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SUMMARY

We are concerned with the problem of regulating the equilibrium point of a non-linear system in the
presence of both parametric and dynamic uncertainties. For the parametric uncertainty we propose a new
adaptive controller based on a Lyapunov design and guaranteeing the global boundedness of the solution
if a growth condition is satisfied. For the dynamic uncertainty we propose a new way of characterizing
the unmodelled effects which encompasses some singular and regular perturbations as illustrated by our
worked example. Finally we show how, by modifying the above controller, the boundedness property can
be made robust to these unmodelled effects.

KEY WORDS Non-linear systems Lagrange stability Adaptive non-linear control Unmodelled effects
Robustness

1. INTRODUCTION

Important progress has been made in the adaptive control of non-linear systems. The main
difficulties are now well understood and some very sophisticated solutions are available. Most
of the results are synthesized in Reference 1 and the references cited therein, while more recent
developments are given in References 2 and 3. However, these studies concern the ideal case,
i.e. the case where the system to be controlled is exactly modelled up to the knowledge of some
constant parameters. We know from the linear case that robustness to unmodelled effects of
the properties of adaptive systems is a very difficult issue. For the non-linear case, results are
already available for particular systems about the robustness of Lagrange stability to some
unmodelled effects: Taylor et al.* and Kanellakopoulos er al.” have studied feedback
linearizable systems in the presence of singular perturbations; Campion and Bastin®’ and Reed
and Ioannou® have considered manipulators under bounded disturbances and singular
perturbations. The objective of this paper is to report some preliminary results for more
general circumstances about the following two aspects:

(1) introducing a new way of characterizing unmodelled effects,
(2} studying the robustness of boundedness of solutions given by a new adaptive regulator
based on a Lyapunov design.

In proposing a characterization of the unmodelled effects in Section 3, our goal is to study
to what class of uncertainties the boundedness is robust. We look for an as general as possible
description which could encompass as many types of effects as possible. However, to remain
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simple, we shall focus our attention on qualitative more than quantitative results. The idea to
get this characterization is to generalize to non-linear systems what was proposed in the linear
case in Reference 9, namely the so-called normalizing signal technique. It has been shown to
be a very powerful concept and its ability to describe all the possible linear unmodelled effects
has been established in References 10—12. With the examples we propose in Section 2 we shall
see that it may also be very fruitful for non-linear systems.

On the basis of a Lyapunov design, we propose in Section 4 an adaptive controller which
allows us to stabilize a larger class of ideal systems than the one considered in Reference 13,
namely those which are stabilizable by a state feedback such that a particular growth condition
on the non-linearities is satisfied. Moreover, for the purpose of robustness, specific
modifications will be introduced—parameter update projection and signal normalization.

To remain as simple as possible in this preliminary study, we have considered only the global
case. This will be the reason for some overly restrictive assumptions.

2. MOTIVATION: AN EXAMPLE

Before entering a more general framework, let us look at an example. This will allow us to
show the need for and the interest in a new way of characterizing unmodelled effects as well
as the need for a new adaptive regulator.

Consider the following family of models indexed by a parameter pe¢ [R:

¥1=x2+ pxi - xi, r=u (1)

where the state (xy, x2) in R? is assumed to be measured and # in R is the control. Choosing
one element in this family may be an appropriate way of getting a model for a system whose
dynamics are actually described by the state equation

Xi=x24+pxi-y, 2=, py=—y+xi (2)

where y is unmeasured and g, a small positive real number, and p™€ [— Pmax, Pmax] are
unknown but pmax > 0 is known. Such a model may also be adequate for a system described by

X1=x2+ pxi— x4 py+d@), =1, y=—y+{1+u*)°-1 3

with d an unmeasured bounded C® time function and ¢ a positive real number we introduce
for the purpose of the discussion.

The problem we want to address is to design an adaptive regulator for the model (1)
guaranteeing boundedness of all the closed-loop solutions as well as regulation, i.e.

lim (x1(4), x2(£)) =0 (4)
{— =

However, we also require that this same regulator gives at least boundedness of all the
solutions when placed in feedback with systems ‘close’ to the model (1), as are for example
the systems (2) and (3) when p is small enough. Indeed, in this case, (1) is the reduced-order
system of the singularly perturbed system (2) and the regularly perturbed system (3).

To show that such a design is possible, we first address the problem of regulating the model
(1) when p= p*is known and with guaranteed solution boundedness for the system (2). This
study will allow us to extract a sufficient property on the unmodelled effects implying closed-
loop solution boundedness. In this way we shall get a definition of the notion of ‘close’ we
mentioned above. To check that this definition is appropriate, we will show that it is satisfied
by the system (3). However, before this, it is important to remark that the extra component
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¥(1) of a solution in both systems (2} and (3) is bounded as soon as the other components x;(¢)
and xz(¢) of this solution are bounded and the control u is given by a bounded input—bounded
output system with (x((¢), x2(f)) as input. This key property of ‘boundedness of part of the
state vector implying boundedness of the complete state vector’ will be called later
boundedness observability.

Regulation of the model p = p* known

Let us design a family of controllers for the model (1) with each one solving our problem
if p* were known.

By applying the adding-an-integrator technique, '#'13

we design a controller in two steps.

