ON THE GLOBAL DYNAMICS OF ADAPTIVE SYSTEMS:
A STUDY OF AN ELEMENTARY EXAMPLE*

MARTIN D. ESPAIIA- AND LAURENT PRALY:I:

Abstract. The inherent ngnlinear character of adaptive systems poses serious theoretical problems for the
analysis of their dynamics. On the other hand, the importance of their dynamic behavior is directly related to
the practical interest in predicting such undesirable phenomena as nonlinear oscillations, abrupt transients,
intermittence or a high sensitivity with respect to initial conditions. A geometrical/qualitative description of
the phase portrait ofa discrete-time adaptive system with unmodeled disturbances is given. For this, the motions
in the phase space are referred to normally hyperbolic (structurally stable) locally invariant sets. The study is
complemented with a local stability analysis of the equilibrium point and periodic solutions. The critical character
of adaptive systems under rather usual working conditions is discussed. Special emphasis is put on the causes
leading to intermittence. A geometric interpretation of the effects of some commonly used palliatives to this
problem is given. The "dead-zone" approach is studied in more detail. The predicted dynamics are compared
with simulation results.
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1. Introduction. It is an already well-known fact that adaptive systems may exhibit
very complicated dynamics. For instance, Anderson 1985 ), first showed that, although
bounded, abrupt and explosive transients may occur in the presence of disturbances.
Such undesirable behavior is not exclusive to adaptive control schemes inasmuch as it
can occur in any system with parametric feedback (i.e., whose parameters are functions
ofthe signals generated by the system itself). Other examples are output error and serial-
parallel identification schemes. The nonlinear character of these systems poses serious
theoretical problems for its dynamic analysis. However, from a practical point of view,
a successful implementation is based on a thorough knowledge of the circumstances
under which nonlinear oscillations, abrupt transients, or even intermittency may occur.
The study of the sensitivity of the solutions with respect to the initial conditions is also
of obvious importance given that, as pointed out by Bergr, Pomeau, and Vidal (1984),
this circumstance happens to be intimately related with the existence of strange attractors
(and chaos). The influence of external inputs on the overall behavior also needs careful
attention. The above considerations have been at the origin of increasing interest during
the past years on the dynamic description of adaptive systems and, more specifically, in
the explanation of the occurrence of intermittent bursts. In the presence of stochastic
disturbances, Anderson 1985 ), suggests that "bursting" is a consequence of nonpersis-
tently exciting reference signals. However, as shown in this paper, intermittency may
subsist and (as already shown by Narendra and Anaswamy (1986)) even solutions with
unbounded parametric components may take place ifthe reference, although persistently
exciting, has not enough energy. Jgidane-Sgidane and Macchi (1988) have proposed a
heuristic explanation to the intermittent phenomenon and attributed to it a "self-stabi-
lizing" property implying bounded signals ofthe closed-loop adaptive linear system. The
general validity of the last conclusion has, however, been already criticized by Egardt
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(1979), who has established that bounded perturbations and reference signals may produce
unbounded outputs unless the parameters remain bounded. More recently, intermittent
bursts have been studied extrapolating a local analysis (around critical points such as
equilibria and 2-periodic solutions) performed using bifurcation techniques (Golden and
Ydstie (1988); Rey, Bitmead, and Johnson (1991)). Analysis based on averaging ap-
proximations are performed in Sethares and Mareels 1991 and Espafia 1991 ). The
latter shows that intermittency with either a continuous change (in average) or almost
fixed parameter values may take place, the latter case being associated with self-oscillating
modes. The use of averaging can rigorously be justified by the existence of the attractive
locally invariant set. A concept is developed in detail in this paper for a particular example
(see also Praly (1990)). We think, however, that the key issue to understand, and thus
to prevent, undesired dynamics, is to address the problem of the global description of
the trajectories in the phase space. To our knowledge, this is the first time that a global
geometrical description ofthe phase portrait has been given for an adaptive system. Only
local results have been obtained before. They are almost all contained in Ljung and
Soderstrom (1983), Anderson et al. (1986), Riedle and Kokotovic (1986), and Ben-
veniste, Metvier, and Priouret (1987). Although this analysis is particular to our example,
more general conclusions can be obtained, since we use mathematical tools as integral
sets (Praly (1985), 1990); Riedle and Kokotovic (1986)) or the existence of periodic
solutions Ljung 1977 ); Bodson et al. 1986 ); Pomet, Coron, and Praly 1990 )), which
have been shown to be applicable in more general situations. The analysis is made in a
deterministic context and special emphasis is put on the causes leading to intermittent
bursting.

2. Problem formulation. A sufficiently general formulation ofa linear discrete-time
system in closed loop with an adaptive controller is given by the following equations
(see, for instance, Pomet, Coron, and Praly 1990)):

y(t + 1) A(O)y(t) + B(O)w(t), O(t + 1) O(t) + #C(y(t), O(t), w(t)),

where # is usually used to control the adaptation speed; w(t) represents all the external
inputs, including the output reference signal r(t) and any unmodeled disturbances. The
first equation is the regressor model and the second is the parameters updating algorithm.

In what follows, a discrete-time first-order plant with an adaptive proportional output-
feedback controller is considered. The objective is to regulate the plant’s output to a
constant value r. Any possible mismatch between the model, used for the control purposes,
and the plant is represented by the unknown and unmeasurable equation error d(t):

d(t) y(t) ay(t 1) u(t 1).

We refer to "the ideal case" when d(t) 0. Normally, d(t) is the result of unmeasured
disturbances or unmodeled dynamics. In our analysis, d(t) is supposed constant. This
particular situation arises in practice when, due to a (possible temporary) misalignment
in the actuator, a bias exists in the effective control action applied.

A proportional controller has as an effect to shift the pole of this plant, and if the
parameter a is known, any possible stable value can be assigned for it. When a is unknown,
the following adaptive controller with a normalized gradient type updating parameter
equation (Goodwin and Sin (1984), also called stochastic approximation by Egardt
(1979)),

(2) u(t) -O(t)y(t) + r

(3) O(t) O(t- 1) + u
y(t )(y(t) r)
(1 +y(t- 1) 2)
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guarantees, for the ideal case and for any a N, that y(t) -- r when - . Moreover,
if r 4: 0, 0(t) -- a as -- . The choice of a normalized-type algorithm (plus, perhaps,
a uniform bound for the parameters not considered here) is crucial in practice to assure
bounded signals, particularly when (bounded) disturbances are present Egardt 1979 ).

The system in closed loop with the controller (2), (3), results in

y(t + 1) -(t)y(t) + d + r

(") y(t)(d- p(t)y(t))
/(t + /(t) + u + y(/)2

where 0 a. When d is nonzero, the change ofvariables x y/d; p ; rd,
transforms (Z) into

x(t + 1)=-p(t)x(t) + +
x(t)(1 p(t)x(t))

p( + p( t) + dZt + d2xZ( t)

This variable rescaling puts in relief the role played by the reference-to-disturbance re-
lationship c, called by Narendra and Annaswamy (1986) "persistent excitation of the
reference relative to the disturbance." Moreover, it allows us to better describe the system’s
behavior for r and d close to zero. As discussed later, this (slightly disturbed regulation
regime) is a very critical working condition. In the rescaled system, d2 controls the ad-
aptation speed of the algorithm. For our purposes we can thus assume that u 1. The
developments that follow can be done for the original system (Z1) replacing, when ap-
propriate, the statement "d2 sufficiently small" for "u sufficiently small." In the first
case, the slow adaptation condition is a consequence ofthe low level ofthe signals involved.

We can easily verify that Z has a fixed point in (, x) / a, a) if and only if c
is nonzero and that it is unique if and only if a 4: -1. In terms of the original system,
this equilibrium corresponds to the output equal to the reference signal. The control
objective is thus perfectly achieved at the fixed point.