Step 1. We start by stabilizing the system
X1 =uy + p*xt— xt 3)
Denote by u;(x1, p*) and ¥ the functions
ur(x, p*)= —x1— p'xt+ xi+ ni(xn), Vi(xi) =1} (6)
where »; is a function introduced as a degree of freedom and satisfying
xwl{x) <0 vxy, v (=0 M
By applying 1 to the system (5) and computing the time derivative of Vi, we get

V1=—ZVl(xl)‘*'lel(xl)déf—Wl(xl) 8)
Step 2. We add an integrator, i.e. we consider the system (1). We define
Vi, p) =55 @V + 13 ©)
where j is a strictly positive interger left as a new degree of freedom and x2, introduce to
simplify the notations, is given by

Y2 = X2 — t1 (X1, p) = X2+ X1 + pxi— xi— vi1(x1) (10)
Note that x2 is in fact a function of (x;, x2, p). Along the solutions of the system (1) the time
derivative of V(xi, x2, p™) satisfies
V=—QVi(x1)) "' Wi(x)
+x2 [ @Vie) T Fu+ (1 +2p™ = 3xF - vi(a)) (e + pPxi— XDl (D
Therefore we get

V= =2jV{x1, x2, ¥} + xi1 (1)) V(1)) + (%2 + 20+ p™x3 = x1 = vi())va(x1, x2,0™)
' Wix, %, 0% (12)

when we choose

U = t(x1, x2, p*)
def i j , . ]
= —x Vi) =0 +2p% = 3xt — vl () Gz + pxd = xD) = jxe + va(x1, X2, o)

(13)

1 Throughout this paper we denote by f' the derivative of the real function f.
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where v», a third degree of freedom, is a function satisfying

(2 + x1+ pxi— xi—vi(x)v2(x, X2, p) <0 V(x1, 32, p)ER?

5 14
va(x1, X2, ) =0 V(x1, X2, p) € [(X1, X2, p) 1 X2 + X1 + pxi— x1 — v1(x1) = 0} .

Clearly from (12) the state feedback u, defined in (13) guarantees that all the solutions of (1)
with p = p* are bounded and satisfy our objective (4). The property described by equation (12)
about the existence of a feedback law u, guaranteeing that the time derivative of a proper
positive function V is negative along the solutions of the known model is called stabilizability
in the following.

Boundedness of solutions when p # 0 but p* is known

Let us investigate now if the feedback u, in closed loop with our actual systems (2) and
(3) provides at least boundedness of all the solutions. We start this study by considering
system (2).

When we compute the time derivative of V(x1, X2, p*) defined in (9) along the solutions of
the system (2) with u = u,, we get

V= “W+3—K(x?—y) (15)
axl
Compared with (12), we see that the effect of the mismodelling is the introduction of the term
(@V]ax1)(x1 — y). Our objective now is to specify the feedback law u, by choosing j, v, and
vs independent of (g, ») in order to counteract these effects. To obtain such a choice, the only
difficulty is to relate these effects to ¥ and W. This is what we call unmodelled effecis
characterization in this paper. We have

oV - * 2 ;
e = [ < Ixt e+ 2p% = 3x1 - vl(a)) ¥ - | (16)
X1
< 2x12j+?. + 2;-:!1 |X2 | (2j+2)/(2j-1) | 1+ 2p*-\‘1 _ 3x% — v{(x) |(2j+2)/(2j+1)
s 3 y(2j+2)/3 (17)
Jj+1

where we have used Young’s inequality,® i.e. vn > 1 and v(x, y)e R%, ¥

1 n—1 i
Xy S e xr: A yn/(n 1)
n n

Therefore if we choose vy and vz so that ¥ defined in (12) satisfies

: | : ; ! ; »
2-\.5.14—2 2;]_:1_| x21(21+2)/(21—1)| 1+2p kxl . 3x%_ U]f(xl)l(zﬁi)/(h 1) < ;_ Wi(x1, prl) (18)
then (15) and the equation of j give the system

o
. 2 5 2j+2 ; P
V< - % W+j%_l_|yl(-1+z)/3’ ,uy(‘“zm =J’T (_},(2_,!+2)/3 n y(zj W3x?) (19)

1 Concavity of logarithms gives: vi = 1 and v(x, ¥) € R2,
(I log x+ ((n— 1)fm) log y < log((1{n)x + ((n— 1}fm)y)
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or, again with Young’s inequality,

! 3 2 j+2)/3 /zf:z-? 2j+2 f+2
Vi W [y (SRR, I e pFRUOR ol (20)
J
The following expressions for vy and v, satisfy the constraint (18) we have proposed:
vi(x) = —cxi
va(x1, X2, p) = —C2(xa+ x1+ pxi— xi— o1 (a )Y V| 1+ 2px; 1)

= 3(1 — cp)xt | BIBRIZD g jUD (x4 Xy + pxt — X — v (a)VHPY

with

C124, C1>4J_2

2 — 22
J+1 22)

Note that the last term in the definition of v; is not motivated by (18) but by inequality (30)
to follow. This yields in particular

$F S W, 10, p) V1, 32, p) ER? (23)
1
It follows that for any strictly positive real number £ we have
/___—-\
V4 pey@ivdA ¢ L O Y U @i/ 24)
AN J+1
Therefore by choosing j and ¢; in the control and e for the analysis such that
(] 3
—>e>— 25
2 Jj+1 =

we have achieved our objective. Namely, we are guaranteed that, whatever the positive value
of u is, along the solutions of the closed-loop system (2), (13) the function V + pey@/+273 is
decaying, these solutions are bounded on [0, =) and satisfy

Jim Wx (f),xz(f)sp*)=fli_ﬂ; y()=0 (26)

Let us remark that for proving this result we have not followed the standard route!” of
approximating the slow manifold by y = x{, the equilibrium manifold at g = 0. Indeed, the
deviation 5 = y — x} from this latter manifold satisfies

pi = —(1 = 3pxtim = 3uxi(rz + p*xi— x1) @7

The term 1 — 3ux7T not being positive uniformly in x;, difficulties will follow when wishing to
establish global regulation.

In conclusion, to get bounded solutions for both the model (1) and the system (2), we can
choose the control (13) with the expressions (21) for vy and v2. In fact, this is a family of
controllers, since j, ¢; and ¢z are still to be chosen. Note, however, that we have been taking
no care of smoothness of the control. In particular, for j> 2, v» may be only Hélder
continuous. Also, we have shown in our analysis that an appropriate Lyapunov function for
studying the closed-loop system is

Ulxi, X2, ¥, p*) = V(x1, X2, p*) + pey@I+973 (28)

Unfortunately, an important drawback of this Lyapunov function is that it involved explicitly
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the unknown constant p and the unmeasured state component y. A consequence of this
dependence is that we shall not be able to use it to design an adaptive regulator by applying
the standard Lyapunov design, ! since in this case we may expect the parameter update law to
involve p and y. Thus, before studying the other system (3), we have to find another
Lyapunov function in terms of x;, x2 and any other signal which can be effectively obtained
from the measurements of x; and x».

To attack this problem, we shall try to understand the relation between y and x; and xs.
Let f(¢) be an arbitary bounded C' time function and u(f) be another arbitrary Cop time
function. Let (x1(z), x2(f), ¥(¢) be a solution defined on [0, T) of the system (2) with u(¢) as

input. In (20) the equation satisfied by y**/ gives for all 7€ [0, T)
YRV () < exp(— {) y(2j+2)/3(0)+l S' exp(at
2 rdo

However, with (23) and (9) we notice that we can find a function T such that

- S)x%f'”(s) ds (29)
I

axi < TV (3, 32, p)) S 2V9W(x1, %2, p) ¥ (31, X2, p) € R (30)

Indeed, we may choose
T(V)=ea@jy)+/ @D
Noticing that p can be chosen arbitrarily in (30), this inequality and (29) yield for all r¢ [0, T)

l J—
y‘”“‘””(r)sexp(—i)y““”’”(oH—I §exp(———~’ S)T(V(xl(s),xz(s),ﬁ(s))) ds (32)
I Cip Jo "

Now, with Hélder’s inequality, for any (finite) integer number g > u we have

{ _ _ (g-1)/ t
S exp(——t S)T(V(s))dss("—(q ”)q ,,,(5 exp[H(t—s)]*r(V(s))“ds)w (33)
0 I3 qg—pu 0

with F(s) standing for V(xi(s), x2(s), p(s)) to abbreviate the notation. Finally we observe
that the integral on the right-hand side can be obtained as follows.
Given a positive real number ry, we define what we call the normalizing signal r by

r=—r+T(V()Y, r0=ro 34)
We have

t 1/4
( 5 exp[— (f — )] T(V(s)? ds) " <2t v/apiva_ exp( - é) g (35)
¢

Therefore we have obtained

_ _ IR\
y(2J+2)/3(I) s exp(_i)y(lj+2)/3(0)_i (M) exp(—l)rﬂl/q
B Cip \ g—p Z

— (g-1V/q
4 -]_ (M) r(f)lfll (36)
Cip qg—p

With (17) and (18) this yields the following key property for the unmodelled effects for all
tef0, T)

% (x1(2), x2(1), PO (x1(1) — ¥ (1)) ‘ < mW(xi (), x2 (), B(O) + par ()7 + D(t) (37
1
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where the constants p; and g, are given by

_ \(e-1Va
mweh =iy (D) (38)
J+lepw\ g—p
and the time function D is defined by
3 t ) 3 (q— 1) (a-1)/q t 1/
D(ty=——exp| —=)y@/*P3(0) - (# ) expl —=]rg™ 39
O=75 p( p)y O~ o\ a=s P\g)

Recall that inequality (37) holds for any input #(¢) and any time function (). We note also
that since g > g, D(¢) is negative for all 7 sufficiently large. Nevertheless, the fact that sup,D(t)
depends on the initial conditions may be the cause of a non-global result. To emphasize this
aspect, it is opportune to define for any strictly positive real number 4 the open set

Py = (X1, x2, Y)ER?| y| <) (40)

and the function

3 3 ie3 3 (g-1) (q-1)/q
@ (n, ro) = su D(t) = max{0, —— 5@/*23 _ - ('u ré’?l (@l
G, 70) rEﬂh,\_vFU)l<r; © [ 1" cp(j+H\ g-u ’ B

This function is increasing in % but decreasing in ro. Then, if our controller involves the

normalizing signal r and therefore fixes ro and our analysis requires a bound A on sup,D(r),

our result will hold only for some initial conditions defined as follows. Let ™ be given by
D", r0)=A (42)

The constraint on sup,D(r) is satisfied if the initial conditions (x;(0), x2(0), ¥(0)) are in the set
#5*. Such a fact will motivate in our general framework the introduction of the set &#"and the

function @(&).
Now, coming back te the key inequality (37) satisfied by the unmodelled effect, we can try
to prove boundedness via the study of the following system instead of (20) as we did above:
V< —(1—p)W+mrT+ D), F=—r+1T)" (43)

with (see (30))

(V) <2Viw (44)

The inequalities (43) are satisfied when & = 1o (x1, x2, p™) and p(¢t) = p™. For such a system of
inequalities it turns out that an appropriate Lyapunov function is

. Vixi, xz,p')
Uxy, xa,r,p)= S

T ()27 du+§r2 (45)

Indeed, it allows us to prove that V" and r are bounded if (see the proof of Proposition 2)

8ok 6 20g-1) (g-1)/q
0l —py =21V, =1 _2¥Vi~-VVa 46
£l H2=3 oG+ D P (46)

This means that by following this approach, boundedness can be established without any
bound on sup.(t) (see the discussion above), but only if, for some real number ¢; in (0, 1),

12 7(2(g—1)\!
(2‘“fcl(j+1)) ((1—03)Q) S e

This is more conservative than what we obtained above, since no constraint on x was needed




292 Z. P. JIANG AND L., PRALY

in our previous analysis. Note, however, that if in the control u,, ¢ is chosen such that

24 < C
2 VG DA —cy)

then by choosing g sufficiently large, we can enlarge arbitarily the domain of admissible x’s
for our second approach.