The simulations show that for small values of d2, the behavior of the solutions of
(;) is characterized by the following stages.

(a) Explosive stage: growth ofthe modulus ofthe x-component in the "instability"
set {IPl > 1}.

(b) Reinjection stage: decrease of the modulus of the -component in the set Ix]
"large", I1 > until ]b] < 1.

(c) Implosive stage: decrease of the modulus of the x-component in the "stability"
set{]] < 1}.

(d) Drift-ejection stage: slow growth of l] leading a solution from the "stability"
set to the "instability" set.

(e) When (d) does not occur, the desired working condition is globally attractive.
Stages (a)-(c) are very short in time and, under certain conditions, stage (d) may

be performed very slowly. In such a case, two successive occurrences of stages (a)-(c)
are separated by a very long period of time. The result is an intermittent phenomenon,
as studied by Pomeau and Manville (1980), characterized by a succession of "bursts"
on the x-component separated by long quiescent periods. In practice, some palliatives
(such as dead zone or leakage (Egardt (1979)), normalization (Praly (1983)), internal
model principle (Elliott and Goodwin (1984)), filtering (Anderson et al. 1986 )), etc.)
are used to avoid intermittency and other nondesirable behaviors. However, if these
remedies are not appropriately chosen, a qualitatively similar behavior may be observed
for these more intricate cases (see Praly 1988 )). The effect ofsome ofthese modifications
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in our example is discussed in 6 and 7. To give a geometrical explanation of stages
(a)-(e), the existence of two locally invariant (under the action of Z )) sets is demon-
strated using the graph transform technique (Shub (1987)). The first one is repellent,
explaining stage (a). The second one is attractive and allows us to explain stages (c),
(d), and (e). Finally, stage (b) results from (a), when, during bursts, the disturbance d
becomes negligible with respect to the x-component of the solutions. These locally in-
variant graphs are easily computed when the if-component remains constant. For this,
we consider the set of all bounded solutions of (Z) when d 0 given by

(4) SO (,l/, h(1/,/)) [i2/h(l/,/) --.[- o)/( -[-- ), 1 =/= --1}.

So, called the "frozen parameters invariant set," is invariant under the map Zd=0 (i.e.,
Zd=O (So)

_
So) and has exactly the properties associated with (a) and (c). It seems

reasonable to expect that, when dl is not zero but still small, locally invariant graphs,
approximated by So, still exist. The idea of using locally invariant sets or, more generally,
locally integral sets, has been introduced by Riedle and Kokotovic (1986) and Praly
(1985), (1990). However, their existence was only established for the "stability" set
I1 < and locally with respect to the x-components.

The paper is organized as follows. In 3, the existence and properties of locally
invariant sets are established. Critical elements and locally invariant sets are combined
in 4 to obtain theoretical results on the system global dynamics. These results are
interpreted and compared with simulations in 5. In 6, the effects of introducing a
"dead-zone" in the algorithm 3 is discussed. Finally, 7 is dedicated to our concluding
remarks. The critical elementsmfixed points and periodic solutions--of (Z) and the
corresponding nearby local behavior needed to complement the global analysis are con-
sidered in the Appendix.

3. Locally invariant sets. In 2, we observed that for d 0, the set So is invariant
under Za=0. Now from the definition of ), when (t) and x(t) are such that + /(t)
and + (t) + d2x(t)( + x(t)) are nonzero we have

x(t + 1)-1 + (t + 1)
-(t) x(t)-1 + (t)

d2( + a)x(t)(x(t)/(t) 1)
(1 + if(t))(1 + if(t) + dZx(t)(1 + x(t)))

The presence of d2 in the second term on the fight-hand side shows that So is close
to being a locally invariant set of (2:) with d nonzero. Finally, for d 0, this ex-
pression proves that (i) So fq I(ff, x)]l ffl > is exponentially repellent and (ii) So
{ (, x) l[ ffl < is exponentially attractive. These remarks lead us to look for locally
invariant sets close to So, which are repellent in the set {lkl > } and attractive in the
set {lffl < 1}. These sets will be used as references for the global description of the
solutions of 2 ).

3.1. The repellent locally invariant set (RLIS). Given any nonzero d, let e be the
smallest positive root of

( [d[ )-2[l+a[ld[(l+e+ [d[)
() X()= +
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For any function M" I] => + e } -- , we define its image by the operator T as

(6) TM p + a M(b4(b))

where qSM is defined in terms of the function

(7) M(’) b + d2M()

as follows:

(1 M())
+ d2M2()

sup(1 + e, M()) if >= + e,
(8) bM(b)

inf(--1 e, M(b)) if < --1 e.

By definition, M:{ Ib] + e } {] + e is a continuous function and M()
is positive. We are interested in the operator T because, if it has a fixed point H, then H
satisfies the local invariance propey:

(9) H(H())= + a- fill(if) if @H() > 0, I1 > + , I@H()I > + e.

The graph {(, n(@))/l@J + e} has two connected components in the plane
(if, x). They are such that, with its initial condition in one of these sets, any solution
of (E) will stay in it unless its if-component leaves its corresponding definition interval

ff > + e or < -( + e) }. To exhibit the fixed point H, we consider the subset
off({Jfl 1 + e},):

{M[O(M, O) mo
and sgn (ff) sgn (if2) M(ff) M(ff2)[ m Iff ff2l }.

It is a complete metric space with the distance 0 defined as

O(M,, M2) sup M(k) M2()[.
{lffl-l+e}

The constants too, m are

I1 +a[ 211+a1(10) mo= ml

The next lemma and the uniform contraction theorem (see Hale (1980)) allow us to
prove that T has a fixed point in M.

LEMMA 1. For any nonzero d, let e be given by (5), then (i) T maps 80 into
(ii) For M, 1, 2, in 3, we have O( TM, TM2) <= rO(M, M2), with

Idl)+ldlm, l+i+e <1"

Proof. From (6) and definition (10), it can be easily shown that for all M 3,
O( TM, O) <= too. The rest of the proof is obtained by showing that for all M, M2 e 3,
ifsgn (ff) sgn (if2)then TM(ff) TM2(k2)] =< mlffl ff2l + rO(M,M=). For
this, use is made of 8 to write t(ff 4(ff2) >= q(ff M(ff) 1. The details
can be consulted in Espafia and Praly (1988).

Another important property ofH is the following. Let (ko, Xo) 6 I%1 > / e }
I. We denote by (, xl) (0, x0) its image by (Z). Suppose that sgn (kl)
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sgn (o) and [b[ > + e. With Lemma 1, the definition (7), (8), and the property (9)
we have

xo- H(o)l

() _-<

H(@) x

o
H(l) Xl

o

H(dpH(O))- H(/)
o

+ml
1/./0

m
sup

O ( x(1- oX) )-x + dx IH(o)

dl )Ill(Co)- xol+ mlldl 1+

+(1 +e)(1-7)

Hence, since - is strictly smaller than 1, the distance from a solution to its proection,
parallel to the x-axis, on the graph of H, must increase as long as its -component stays
in the same interval > 4- e or J < -( 4- e) }. Using the above derivations and
the definitions (5), (10) it can be shown that

ml Idl( + dl/( + e))
(12) IH(O.(o)) H(,)I <

m, Idl(1 + dl/(1 + e)) Xl H(kl)l.

If we replace in (12) the value of m given by (10) and use 5 again, we obtain

0 < mldl(1 + dl/(1 + e)) < 1/2 IH(0H(@o))-- H()I < x H(@)I.

Then from the following product, computed using the definition of(Z) and the invariance
property of H,

(H(l)- Xl) 2 (H(OH(XP0)) H(I))(X1 H(6))
(X0- n(o))(X1 H(6)) +o o
we have sgn [(Xo H(g/o))(x H(g/t ))] 4: sgn (o). To summarize, we have established
the following theorem.