Though more restrictive, our second approach is more general, Indeed, the only assumption
needed about the unmodelled effects is that (37) holds. To check that such a characterization
of the unmodelled effects allows us to encompass a wide variety of unmodelled effects and not
only the singular perturbation of the system (2), let us see if it is satisfied by the system (3)
with regular perturbation.

As in the previous case, to know what the unmodelled effects are for the system (3), we
compute the time derivative of V(xi, x2,p") defined in (9) along the solutions of this system.
For this we need to choose a control. Let 5(¢) be an arbitrary bounded C' time function. Let
(x1(8), x2(t), ¥(2)) be a solution defined on [0, T') of the system (3) with u = un(x1, X2, §(2)) as
input. Note that « is not arbitrary as it was in the previous case. Along this solution we get

(48)

Ve —w+ 2 (uy v ay) (49)
BX1

Thus in this case the effect of the mismodelling is the introduction of the term (8V/dx:)
(uy + d(t)). Our task now is to check if an inequality in the form (37) is satisfied, with the
same definition (34) for the normalizing signal r. As in the previous case with (30), such an
inequality holds if we can find constants 6, and D, such that for all ¢€ [0, T) we have

(1 + 23 (x1(0), x2(0), SO = 11E 22 L 8T (Vi (1), x2(8), H() + Dy (50)

Tedious computations with application of Young’s inequality show that such constants exist
provided that

3+ 8o . 3+ 20
<4 <i<
b GLdg = 1 ay

(51)

These very strong constraints illustrate the trouble that may be caused by the direct action of
the input on the unmodelled dynamics. In particular, by increasing j, which may be interpreted
as augmenting the gain of the controller, we may excite these unmodelled dynamics up to such
a point that stability is no longer guaranteed.

Boundedness of solutions when p # 0 and p* is unknown

When p* is unknown, many adaptive controllers proposed in the literature can be applied
to our simplistic model (1). For example, following the terminology of Reference 1, since the
matching condition is satisfied, we may apply a Lyapunov design. Namely, we choose an
adaptation law in order to make the time derivative of a Lyapunov function negative along
the solutions of the closed-loop system. Precisely, using the definitions (9), (12) and (13), we
look for two functions v, and v, such that the time derivative of

U(x1, %2,5) = V(x1, %2, p) + 3|1 p— p*|? (52)
along the solutions of

=it BRE— %%, X = a1, X2, ) + vulX1, X2, B), B =up(x1, X2, §) (53)
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is negative. By using (12), we get

. 5 * aV 5 aVv av
= — e B e e 54
U W+(p—p )(v,, ax, X1 ap Up P U (54)
However, we notice that
av
LR SR (55)
ap 9x2

imply that the matching condition is satisfied (see Reference 1, P. 371). Therefore, by choosing

av 3 av
= e x3, W= U= - xt (56)

we pet
U= -W (57)

Having designed the adaptive controller u = 1, + vy, p = up for the model (1), let us investigate
now the properties it gives when applied to the actual system (2). We compute the time
derivative of U defined in (52) along the solutions of

i=xa+ptxi-y, Y2 = un(x1, X2, B) + vy (X1, X2, ), (58)
”j,lz ——_y-l—x%, ﬁ=Up(X1,-\‘2,f’)
By using (57), we get
= — 2 (x1-») (59)
axl

We observe that the mismodelling has the same effect (3 Vidx) (x1— ») as in the case where
p” was known. Since no constraint was imposed on the control & to obtain (37), this inequality
holds again. By using this characterization of the unmodelled effects, the analysis can be
pursued as will be shown in remark 5 following Proposition 2. Unfortunately, if we analyse
the properties given by the same adaptive controller based on the matching condition when
applied now to the system (3), we encounter difficulties. Indeed, the unmodelled effects
characterization (37) has been obtained for system (3) only when u = u,, whereas we have now
I = Uy + vy, Precisely, the closed-loop system is

X1=x+ p*x% — xt+ wy + dit), X2 = un(x1, X2, ) + (X1, X2, )

) . iy 5 ) (60)
y==y+ [1+ (ua(x1, x2, p) + vu(x1, 32, BN - 1, b = vp(x1, X3, P)

As we have already observed, in the case where p* is known, inequality (37) holds if we can
find constants &; and D, such that for all t€ [0, T) we have
ELT+ (a0 (0), %200, BN + va (31 (1), 22 (1), HEN ]

= 1) @D L HT(V(x1(), x2(8), B(D) + D> (61)

After lengthy calculations with repeated use of Young’s inequality, we show that such
constants exist provided that either

. 3+ 8¢ ., _3—-6o
== 6 < __.<__
IS Gl > = Jy

(62)



294 Z. P. JIANG AND L. PRALY

or

15-3J6 3+180 _ . _3-120
T 6— 4o = S oy
It is clear that the set of admissible ¢’s and the corresponding set of acceptable j’s are smaller
than those defined by (51) for the case where p* is known. We note that this loss is due to
the presence of vp in the control. In other words, the adaptive controller obtained by the
matching condition cannot guarantee the property of boundedness of the solutions robust with
respect to some unmodelled effects. This leads us to find another controller design.

To conclude, the study of this example introduced three assumptions: boundedness
observability, stabilizability and unmodelled effects characterization. These assumptions will
be presented in the general framework in the next section. This study showed us also that an
adaptive controller appropriate for the ideal case, i.e. applied to the model, may lead to prob-
lems in the non-ideal case, i.e. applied to systems only close to the model. This emphasizes the
need for modification of this adaptive controller. This problem will be addressed in Section 4.

1
<

(63)

3. UNMODELLED EFFECTS

Let the system to be controlled admit a finite state representation on R™ and its dynamics,
maybe augmented by input and output filters, be described globally by .