THEOREM (the RLIS). For any nonzero d, let e be given by (5). There exist a
bounded Lipschitz continuousfunction H, defined on [$[ >= + e }, with bound mo and
a Lipschitz constant m given by (10), such that

(i) Ifll >=1 + e, IH()I >= + e, sgn ()/_/())= sgn (), then

(13) H(H()) + a 6H(6).

(ii) There exists p positive such that (b, x) e {16] >= + e} , (, y)
(,x)e {ll >_-1 4-e} ,andb4>Oimply

(14) sgn ((x H())(y H(O))) 4: sgn (),

(15) y- H()I >-- (1 + p)lx- H()I.

(iii) Approximation of H supll_+ [H(p) h(p)]/d2 is bounded when
d2 -- 0.

Proof. Statements (i) and (ii) are already established. To prove (iii), we first note
that h, defined in (4), belongs to 0. Then, using Lemma 1, we have O(h, H) <=
O( h, Th + O( Th, TH) <= O( h, Th)/(1 -). The result is finally obtained using the
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definition ofh and Tto show that h() Th(,)l O(d2). (The details can be consulted
in Espafia and Praly (1988).)

Remarks. 1. With (i) and (ii), this theorem establishes the existence of a globally,
exponentially RLIS, given by the graph of a bounded continuous function H {]ffl >
+ e --} N which, following (iii), can be approximated by the "frozen parameter

invariant set," for d[ sufficiently small. It is important to emphasize at this point that
the repulsiveness of this graph, expressed by (15), has a global character in the sense
that it is valid for any starting point x R. This is a direct consequence of the use of a
normalized updating parameter equation (see (3) and 11 )).

2. According to the sign of its if-component, the x-component of any solution
changes side or not with respect to the graph ofH (see (14)).

3. Although T has a unique fixed point H in , H need not be the unique function
in 3 satisfying (13). This nonuniqueness comes from the arbitrariness of the function
bM, which is not determined by (;) (see the discussion about the stopping function in
Praly (1990)). In 4 (see Theorem 3 (b) and related remarks) the conditions under
which the whole RLIS or a portion of it is unique are established.

3.2. The attractive locally invariant set (ALIS). Let

(16) d.2=
// \|\/l+3ll+al_l|

211 +al2\V]l+211 +al
Taking dl in (0, d*), let 0 be the smallest positive root of

/
(17) A(r/) It/-
where no is defined by

d-n ) (l+2no)nod2

+ dn2o
2

(18) no

+ d2n

II+l

The constraint introduced on d assures that A(0)A( is strictly negative. This implies
that r/is strictly smaller than 1. Now for any d, 0 < d[ < d*, we define an operator P
acting on functions N’ --} by

(19) - O pN()N(IPN(dp)
PN(ep)

PN( r/) (resp., PN(rl 1))

if I1 w,

if 4) >-- o (resp., =< -( r)),

where N(), mapping 11 /) into Il /), is a function implicitly
defined by the next two relations:

(20)
(kv( ck + dZN( g/N(

+ dZN t/N(()

(21) I N(6)U(
(1 r/) (resp., --(1

if Iu(b)l < r/,

if /N((])) > T] (resp., < --( r/)).

We are interested in the operator P because, if it has a fixed point G, then G satisfies the
local invariance property:

(22) G(4)) -ka(4)G((ka(c)) + + a, if Il n and Ia()l =< .
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As for H in the "instability" set, the graph (, G(k))/Iql --< 7 } defines a set in the
plane (, x). It is such that, with its initial condition in this set, any solution of (2;) will
stay in it unless its -component leaves the set of "strict stability" {[[ _-< 7}.

To exhibit the fixed point G, we consider the set of "saturated" functions:

(23) Ne C(N,

(24)

which is a complete metric space with the distance

O(N1, N2):= sup { INI() N2()I }.

(1) O(N, O) <- no

(2) V,, z N, [N() N(2)[ =< nl [1 2[

N(1-7) if>_- 1-7
(3) N()=

N(-(1-7)) if _-< -(1- 7)

n 1/( + dng)no/( + 2no)d2,

Before studying the operator P acting on , we must be sure that /N((1)), implicitly
defined by (20), makes sense. For this we have the following lemma.

LEMMA 2. For any d, 0 < [d[ < d* and 7 given by (17), there exists a function
D { [[ =< 7 -+ N andpositive numbers b(no, r/l, d2), bn(no, n, d2) satisfying
for(Ni, ) in rE { [[ =< 7} and 1, 2

D(N1, ) D(N2, 2)1 --< bll 21 + bnO(N, N2),(25)

ID(N, ;)1 =< no(1 + no),(26)

D(N, 4)) N(4)- d2D)(1 $N(- d2D)).(27)

Proof. The prooftakes advantage ofthe "almost identity" character ofthe function
defined by (20) and (21) when d2 is sufficiently small. Moreover, it gives conditions on
the sizes of d2 and 7 (see (16), (17)). The details may be consulted in Espafia and Praly
1988); a more general result is also established in Praly (1990).

With this function D, we can rewrite (20) as follows:

N(p) - d2D(N, dp).(28)

The next lemma and the uniform contraction theorem (see Hale (1980)) allow us to
prove that P has a fixed point in oR.

LEMMA 3. For any d, 0 < dl < d* and 7 given by (17), we have (i) P maps cg
into qY. ii For all Ni 1, 2, in , we have O(PN PN2 -< XO(N Nz with < 1.

Proof. It can be easily checked using (18)-(21) that PN satisfies (1) and (3) of
(23). By using the properties of N, D, and the fact that I] --< 7, we obtain

(29)
PNI(O,) PN2(42)1 =< X(7, d2)O(N,, N2) + n* I1 21,

n ((1 7)nl + n0)(1 + d2b) <- nl.

Now, thanks to the choice of 7 in (17) we can show that

(30) X(7, d2) 7)( + d2bnnl) +nob,d2 + 2no)d2n
+ d2ng < 1.

The details can be found in Espafia and Praly (1988). See also Lemma of Praly
(1990).
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We next establish an important feature ofthe graph ofG with respect to the solutions
of(2). Let (fro, Xo) be an element of {11 --< (1 )} {Ixl =< } and (ff, x) its
image by (). Whenever I1 is smaller than n, from (28), (22), (19) we have

x G(@)I -< Iol IG(@o) xol + 11ol IG(@G(@I)) G(@o)I

+ IG(g/G(g/1)IIg/G(g/1) ffol
--< I@ol IG(o)- xol / (no / I&oln)l(@l)- @ol.

On the other hand, adding and subtracting G(G)( fflG(ffo)) we obtain

Ib(,) ol d2lxo(1 Xoffl) G((,))(1

=< d-(1 + + no)lXo G(ffo)l + d-(1 + 2no)nlffo G(/)[

d2(1 + + no)-< xo G(Po)l.d2( + 2no)n

Hence, using 17 and (24), we have established

(31) Ix, G(k,)l =< r()l Xo- G(fJo)l,

+ 2no)d2n d2n(32) a() + d2n + + d2n ( no).

With (30), a() > 0 is strictly smaller than if

no2 + n(1 + 2no)
(33) no < < no +

nl

Thus, any solution staying in the set {11 --< ) {Ixl =< }, with satisfying
(33), exponentially approaches the graph of G. Moreover, with the above derivations,
we have

d2(1 + + no)n
IkG(k)G(kG(k)) oG(@o)l < Ixo G(@o)l+ dZn

However, since the invariance property of G implies

o(X G())(Xo G(,o)) -,(Xo- G(,o)) - + ,o(Xo- G(o))

"(()G(G(k)) oG(o)),

it follows that from Xol --< and d(1 + + no)n/(1 + d2n) <= I1ol --< we
obtain sgn [(x G())(Xo- G(ffo))] 4 sgn (ko). To summarize, we have established
the following theorem.