X = F(X,t,u), x=H(X,1) (64)

where the vector X is the state in R" which is not measured and the dimension N is unknown,
u is the input vector in R"™, x is a measured output in R" and finally:

Assumption R (regularity) (65)

F and H are C! unknown functions with (@H[dX) (X, 1), (dH[8t) (X, 1) and F(X, ¢, u)
bounded for all (X, #) in compact sets and ¢ = 0.

We assume also:

Assumption BO (boundedness observability) (66)

For all compact subsets % in R" and &, in R™ and for all initial conditions X(0) in R",
we can find a compact subset 2y in R”™ such that for the corresponding solution X () of (64)
defined on [0, T),

x(t) e, and u(t)e, vie[0,T) implies X(¢t)€xy Vie[0,T)

Namely, to know that the trajectory [ X(¢)};e o, 7y is bounded, it is sufficient to observe that
the trajectories {x(¢)}:eo, 7) and {u(#)]ve[o, 7y are bounded.

Our problem is: design a controller such that the solutions X(¢) of (64) are bounded and
lim. o H(X(),1)= &, a desired set point for the measurement x,

Since the system to be controlled is only partially known, we shall work from a design model
whose state is x. This is why it may be interesting to augment the dynamics of the system to
be controlled by filters (see Reference 1, Example (24)). The dynamics of this model are chosen
as being described by an equation involving an unknown constant parameter vector p':

i=a(xu)+ Alx,u)p* (67)
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where the functions @ and A are known and continuously differentiable and p* is an unknown
parameter vector in a known compact convex subset IT of R!. This model is said to be linearly
parameterized in explicit form. This is more restrictive than the case of linear parametrization
in implicit form

(b(x)+ B(x)pH)x=a(x,u) +A(x,u)p”* (68)

as obtained with manipulators for example and considered in References 6—8. Our model is
supposed to be stabilizable for all p:

Assumption S (stabilizabilty) (69)
There exist three known functions u,, W and V such that

(1) un:R"xII— R™ is of class C'

(2) W is positive, of class C°, W(x, p)=0if x=¢&

(3) Vis of class C?, positive, V(x, p)=0iff x= & and for any positive real number K, the
set {x| V(x, p) € Ky, pell} is a compact subset of R”

(4) for all (x, p) in R" X I, we have

%(ﬂ( syun)+ A, un)p) € -~ Wix, p) (70

Namely, for any p in II, the point &, which may depend on p, is a globally asymptotically
stable equilibrium point of the system

X=a(x,us(x, p)) + A(x, ta(x, p)p (71)

and V is a corresponding Lyapunov function for this closed-loop model with time derivative
less than — W.

Knowing that the model can be stabilized whatever the (constant) value of the parameter
vector is, we need now to characterize the discrepancy between our model (67) and the actual
system (64). For this we need to choose two strictly positive real numbers « and rp, a strictly
increasing C' and convex function ¥ : R, — R, with ¥(0) = 0 and a positive C' real function
T:R: — R, satisfying, for some strictly positive real number c,

T(V(x,p)) < cW(x,p) V(x,p)eR"xII

: i (72)
T()=0 iff v=0, liminf T(@)>0
v ™
Then we assume:
Assumption UEC (a,ro, ¥, T) (unmodelled effects characterization) (73)

Let 2" be an open subset of RY with H(2;0)=R". There exist a positive real function
@(4°) and positive real numbers y;, g2 and p such that for any C' time function p: Ry — II
and any solution X(¢) of

X=F(X, t,us(x, p)), x=H(X,1), X(0yea (74)
defined on [0, T) there exist a C! time function p™: [0, T) = II with || p*|| < p and a C” time
function D: [0, T) — [0, @ (&) satisfying, for all 1€ [0, T),

%; (x, PY[x — a(x, un(x, p)) — A(x, ua(x, AP | € mW(x, ) + p2¥ e, r) + D) (75)
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where r, called the normalizing signal, is defined by
r=—ar+¥(T(V(x,5))), rO=r (76)

Note that p* is allowed to be time-dependent and to depend on p. The condition
H(#;0) = R" means that we are looking for results which are global with respect to the model
state initial condition x(0). On the other hand, we may have restriction on the initial condition
X(0) if, as discussed in the previous section, constraints are imposed on 2 by the fact that
@ () should satisfy some inequality.

This assumption is the unmodelled effects characterization we mentioned previously. Note
the presence of the positive real number « as a pole defining the normalizing signal r. It should
be chosen in general depending on the neglected fast time constants. This implies some
knowledge about these time constants. Nevertheless, as seen in our example with (47), by
introducing the function ¥, we can make this dependence much weaker. Also, in the case of
linear systems this dependence can be overcome by input filtering as shown by Ioannou and
Tsakalis. ' Another motivation for introducing an integrator is to prevent the input from
having a direct action on the unmodelled dynamics. %% Such a direct action is no trouble when
dealing only with a local stability analysis,*>” but it may be a real problem for a global
analysis as we have seen above by studying the system (3). Adding integrators can be done
easily in the non-adaptive case as follows from Reference 14, Theorem 3.c or Reference 15.
However, in the context of adaptive control, adding integrators may cause difficulties, the
parameter dependence of the closed-looped system being reinforced (see the discussion about
the matching condition in Reference 1). In particular, for the case of manipulators as
considered by Reed and Ioannou® and Campion and Bastin,” we do not see how integrators
could be added in the adaptive case owing to the fact that the model is linearly parametrized
only in the implicit form (68).