THEOREM 2 (the ALIS). For any d, 0 < dl < d*, and n given by (17), there
exists a bounded Lipschitz continuous function G with bound no and Lipschitz constant
n given, respectively, by 18 and (24), such that

(i) If lckl <-- and I()1 --< w, then

(34) G()= +c-ffG(ff) and q=+d2G(ff)(1-ffG())
+ d2G(p) z

(ii) Let satisfy

no < < no + no2 + n(1 + 2no)
nl
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then there exists () < such that (, x) { I < 1} x { x <= } and (, y)
(,x){14,1 =< l-r/} Ximply

(35) [y G(O)I =< ()1 x G(ff)[.

Moreover, if
d2(1 + + no)n

+ d2n)

then sgn ((y- G())(x- G(x))) sgn ().
(iii) Approximation ofG: supll<-,) IG() h()l/d2 is boundedfor d -- O.
Proof. Statement (i) is a direct consequence of Lemma 3. Statement (ii) follows

from (31). To prove (iii), we first note that h, defined in (4), belongs to . Now, since
G is the fixed point of P, Lemma 3(ii) gives O(h, G) <= O(h, Ph)/( ,(r/, d2)). The
result is finally obtained using the definition ofh and P to show that (see details in Espafia
and Praly 1988 ))

(36) O(h, G) <- d2no(no + n)(no + 1)/(1 5,(r/, d-)).
Remarks. 1. This theorem establishes the existence of an (exponentially) ALIS

given by the graph of a bounded continuous function G {[[ < /} -- which,
following (iii), can be approximated by the "frozen-parameter invariant set," when dl
is sufficiently small.

2. If its -component is larger than

d2(1 + + no)n
+ dn

respectively, smaller than

d2(1 + + no)n
+ d2n

the x-component of any solution changes side with respect to (respectively, remains on
the same side of) the graph of G.

3. Even though G is the unique fixed point of P in , its graph need not be the
only one satisfying (22). The nonuniqueness of the ALIS comes from the arbitrariness
of the definition (21 ), which is not determined by (2).

3.3. Additional characterization of the locally invariant sets. The existence Theorems
and 2 do not give enough information about the location of the locally invariant sets

in the phase space. For this we have the following useful property.
Property 1. In their respective domains of definition, the functions H and G, de-

termined by Theorems and 2, belong to the family of functions F whose elements
satisfy

(i) If 1/a < -1, then

< 1/aM()(1 -M())_-<0, and > 1/cM()(1 -M())>_-0.

(ii) If / c > 1, then

D < 1/o M(b)(1 bM(b)) >= O, and b > 1/ M()(1 M()) < O.

(iii) Ifc -1 M() 0.
Proof. Statements (i) and (ii) are demonstrated by showing that, in the correspond-

ing domain of definition, F is a closed subset of 3 (respectively, c) such that TF
_
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F respectively, PF, F,) see Espafia and Praly 1988 )). Note that F, does not depend
on d2 Statement (iii) results from a continuity argument.

4. Global behavior of the solutions: Technical results. Knowing the existence of
critical elements and locally invariant sets, we are now in position for studying the behavior
of the solutions. We decompose the plane (if, x) into nine subsets:

C

D

F

G

H

A {(g,, x)/g, =<-(1 + )},

B (g,, x)/-(1 + e) < p < -(1 r/) and X =< x},

C {(g,, x)/-(1 + e) < q, < -(1 7) and Ix[ < X },

D {(g,, x)/-(1 + ) < g, < -(1 r/) and x -<

E {(q,, x)/-(1 -7) =< g’ <= (1- 7)},

F= {(g,,x)/1 -7 < q,< 1 + e andx <- x},

G {(6, x)/1 7 < 6 < + e and Ixl <
H= {(q,, x)/1 -7 < g,< + e andx =<-X},

I {(q, x)/1 + e <- g,I,

with e given by (5), r/by 17 ), and x > /( r). The global behavior of the solutions
can be understood by looking at their evolution in each of these sets on the locally
invariant graphs and outside them. We call A tO I the "strict instability" set, E the "strict
stability" set, and B to C tO D tO F to G tO H the "critical stability" set.

4.1. Solutions in the locally invariant sets (RLIS and ALIS).
THEOREM 3 (a) (the stationary solution). (i) For any nonzero d and e given by

(5), the (unique) equilibrium point of(,) belongs to the RLIS ifand only if ll/cl >-
l+e.

(ii) For any d, 0 < dl < d*, and with d*, given by (16), (17), the (unique)
equilibrium point of(,) is in the ALIS ifand only if] /a] <- .

(iii) When -1, H( O, G(p 0 and any point in the RLIS or ALIS is an
equilibrium point.

Proof. Given the global repulsiveness (respectively, attractiveness) ofthe RLIS (re-
spectively, ALIS), the fixed point must be in the RLIS (respectively, ALIS) if it is in
{[1 > + e } (respectively, {ll < }). The rest follows from Theorem A in the
Appendix and Property 1.

THZORFM 3(b)(the nonstationary solutions). Ifp(t) is the -component of any
solution of(Y,) with initial condition in a locally invariant set, then

(i) ifll>-I ((t)- 1/)l((t+ 1)- l/a)> 1.
(ii) ifl/a < -1 (ff(t + 1)- llc)l((t)- l/c) > 1.
Proof. Theorem 3(b) is a consequence of Property and the definition of
Remarks. From Theorems 3 (a) and 3 (b), if / c < 109-1 (respectively, / c >

), the k-component ofthe solutions on any locally invariant set moves monotonically
away from (respectively, toward) the value / a.

1. Ifll/al > and(b,x)RLISwith(-, 1/a) U(1 + e, ), then it can
be seen, with (8), that 4n(ff) /4(ff). Hence, the portion ofthe RLIS defined in (-,
/a) to + e, is unique since the "stopping mechanism" is not active here. Note

that the whole RLIS is unique if /a > + e; moreover, in this case, the RLIS and the
stable manifold of the fixed point coincide over {lffl > + e } (see Iooss (1979)).
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2. If 1/a < -1 the -component of the, trajectories in the RLIS with (0) e
(-oo, /a) U /a, oo are asymptotically unbounded.

3. If the fixed point lies in the ALIS (i.e., /a[ < )), it is a global attractor
inside the ALIS. If it lies in the RLIS, the solutions in the ALIS leave the set {[[ <
In in a finite time through the boundary n. An estimation of the "traveling"

speed of the b-component in the ALIS for this case will be of interest in our analysis and
is given by the next theorem.

THEOREM 3 (C). If thefixed point is not in the ALIS, the solutions in it leave the
"strict stability" set through the boundary p n in a finite time.

Proof. From Property 1, G(b) < and G() > 0. Now, G being continuous on
the compact set {[[ _-< n}, there exists n, strictly positive, such that: G(b) > 7
and kG(b) > r/. With the definition of (Z) this implies that for all b; [[ < n,- 6()(-6()) :
(37) no(1 + no) > >

d2 + d2G(b) + dn)

Therefore, in the ALIS, (t) moves with positive speed of the order of d2, thus leaving
the set {]Pl < } in a finite time through the boundary b . [53

4.2. Solutions in the "strict instability" set outside the RLIS.
THEOREM 4. For any d 4 0 and with e given by (5), we have
(i) Global repulsiveness. While the solution remains in { / >= + } (respectively,

{ _-< -(1 + )} ), it exponentially diverges from the RLIS crossing it at each time
(respectively, remaining on the same side ofthe RLIS).

(ii) Injection. Iffor some time to, a solution satisfies /( to) >= / e, X(to) 4
H((to)), then there exists a finite time t > to, such that [(t )[ < + e. Hence, there
is no solution satisfying every x 4 H(/ and / >= + .

Proof. Statement (i) is a direct consequence of (14), 15 ). To prove (ii), we first
note that if Ix[ > and [[> + then

dx + Pxl d2

(38) 0<(1 +dax)lx < 1-(1 +e)(1 +d2) <
1.

Hence, by Theorem 1, if for all s in [to, t], 7/(s) >_- + e (.respectively, _-< -( + e)) then

(39) Ix(t) H((t))l >= + O)’-’ IX(to) H((to))l.

Now since H(p) is bounded, there exists a first time t (depending on X(to), k(to)) such
that either ]p(t )] _-< + e or ]x(t )] >- 1. In the latter case, from (38) and the definition
of (Z), we have

(40) ]p(t)] =< -(1 + eii + d2) ]p(t- 1)] Vt > t,

which means that there exists t > such that ]p(t2)] < + e. 71

4.3. Solutions in the "strict stability" set outside the ALIS.
THEOREM 5. For any d, 0 < dl <-- d*, with d*, given by (16), (17), we have

Global attractiveness. Any solution in / <= exponentially ap-
proaches the ALIS. Moreover, a solution starting in /I <= remains in this
set as long as it remains in the set {Ixl >-- l/( ) }.

(ii) Drift If[1/a[ > and :for some time to, a solution satisfies
I(to)[ --< , then there exists a finite time t such that [/(t )[ > 7. Hence, for
I1/cl > 1, there is no solution satisfying every [b[ =< 7.
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(iii) Moreover, while a solution remains in the set

2(1 ++no)n < < 1- 71 <{I xl }+ dZn J
respectively, in the set

-( -)__<__<-
d2(1 + + no)n1}+ d2n20 {Ixl--< ),

it crosses the ALIS at each time (respectively, it remains on the same side).
Proof. (i) Since Ibl -< 1-7 and Ix] _-> 1/(1-), then ](ff + d2x)/(1 + dZx2)l _-<
7, a solution starting in {lffl --< + } remains in this set at least while it

remains in the set x >-- / ) ). To complete the proof of (i), with property (35),
we only need to show that any solution remaining in {lffl --< } enters the set
{[xl < ), (with satisfying (33)) in a finite number of steps. In fact, let the constant

’ := (no + )/2 be no < ’ < and x(t)l >= ’; then, from the equations of (Z) and
18 ), we have

(41)
x(t+ 1)
x(t)

1+o<=
x(t)

+(1 -)< -r+ 2no
+ no

i.e., the absolute value of the x-component decreases exponentially as long as Ix[ >= ’.
(ii) We have

(42)
p(t + 1) 7,(t) +

d2G(p(t))(1 p(t)G(p(t)))
+ d2G(/(t)) 2

+ dZ[x(t)- G(@(t))]
+ p(t)(x(t) + G(/(t)))

(1 + dG(p(t))2)( + dZx(t) 2)

From (i), either the if-component of the solution leaves the interval [-( rt), 7]
or, after a finite time, x(t) G(p(t)) will be as small as we want. The result follows
from a continuity argument and Theorem 3 (c).

Statement (iii) is a direct consequence of Theorem 2 (ii). 71
Remark. As in the discussion following Theorem 1, the global character of the

attractiveness of this graph is a direct consequence of the use of a normalized algorithm.
In general, nonnormalized algorithms, as treated by Praly (1990), may not lead to this
kind of global result.

4.4. Solutions in the "critical stability" set.
THEOREM 6 (solutions in the sets B, D, F, H).
(i) As long as a solution remains in the set {(p, x)/1 < 11 < + e and

Ix[ > }, the absolute value I[ decays exponentially.
(ii) Any solution starting in the set F to H (respectively, B tO D) either enters the

set G (respectively, C) or goes into the set E in a finite time.
Proof. Statement (i) follows exactly along the same lines as in (38)-(40).
(ii) From

(xq-d2x2) 1__
+ d2x2 x
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we easily obtain

(k,x)F {x> ,x> 0}> /x>O,

(,x) eH= {x<-l,x<0} 4> 1/x>-(1-r/),

(/,x) eD {px> 1, x<0} 4< 1/x <0,

(,x)B {x <-,x> 0} < /x <

and the claim follows since from (i), Il decreases exponentially while (, x) B U
DUFUH.

THEOREM 7 (solutions in the set G). For dl small enough, if] / x is larger than
+ e, a 2-periodic orbit exists such that at least one of its points lies in the set

G={(,x)/1-n<k<l+eandlxl <x}.

Proof. According to Theorem A1 in the Appendix, for ]d] small enough, a 2-
periodic orbit exists with its p component such that O(d2). This implies that
the 2-periodic orbit is contained in F U G U H for a small enough d2. The result follows
since from Theorem 6 the orbit cannot be entirely contained in F U H.

4.5. Boundedness of solutions.
THFOREM 8. If /a > --1, all the solutions of ,) are bounded.
Proof. With Theorem 4.1 of Egardt (1979) it is sufficient to prove that the se-

quence [(t)[ is bounded for any solution of (;). For this, we first show, from
the second equation of(E) that when Il > dl/V, I(t + 1)l > I(t)l if and only
if p(t)x(t) (0, 1). The proof then follows by showing that, for 1/c > -1, there
exists 3’ > dl/2f > 0such that the points ofthe set F {(, x)/ll > ;x (0, 1)}
have no preimage in I’ (the trajectories starting in I leave it in one sampling time). This
is combined with the relationship [(t + 1)[ < [(t)[ + [d[/2 to show that if(0)
satisfies

{l+2max{Iol ,l-a,} ,dl}14’(0)1 < max
max {11, I1 / 1) 2V

/ Idl,

then if(t) satisfies the same inequality for all >_- 0. If, on the other hand, if(0) does not
satisfy the above inequality, there exists a finite time T such that if(T) does satisfy it (see
details in Espafia and Praly (1988)).

5. Global behavior of the solutions: Qualitative description and simulation re-
sults. Using the technical results ofthe previous sections (Theorems 1-8 ), we can explain
the five stages of the solutions’ behavior observed in simulation and mentioned in 2.
For this, use is made of the phase plane decomposition introduced at the beginning of

4. Figures 1-5 are used to illustrate the system’s dynamic behavior. The function h
given by (4) has been plotted in the phase portrait part of each figure. As shown by
Theorems (iii) and 2 (iii), its graph, denoted by "hg," approximates the RLIS and the
ALIS, respectively, in their domain of definition.

5.1. The turbulent phase.
5.1.1. Explosive stage. According to Theorem 4(i), a solution in the sets A or I,

either remains in the RLIS, which is the graph of a bounded function of , or diverges
exponentially from it (and, in practice, from its approximation (4)). This explains an
exponential growth of the x-component, which becomes and remains large. Moreover,
for a solution in the set I, at each time t, the x-component changes side with respect to
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FIG. l(a). Phase portrait, two stablefocus of2(Ol 0.8, d 0.005).

FIG. (b). Time response converging to a period-2 stable orbit (o 0.8, d 0.005 ).

FIG. 2 (a). Phase portrait with a stable node (c 1.5, d 0.005 ).

’51 x
1o

0

tirol

10o 0o 0o 40O

FIG. 2(b). Time response ofsolution (al) (o 1.5, d:’ 0.005).
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-41

FIG. 3 (a). Phase portrait with a stablefocus (a 1.008, d 0.005 ).

2, x

0

-4
0

FIG. 3(b). Time response ofsolution (bl) (a -1.008, d 0.005 ).

X

Flo 4 a Phase portrait with a saddle as equilibrium point (o 0.1, d 0.005 ).

time
.o0o :o00. 4O0O

FIO. 4 (b). Time response ofsolution (a) c O. 1, d 0.005 ).
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FIG. 5 (a). Phase portrait with an unstable node (, -0.9, d 0.005 ).