The characterization (75), (76) is in some sense a closed-loop one. Instead of asking for
inequality (75) to hold for all possible input functions, #, which would be a very stringent
requirement, we require only that it holds for the particular class of input functions u, (¢, 5),
among which will be the one actually used. However, one open-loop aspect remains, since not
knowing a priori what will be the time function p, we are led to ask for (75) to hold for all
possible time functions p. Also, the closed-loop model Lyapunov function ¥ is involved in
inequality (75). One way to understand this is: the control law u, should be designed in such
a way that the corresponding V satisfies (75), i.e. the unmodelled effects should be taken into
account in the control design. This aspect was illustrated in the previous section when we chose
v, U2 and J.

One of the difficulties encountered when dealing with Assumption UEC (a, ro, ¥, T) (73) is
its checkability. This aspect is the topic of current research. For the time being, our objective
in this paper is only to get a qualitative result. Namely, we intend to introduce a notion of
distance between model and system—quantified later by p; + 2cpa—and to establish if possible
that Lagrange stability is an open property with respect to the induced topology. In the linear
case this programme has succeeded completely. Indeed, it is proved in Reference 12, Property
5 that an assumption similar to Assumption UEC(x, rp, ¥, T) (73) is related to the graph
topology introduced by Vidyasagar.'® Another way to realize the interest of Assumption
UEC(e, ro, ¥, T) (73) is to figure out what kind of unmodelled dynamics can be captured by
inequality (75). This was the motivation in Section 2 for considering examples with singular
and regular perturbations.

To help the designer in choosing the constant « and the function ¥ which are involved in
Assumption UEC(«, rp, ¥, T) (73) and will be explicitly used in the controller we shall propose
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in Section 4.3, we have the following lemma whose proof is straightforward from the
arguments of Reference 16, Chap. 3.

Lemma 1
Let v(t) be a C' function defined on [0, T). We have the following properties.

1. If ¥ is a strictly increasing convex function with ¥(0) =0, then ¥(x)/x (resp. ¥~ '(x)/x)
is non-decreasing (resp. increasing) and for all positive x, y and k > 1,

¥ (kx) < KT TH(x), T x-S T+ TTH(Y) (7"
2. Let r; and ra be positive and such that
FL g —arr + ¥ (), Fa= —aar + ¥a(v) (78)
where o) > a2 > 0 are real numbers and ¥, and ¥, are strictly increasing functions with
¥,;(0) = ¥,(0) =0 and ¥, and ¥, ¥ ! are convex. For all 7€ [0, T) we have
Vil (1)) € z—z V5 (eara (1)) + ¥ (Max (0, ¥2¥ 7' (aur1 (0))e ™! — cara(0)e™21))  (79)

3. Let r3 and ry be positive and such that
P —ars+ B (v)+ 7, Fa= —ary+ ¥ (v) (80)

where o > 0, 8 2 0 and v = 0 are real numbers and ¥ is a strictly increasing and convex
function with ¥(0) =0. For all 1€ [0, T) we have

™ Hary (1)) < Max(1, B}~ ers (1)) + ¥~ (Max (0, v + (ar3(0) — vy — aBra(0)e ™)) (81)

Proof. Point 1 is straightforward. For point 2, according to Jensen’s inequality with ¥, ¥ il
convex, we have

r
Vi o) < YT (me"""n ©) + o 5 e U= (u(r) d:r) (82)
0
< ¥3'(a) (83)
where « is defined by
!
a=e "% 7 N ayry (0) + g 5 e~ U=, (u(7)) dr (84)
[H]

With point 1 we obtain

f
Vilor) <L ¥5! (aze“’ﬂrz(O) iouy S
(2%

0

el YO0y df)

+ ¥ (Max {0, ¥2¥ T (e (0)e ™ — ayra (0)e ™ %3')) (85)

This is point 2.
It remains to prove point 3. From the definition of r3 we have

T Har) g P! (ae'“’r;(O) +aff S{ e U= (y(s) ds+ v(1 — e“")) (86)
0

With point 1 the conclusion follows as in the proof of point 2. O
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4. ROBUST BOUNDEDNESS

Our objective now is to study whether Assumptions R (65), BO (66), S (68) and
UEC(e, ro, ¥, T) (73) are sufficient to guarantee the existence of a controller solving our
problem. We proceed in increasing order of difficulty.

4.1. p* given and constant

When the vector p* in (75) is given and constant, the value of p* is available for
computation. Therefore we may propose the control law

u=uu(x, p% (87)
we get:

Proposition 1

Let Assumptions R (65), BO (66) and S (69) hold. Under these conditions, if for some
a, ro, ¥ and T, Assumption UEC(«, ro, ¥, T) (73) holds with p* known and constant, i.e. p =0,
and

2 D)
1—p—2cu>—clim su
3 H2 lep T()

then all the solutions of (64), (87) with X(0) € & are well defined on [0, «), unique and
bounded. Moreover, if for some Ty > 0,D(#) =0 ¥t = Ty in (75), then

(88)

lim x(t) = & (89)

I—

The proof of this proposition is based on the Lyapunov function

)= IV p™) +5 7 (90)
with e a strictly positive real number and 7(V') the function defined by
YY)’
I(v)= S ——=_dyp 91
(V) ) 1)

A complete proof can be found in the Appendix.

We remark that if lim inf, ., . T(v) = oo, there is no constraint on @ (). It follows that if
the function @ is such that @(2") is well defined for any open set & of R™ satisfying
H(#;0)=[R", then our result holds globally, i.e. for any initial condition X(0). Also, «, ry, ¥
and T are free to be chosen since they are not fixed by our controller. In particular, « can be
chosen depending on the singular perturbation parameter if needed (see the discussion after
(48)). Also, we can adjust ro to each initial value X(0) in such a way that D(¢) can meet the
assumption D(z) = 0 Vi > Ty for some Ty (see (41) for an illustration).