FIG. 5 (b). Time response ofsolution (b2) (c 0.9, d 0.005).

this graph. This explains the "bursts" with very high frequency content on x (see solutions
(a) in Figs. 2, 4, and 5 ). Conversely, for a solution in the set A, the x-component remains
on the same side ofthe graph. It corresponds to a burst without oscillations (see solutions
(b) in Figs. 3-5 ). We conclude that the explosive stage (a) takes place in the set A or I
for any value of the disturbance and the reference (and therefore also in the ideal case).

5.1.2. Reinjection stage. Following Theorem 4(ii), a solution in the set A or I with
a large x-component or in the set B t_J D or F U H has its if-component exponentially
decaying. This occurs for any value of the disturbance and the reference and explains
the reinjection of the solutions into the set E (see solutions (a) and (b) in Figs. 2-5 ).

5.1.3. Implosive stage. Theorem 5(i) states that, at least for a sufficiently small
disturbance, as soon as a solution enters the set E, it is exponentially attracted toward
the ALIS, which is the graph of a bounded function of ff approximated by the set hg.
This explains the exponential decrease of the x-component and, were it present, the fast
decay of its high frequency content (see solutions (a) in Figs. 2, 4, and 5 ). Consequently,
at least for small values ofthe disturbance, this stage occurs for any value ofthe reference
and takes place in the set E.

5.2. The laminar phase (or the drift / ejection stage). Following Theorem 5 (ii),
when ]l/a] > l, all the solutions leave the set E in a finite time. However, if before
leaving the set E, they become close to the ALIS (in Figs. 1-5 one can see how the
solutions practically converge to the graph (hg) approximating the ALIS), they finally
leave that set "drifting" over the ALIS while its if-component grows with a speed of the
order of d2 (see also Theorem 3(c)). The solutions, very likely, enter the set G.

After entering the set G, a solution may either remain in it (see Fig. ), go to the
set I, thus restarting the explosive stage and possibly initiating the intermittent phenom-
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enon, or go to the set F t.3 H. In the latter case, Theorem 6 shows that the solution may
either be reinjected into the set E, restarting the implosive stage, or returned to the set
G. Intermittency may also take place in this case.

5.3. Possible 2-periodic orbits or limit cycles as o-limits. According to Theorems
A (in the Appendix) and 7, for a reference-to-disturbance ratio strictly smaller than
and for a disturbance sufficiently small, a 2-periodic orbit exists with at least one point
in G and the other in F U G U H. Each point of this orbit is an attractive focus of 2; 2 if
reference and disturbance have the same signs and a repellent focus in the case of opposite
signs. In the former case, intermittency may disappear asymptotically while the solutions
converge toward a 2-periodic orbit (see Fig. and solution (a) in Fig. 4). When the
reference and the disturbance have different signs, it is hypothesized that the solutions
either exhibit a permanent intermittency (see Fig. 5) or, due to the occurrence of a
supercritical Hopf bifurcation of the 2-periodic orbit, have an o-limit comprised of two
limit cycles of 2; 2 each surrounding a fixed point of 2; 2.

5.4. High sensitivity with respect to the initial conditions. From simulations and
the approximations given in Theorems (iii) and 2 (iii), it seems that the ALIS and the
RLIS are smoothly connected through the set G (see Figs. 4 and 5). From Remark
following Theorem 3 (b), if the fixed point lies in the RLIS, the portion ofthis set defined
for > + e is unique. Its intersection with the boundary + e being transverse,
we expect that it is uniquely extended by an ALIS inside the strict stability region. Using
this conjecture as a working hypothesis, the more a solution approaches the ALIS while
it is in E, the more its evolution will be similar to the solutions in the RLIS when entering
the set I. However, according to Theorem 3 (b) and the remarks that follow, for a reference-
to-disturbance ratio strictly smaller than in absolute value and negative, the solutions
in the RLIS starting in E (1 + , are unbounded (the same as those starting in, /a)). On the other hand, the bigger its -component is, the more the x-component
of a solution in the set I, but not in the RLIS, is "pushed-away" (exponentially) from
this invariant set. This reasoning shows the possibility of a very high sensitivity to initial
conditions of solutions starting near the ALIS or, with Theorem 2, close to the graph of
the function hg given in (4).

5.5. The desired behavior. Theorem A (see the Appendix) shows that, for a suf-
ficiently small disturbance and a reference-to-disturbance ratio strictly larger than 1, the
fixed point is exponentially stable and there is no other periodic solution. On the other
hand, and under the same conditions, with Theorem 8, each solution remains in a compact
set. This suggests that the fixed point is a global attractor. In this case, intermittency
should not take place and the desired working conditions should be attained (see Figs.
2 and 3). Qualitatively speaking, this case most resembles the ideal case.

Summarizing, according to the reference-to-disturbance ratio a, three qualitatively
different behaviors of the solutions of (2;) can be predicted:

1. a > (high level excitation): bounded solutions, no intermittency, no periodic
solution, a global attractive fixed point is conjectured, behavior similar to the ideal case.

2. 0 < a < (low level excitation): bounded solutions, stable periodic solutions
exist and are conjectured to be global attractors, the fixed point is a saddle, intermittency
may occur but is conjectured to gradually disappear while converging asymptotically to
a 2-periodic solution.

3. -1 < a =< 0 (low level excitation): unbounded solutions exist, unstable 2-periodic
solutions exist, intermittency and / or possible nonlinear oscillations are present, the fixed
point is an unstable node.
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Since a is a relative quantity, drastic qualitative changes of the system’s behavior
may be expected when both r and d are close to zero, which is the natural working
condition for an adaptive linear regulator.

6. A means to prevent intermittency: The dead zone. We study here the effects of
an empirical modification to the second equation of (2) (and (2)). For some 6 > 0,
we call the set D x/Ix a < 6} the &dead zone and substitute u in (2;) by:

It is expected that this modification will interrupt the drift stage of the solutions near the
ALIS when / a > 1. To examine the validity ofthis, let us first introduce the following
definition:

v(r/, d2): dZno(no + n)(no + 1)
(1 ,(r/, d2))

where r/and , are given respectively by (17) and (30). We now make the following
assertion.

Assertion. (i) If 1/a] > and d and 6 are such that

a + r/a d26< v(, ),
2-r/

there is no solution of (Z) with &dead zone satisfying for all t: ](t)] <
(ii) There is no solution leaving the set ]] _-< if and only if 6 >_- + ]a].
Proof. (i) From the exponential attractiveness property of the ALIS and its ap-

proximation by the graph of h given by (4), (see Theorem 3 and (36)), we see that if
a + 6 < h(1 r/) v(r/, d2), any solution remaining in { Il < r/} enters a set
(the band around h of radius v(r/, d2)) whose intersection with the dead zone is empty
for [ < r/. In this set, then, 1, the -component is strictly increasing (Theorem
4(c) and (37)), and the solutions necessarily leave the domain I1 < r/} in a
finite time.

(ii) From the definition of () when # we have the following implications:

[p(t)] <land p(t + 1)> 1} > {1 > p(t)> 1-d2x(1 x)},

{l(t)] < and (t + 1) < -1} > {-1 < (t) < -1 d2x(1 + x)}.

Thus, the solutions of (;) with dead zone will not leave the domain ]] =< } if and
only if the fight hand side of both implications are realized inside the dead zone only.
But this is clearly the case when 6 > ]a] + 1.

Remarks. The dead-zone modification may fail to work if an upper limit of the
disturbance is not known. When it works, i.e., when 6 is bigger than, say, some 6" >
(1 a + r/a)/(2 r/) + v(r/, d2), the original ALIS is transformed into a new one
(possibly not given by the graph of a continuous function any more) containing a por-
tion of the graph of h. Since h is a monotonically decreasing function in
the part of the graph of h coinciding with the new ALIS is confined to the fight of the
interval ]p] < r/. However, the movement of the solutions over the ALIS is also in
the sense of growing p’s. Consequently, in this case the modified scheme will very likely
stop the solutions’ drift near the ALIS before they enter into the "instability domain."
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7. Concluding remarks. The ALIS and the RLIS play a key role in the qualitative
and geometrical description of the phase portrait of our example. It can be shown that
these two sets exist in more general systems since their definitions rest on some general
properties of the adaptive systems (see, for instance, Praly (1990)). We can thus state
that the intermittent behavior is the result ofthe absence ofa global attractor in the ALIS
combined with a property ofthe algorithm ofmaintaining all the signals bounded despite
a model mismatch (L -robustness). In fact, since the ALIS is normally defined in a
bounded open set of the parameter space (in general, the set of parameters mapped into
the open unitary circle by the eigenvalues of the regressor model), the lack of a global
attractor in it implies that some trajectories approaching the ALIS will eventually leave
the strict stability set of parameters. This may be a very slow "quasi-stable" process. On
the other hand, the L -robustness is responsible for the "reinjection mechanism" into
the domain of attraction ofthe ALIS, provoking the abandon ofthe turbulent phase and
the restart of the cycle. Since this reinjection is guaranteed by the (desirable) robustness,
we can thus say that intermittency is essentially conditioned by the dynamics in the ALIS
and thus, that any palliative to this phenomenon passes by an "adequate" modification
of the dynamics in this set. However, the dynamics in the ALIS (and the ALIS itself)
depend on the exogenous signals. Consequently, for any "good" modification of the
ALIS dynamics it may be possible to find a "counter-example" given by a particular
combination of model mismatch and reference signals. Moreover, the modifications
introduced (to the algorithm and to the ALIS) may even exacerbate the situation. For
instance, Rey, Bitmead, and Johnson (1989), reported that a previous ("unhelped")
nonintermittent system may become intermittent after the addition of leakage. This
possibility seems less likely when a dead zone is used since its working principle consists
in transforming part ofthe ALIS into the corresponding set ofattractive bounded solutions
of the "frozen system." When the parameters are frozen, the drift phase is necessarily
eliminated at least while the dead zone is active.

Clearly, more research must be done to find algorithms assuring a robust global
attractor in the ALIS for (at least a specified family ofdisturbances or model mismatches
with a practical meaning. A possible general approach could be to stop the adaptation
when some "ad-hoc" mechanism detects the drift phase. This decision can be taken, for
instance, when the calculated increment in the parameters (possibly averaged) is smaller
than a prespecified threshold. Note that here is not the error that counts, as in the dead
zone, but its correlation with the regressor vector. This correlation should be viewed as
an approximation of the gradient of the mean value of the error with respect to the
parameters. When the reference signal is sufficiently persistently exciting or, more pre-
cisely, using a concept coined by Ioannou and Kokotovik (1983), persistently dominantly
exciting, the ALIS has a natural global attractor in it; it corresponds to the desired working
conditions. This attractor is hyperbolic (see Anderson et al. (1986)) and thus, structurally
robust. However, for large disturbances (or model-mismatch), this attractor may cease
to be globally attractive, disappear, or be pushed out of the ALIS in the RLIS region;
this last circumstance motivates a bifurcation analysis. Any of these conditions can be
at the origin of an intermittent behavior with persistent excitation, but in particular,
when the attractor leaves the ALIS, the desired working conditions can never be attained
even if by some means intermittency could ever be avoided. Clearly we can "solve the
problem" by adding excitation in the dominant frequency range to the reference signals,
but this does not imply that the original objective will be satisfied. On the other hand,
when there is no persistent excitation (or there is but with a very low energy level or a
bad frequency content), the functioning regime becomes very critical since the desired
working conditions may not correspond to an hyperbolically stable set. In this case, a
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very weak robustness ofmany properties is to be expected. Indeed, very different qualitative
behaviors can be close to one another and the system may easily switch from the desired
working condition to an intermittent behavior or a self-oscillating mode. With respect
to the last mode of operation, we see, for the example considered, that a 2-periodic orbit
(self-oscillating model) appears as a result of the bifurcation provoked by the expulsion
of the desired working conditions out of the ALIS. This 2-periodic oscillation has also
been encountered by other authors in a similar example (Sethares and Mareels 1991 ),
Rey, Bitmead, and Johnson 1991 )). Actually, this is a particularity ofthe example (one-
dimensional parameter space) and of the excitation condition (constant reference and
disturbance signals). In general, these self-oscillating modes, which determine the fre-
quency content of the "bursts;" may have any period or not exist at aH (see Espafia,
(1990), 1991 )). When the ALIS has no attractor in it and there are no self-oscillations
or there are but they are not attractive (see /a < -1 in our example), a nonperiodic
permanent intermittent regime is likely to take place. This is favored by the fact that,
while reentering in the "stability-domain," the trajectories are attracted toward a region
(near the ALIS) where the solutions are highly sensitive with respect to the initial con-
ditions. As pointed out by Bergr, Pomeau, and Vidal (1984), this, together with the
absence of a periodic or quasi periodic attractive solution, seems to be at the origin of
strange attractors.

Summarizing, we may conjecture that the antidotes for intermittency, like leakage
or internal model principle, whose active principle is not based in stopping the solutions
in its drift phase near the ALIS (they just modify the dynamics in it), could provoke the
undesired effect if combined with a particular excitation and/or model mismatch. The
schemes based on freezing the parameters upon detecting the drift phase (the dead-zone
approach included) may also need a priori information of the disturbances to succeed,
but, even if they can possibly fail to do the job, they are less likely to provoke the undesired
effect. They are based on a characteristic of the phenomenon that is independent of the
excitation conditions. Nevertheless, none ofthem solve the problem ofthe attractive self-
oscillations. Strongly dominantly exciting references signals produce robust desired
working conditions. Otherwise, if no precautions are taken, the system may easily switch
among very different qualitative behaviors.

Appendix. Local behavior near the equilibrium point and period-2 solutions. The
analysis of the local behavior of () near its equilibrium (, x) / a, a) is based in
the Jacobian matrix of (E) at this point:

J
-d2/( -+- d2ot 2) 1/(1 + d20 2)

The product of its eigenvalues is P / a and their sum is given by

(A) S=P+ 1-
d2

p2 + d2"

In terms of S and P, exponential stability of the equilibrium point is given by

(B) S + P > 0

(C) +S+P>0,

(D) -P>0,

and the eigenvalues are real if

(E) S2 4P >_- 0.
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Thus, the equilibrium point is exponentially stable if and only if /a (-1, p), where
p e (1/2, is the unique solution of 2( p)(p2 + d2) d2. Consequently, unless
/a 1, p), the "desired working conditions" do not correspond to a stable equilibrium

point. The points of intersection of curves (A) and (E) correspond to the transition from
real to complex eigenvalues and vice versa. They all occur for a negative, and we may
have a stable a < or an unstable (a > equilibrium point and a node or a focus
depending on d-.

Independently of the value of d2, for a near -1, the equilibrium point passes from
being an attractive focus (a < -1 to a repellent one (a > -1 verifying the conditions
for a postcritical Hopf bifurcation (see Iooss (1979)). For the particular value a -1
the whole k-axis is a set of fixed points implying a global bifurcation.