4.2. p* unknown and time-varying; V does not depend on p

When the vector p* is unknown and time-varying, the control law (87) cannot be
implemented. Instead we use a dynamic controller with state j,

p= F(x,p), i = un(x, p) (92)
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which is obtained by applying Lyapunov design (see e.g. Reference 20). We have just
mentioned that 7 defined in (90) is an appropriate Lyapunov function for the case where p™
is known, Since the model equation is affine in the parameter vector, we may try the control
Lyapunov function

U(x,r,ﬁ)=I(V(x,ﬁ))+§r2+% 56— p*|? (93)

where v is a strictly positive real number. Namely, let us design the function & in (92) so that
the time derivative of U along the solutions of the closed-loop model (67), (76), (92)—which
is not (64), (92)—is negative assuming (but for the design only) that p* is constant. If such
solutions exist, we get with (70} in Assumptions S (69) and (72)

Y29V .

. 1 _, 5 x ¥2av .
& e e S o L 4
U = T2 — ear +£r‘lf+(yp 7 Ay (p-pH+ T 3p yii (94)

Hence in the case where V does not depend on p, this leads us to choose
IS B 16469 E
S, 5y = L LA 0)
Y T
Note that as a consequence the values of £ and r are not needed to implement the controller.
Moreover, we know that p™ is in the known convex compact subset TI. We use this a priori
knowledge by projecting & onto the boundary of Il whenever p is on this boundary and
is pointing outside IT. The following controller results:
. 2
5 = Proj ( RACNCLE))s
¥T (V(x)
with £(0) an interior of II, i.e. §(0) € I1, and with some extra but weak restrictions on the set
I1, the function Proj can be made locally Lipschitz continuous and to have the property!:!?

s bz Tﬂf T
A(x, ua(x, B)) ax (x) (95)

A(x, un(x,p))T L (x)T) = un(X,P) (96)

(p—pH' Proj(p, ») < (p-pH'y, | Proi(p, M1 < |l 2l (97)

for all (p, p*, ») in R’ x II x R’. It remains to study the properties that this controller provides
to the actual closed-loop system (64), (96). We have:

Proposition 2
Let Assumptions R (65), BO (66) and S (69) hold with ¥ independent of p. Under these
conditions, if for some o, ro, ¥ and T Assumption UEC(w, ro, ¥, T) (73) is satisfied with

@)
1 - 2cpy — ¢ lim sup >0
r = 2cp2 mSUP F )

(98)

and if v is chosen sufficiently small so that

i
v sup | pi- Pz||<l( — 1 — 20 — c lim sup 2L ))hmmf‘P(T(v)) 99)
(P, p2)E eI’ c v— o T( ) U=

then all the solutions of (64), (96) with X(0) € & are well defined on [0, =), unique and
bounded. Moreover, if p=0 and for some 7o >0, D(¢{) =0 vi = Ty in (75), then

lim x(1) = & (100)

[—

Proof. See Appendix. 0
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We remark:

1.

2,

Inequality (99) implies that the larger the speed p of the unknown vector p* or the larger
the parametric uncertainty sup(p,, p.)en® || p1 — p2 ||, the faster the adaptation should be.
Proposition 2 confirms one of the conclusions that can be drawn from the work of Reed
and Ioannou® and Campion and Bastin’ for manipulators. In this case where we can
choose V independent of the updated parameter vector j, the only modification which
is needed compared with the known parameter vector case is a mechanism guaranteeing
boundedness of the updated parameter vector 5. Instead of the projection used here and
in Reference 7, Reed and Ioannou proposed the so-called g-modification.

The normalizing signal r is not explicitly used in the controller (96). It follows that e and
o are free (see the comments after Proposition 1).

In this case where singular perturbations are present, only a local result is obtained in
References 7 and 8. This follows from the fact that in these two cases the control appears
in the fast subsystem. In our framework this implies that we do not know any quadruple
(e, ro, ¥, T) such that Assumption UEC(q, ro, ¥, T) (73) holds.

. Robustness of Lagrange stability has also been established locally by Taylor ef a/.* for

feedback linearizable models with a parameter-independent linearizing diffeomorphism.
This independence implies our parameter-independent ¥ assumption. There is, however,
a possibility to extend those results to the case where V depends on the updated parameter
vector if a so-called matching condition is satisfied. ' Indeed, if this condition holds, it
is possible by augmenting the control in

u = un(x, p) + v(x, p, §) (101)

to annihilate by v the term (\If"‘/T) (8Vjap) b in (94). Unfortunately, in this case
Assumption UEC(a, ro, ¥,T) (73) is not sufficient since u is no longer in the class
un(+,p). We need to make Assumption UEC(a,ro, ¥, T) (73) more restrictive by
replacing

Jor any C' time function p:R, = I and any solution X(t) of

by

X = F(X, t, ua(H(X, 1), p)), X0 eax (102)

Sor any C' time function p: Ry =1l and u:R. - R"™ and any solution X, (t) of

X=F(X,t,u(t)), X(0) e (103)

4.3. p* unknown but constant, V depends on p

When V' depends on p, we have the extra term (¥2/T) @¥/dp) j in (94). If such a term
cannot be annihilated via the control, we have to consider it as a disturbance and to design
a controller which will guarantee robustness and boundedness of the solutions with respect to
it. For this design we propose to replace the control Lyapunov function U in (93) by

Ulx,r,p)= L(I(V(x,ﬁ))+§r2) +1 5= 7)1 (104)

where the function L is to be designed. For this new function U, the same Lyapunov design
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as in Section 4.2—without projection—Ileads to the following inequality, replacing (94):

2 2h\2 T
U< |:‘I’—+.Er_urz—-.eo/:ré[f—l (‘Ir—) ﬂ/ATEJL

c ¥y\T /) ap ax
where L' is the derivative of L. We conclude that, to make the last term in the brackets
smaller, this derivative should be positive but as small as possible while guaranteeing radial
unboundedness and positive definiteness of L. This leads us to choose L(x) =log(l + x) and
to propose the controller