For a positive, we have either a stable node /a < p) or a saddle /a > p). When
/a crosses the value p, an eigenvalue passes through -1, and a stable period-2 solution

bifurcates from the stable fixed point while the latter becomes unstable (see Arnold
1983 or Iooss 1979 )). The 2-periodic solutions can be determined evaluating the roots

of the equation Z2(p, x) (p, x) 0, or, equivalently, for d nonzero, by computing
the solution of

(A.1)
Fx(x, P, d)"= -( + d2b)(-px + + a) + + a x) 0

(-tpx + + a)[1- (tp + d24))(-px + + a)]
F(x, p, d)"= ck + + da(-x + + od) 2 =0,

where x( bx)/( + d2x2). For d 0, the above system has three solutions:

(A.2) (0 O-1 X0-- O), (lPl,2 1, Xl,2
+ c + /1 O2

2 )
The first one is the equilibrium point; the two others exist if and only if the disturbance-
to-reference ratio /c is larger (in modulus) than 1. We make the following observation.

LEMMA (Existence ofperiodic solutions; Pomet, Coron, and Praly (1990)). A nec-
essary condition for (lPper(t, d), Xper(t, d)) to be a period-T solution of(,) that remains
bounded as d goes to 0 is that the accumulation point ofits initial condition be one ofthe
three points in A.2 ).

To show that the existence ofzeros (.2, x.2 of(A. given by A.2 is also sufficient
for having period-2 solutions, use is made of the implicit function theorem with the
following expression of the Jacobian matrix of (A. (nonsingular for ]c] < ):

0
OF(Xl,2; lPl,2; 0) ----/1 o 2

where the (2, 2)-term is unimportant. Compared with our discussion on the stability of
the fixed point of (;) we note that for dl small enough, the period-2 solutions emerge
not only when an eigenvalue of J passes through (c + ), from the stability side
(for period-2 bifurcation condition), but also when a pair of conjugate eigenvalues of J
crosses the unit circle at c -1. The latter corresponds to a global bifurcation. To
summarize, we have the following theorem.

THEOREM A1 (Critical elements, Espafia and Praly 1988 )). (i) The system (,)
has a uniquefixed point for all c differentfrom 0 or -1. It is the solution corresponding
to the control objective. It is exponentially stable for 1/c (-1, p) and exponentially
unstablefor /c [-1, p]. (ii) For any c[ < we can find a strictly positive constant
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do such that if ld[ do, there exists two locally unique period-2 solutions that can be
approximated by

ad2 + a /1 o 2 "]- Od -b" V OZ
2

(A.3) P,2 --T 2
+ O(d4), x1,2

2
+ O(d2)"

These solutions arefoci of, 2, exponentially stablefor a > 0, exponentially unstablefor
c < O, and with a pseudoperiod approximated by T- 2-/d(2( a2) /2.

Acknowledgments. The authors thank the reviewers for their thorough work. Their
excellent comments and pertinent suggestions contributed immeasurably to improving
the quality of this article.

REFERENCES

B. D. O. ANDERSON (1985), Adaptive systems, lack of persistence of excitation and bursting phenomena,
Automatica, 21, pp. 247-258.

B. D. O. ANDERSON, R. R. BITMEAD, C. R. JOHNSON, P. V. KOKOTOVIC, R. L. KOSUT, I. M. Y. MAREELS,
L. PRALY, AND B. O. RIEDLE (1986), Stability ofAdaptive Systems: Passivity and Averaging Analysis,
MIT Press, Cambridge, MA.

V. I. ARNOLD 1983 ), Geometrical Methods in the Theory ofOrdinary Differential Equations, Springer-Verlag,
New York, Berlin.

A. BENVENISTE, M. METIVIER, AND P. PRIOURET 1987 ), Algorithmes Adaptatifs et Approximations Stochas-
tiques" Thdorie et Applications, Masson, Paris.

M. BODSON, S. SASTRY, B. D. O. ANDERSON, M. Y. MAREELS, AND R. R. BITMEAD (1986), Nonlinear averaging
theorems, and the determination ofparameter convergence rates in adaptive control, Systems Control Lett.,
7, pp. 145-157.

P. BERGE, Y. POMEAU, AND CH. VIDAL (1984), L’Ordre dans le Chaos, Hermann, Paris.
B. EGARDT (1979), Stability ofAdaptive Controllers, Springer-Verlag, New York, Berlin.
H. ELLIOT AND G. C. GOODWlN (1984), Adaptive implementation ofthe internal model principle, in Proceedings

of the 23rd IEEE Conference on Decision and Control, Las Vegas, NV.
M. ESPAIA 1991 ), Intermittent phenomena in adaptive systems" A case study, Automatica., 27, pp. 717-720.

1991 ), Intermittency and self-oscillations in adaptive systems, in Proceedings, VI IFAC Symposium
on Automation of Mining, Mineral, and Metal Processing, Buenos Aires, Argentina, October.

M. ESPAI(IA AND L. PRALY (1988), On the Global Dynamics ofAdaptive Systems, Internal Report CAI, Fon-
tainebleau, France.

G. C. GOODWlN AND K. S. SIN (1984), Adaptive Filtering, Prediction and Control, Prentice-Hall, Englewood
Cliffs, NJ.

M. P. GOLDEN AND B. E. YDSTIE (1988), Bifurcations in model reference adaptive control systems, Systems
Control Lett., 11, pp. 413-430.

J. K. HALE (1980), Ordinary Differential Equations, Krieger Publishing Company, Huntington, NY.
P. A. IOANNOU AND P. V. KOKOTOVIC (1983), Adaptive Systems with Reduced Models, Lecture Notes in

Control and Inform. Sci., Vol. 47, Springer-Verlag, New York, Berlin.
G. Iooss 1979 ), Bifurcation ofMaps and Applications, North-Holland, Amsterdam.
M. JA]’DANE-SA]’DANE AND O. MACCHI (1988), Quasi-periodic self-stabilization ofadaptive ARMA predictors,

Internat. J. Adaptive Control Signal Processing, March.
L. LJUNG (1977), Analysis ofrecursive stochastic algorithms, IEEE Trans. Automat. Control, August.
L. LJUNG AND T. SrDERSTRrM 1983 ), Theory and Practice ofRecursive Identification, MIT Press, Cambridge,

MA.
K. S. NARENDRA AND A. ANNASWAMY (1986), Robust adaptive control in the presence ofbounded disturbances,

IEEE Trans. Automat. Control, April, pp. 306-315.
Y. POMEAU AND P. MANVILLE (1980), Intermittent transition to turbulence in dissipative dynamical systems,

Comm. Math. Phys., 74, pp. 189-197.
J.-B. POMET, J. M. CORON, AND L. PRALY (1990), On the periodic solutions ofadaptive systems in the presence

ofperiodicforcing terms, Math. Control Signals Systems, 3, pp. 373-399.



1166 MARTN D. ESPAIA AND LAURENT PRALY

L. PRALY 1985 ), A geometric approach for the local analysis ofa one-step-ahead adaptive controller, in Proc.
of the 4th Yale Workshop on Applications of Adaptive Systems Theory, New Haven, CT, June.

(1988), Oscillatory behavior andfixes in adaptive linear control: a worked example, in Proc. of the
IFAC Workshop on Robust Adaptive Control, Newcastle, Australia, August.

(1990), Topological orbital equivalence with asymptotic phasefor a two time-scales discrete-time system,
Math. Control Signals Systems, 3, pp. 225-253.

G. J. REY, R. BITMEAD, AND C. R. JOHNSON 1991 ), The dynamics ofbursting in simple adaptive feedback
systems with leakage, IEEE Trans. Circuits and Systems, 38, pp. 426-488.

B. D. RlWDLE AND P. V. KOKOTOVIC (1986), Integral manifold of slow adaptation, IEEE Trans. Automat.
Control, April.

M. SHUB (1987), Global Stability ofDynamical Systems, Springer-Verlag, New York, Berlin.
W. A. SETHARES AND M. Y. MAREELS 1991 ), Dynamics ofan adaptive hybrid, IEEE Trans. Circuits and

Systems, 38, pp. 1-11.