L']L' (105)

F=—ar+ ¥ (T (V(x, D)), r(0) = ro
(T (V(x,5))> 1 dV
S A | (75 v T ﬂ
5 =Proj| p, i u=un(x,p) (106)
(1 + I(V(x, §)) +§r2)7

with 7(0) € II and I defined in (91). Note that o, rg, ¥ and T are involved in this controller.
In this case we have:

Proposition 3
Let Assumptions R (65), BO (66) and S (69) hold with, for all (x, p) € R" x II,

aV av
ZHHEE A¢-
ap ax (s tn)

where d is a positive real number. In the controller we choose «, ro, ¥, T, e and v such that

v k
(1 + S T(0) dt)
0

v

T+ | (TrE)3T@) de
0

lr’
< d(l < 5 T(v) dv) (107)
0

(1) For some positive real number #k,

is a non-decreasing function for v = 0
@
cdk

cE < Za(l ——) (108)
Y

Under these conditions, if Assumption UEC(«, rg, ¥, T) (73) holds with the above given
o, o, ¥ and T and, moreover, if ui, 2, @(@) and p satisfy p =0 and

2 . @
cle+apz)” < 2018(1 — p1 — Cpz _%_ ¢ lim sup -ﬁ(ﬂ))
Y v—w  T(V)

then all the solutions of (64), (106) with X(0) € 2 are well defined on [0, ), unique and
bounded. Moreover, if for some T3> 0,D(t) =0 vt = Tp in (75), then

(109)

lim x(#) =& (110)

{—eo

Progf. See Appendix. O
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We remark:

1. In this case where V depends on the updated parameter vector j, together with the
parameter update projection another modification is used: a normalization. Namely,
compared with (96), we have introduced in (106) the denominator 1+ I(V) + (e]2)r2.
Consequently, the normalizing signal r appears explicitly in the controller. This implies
in particular that «, ro, ¥ and T are no longer the free parameters we can adjust to show
that Assumption UEC(w, ro, ¥, T) (73) is satisfied. This is the opposite to the case of
Proposition 2 (see remark 3 following Proposition 2).

2. Inequality (107) generalizes the growth condition introduced in Reference 13 for the case

T(v)=wv.
v k
(1 + SO () dr)

3. Monotonicity of
14 r(qf(”f(t))Z/T(t)) dr
0

is a weak (technical) growth condition on the functions ¥ and T. For example, it is
satisfied by

T () = v", ¥ (v) = v™, k> (2m—2)n+—(2m;i)r+l
or by
v

v+1’7

T(U) — ‘If(U) - Um, k > 221n+1

4. In contrast with remark | following Proposition 2, v should be large enough for (108)
to hold. This is the well-known robustness versus fast adaptation trade-off.

5. All our assumptions are satisfied if the system to be controlled is linear, ¥ is quadratic
in X, iy, is linear in x, ¥(T) =T and T(v) = cv. In this case (106) is a new—as far as we
know— robust adaptive linear controller which does not require any augmented error.

Example (continued)

During the discussion and the analysis in Section 2 we have seen the Assumptions R (65),
BO (66), S (69) and UEC(q, ro, ¥, T) (73) are satisfied for the two systems (2) and (3) whose
reduced-order models are (1). Now we want to show that the growth condition (107) is satisfied
by ¥ and T defined by (9) and (31) respectively. Indeed, we have

oV 2 . ;
’5; (1, %2, P) I = |xe¥1| € @VYIRI)H (111)
and
AV | _ | Lziel _ 21,2
cracd = |2t 4 xall + 2px — 3(1 — ) x1) x| (112)
X1

< RV)FHVCD L VY225V + 2Dmax 25V D 431 + ) (25V)] (113)
Therefore there exist two positive real numbers ¢4 and c¢s such that

av av ,

ap| o™ < e VOIHVED o (114)
1
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but since from (31) we have the equality

v s O DES
5 () du:clj(z‘],) pi+/ (115)
o

2/ +1
inequality (107) follows.
With remark 3 following Proposition 3, by using this proposition, our new adaptive
regulator applied to (2) and (3) guarantees the global robust boundedness of the solutions
(x1, x2).

5. CONCLUDING REMARKS

The interest of considering a normalizing signal in the study of the robustness of Lagrange
stability of linear systems has been acknowledged by several authors. In particular, it is shown
in Reference 12 that this technique allows all the qualitatively possible linear unmodelled
dynamics to be captured. The generalization of this concept to non-linear systems is the main
idea reported in this paper. We have shown with our worked example of Section 2 that it may
also be fruitful in this context by introducing one new way of characterizing the unmodelled
effects. Also, by combining this technique with a Lyapunov design and a growth condition,
we have been able to establish some new Lagrange stability results for non-linear systems with
both parametric and dynamic uncertainties. Nevertheless, we are reporting only preliminary
results. More work remains to be done to get a better grip on the properties of this new
unmodelled effects characterization we have introduced. It would also be interesting to identify
the set of systems for which the growth condition is satisfied. Finally, all the results we have
presented were aimed at providing global Lagrange stability. To be more realistic, the local
case should be considered.

APPENDIX

Proof of Proposition 1

Since F, H and u, are locally Lipschitz functions, for each initial condition X(0) ¢ 2 there exists a
unique solution X(¢) of (64), (87) defined on a right maximal interval [0, T).
To study the properties of this solution, we define a function 7: R, — R, by
vV 2
o= AL, 1o
o T()

[ is well defined. Indeed, from the properties of ¥ and point 1 of Lemma 1, ¥(x)/x can be defined by
continuous extension as a continuous function from R. to Ry. The function T being continuous also,
V(T (v))*T(v) is a continuous function from R. to R.. Moreover, ¥ being strictly increasing and T
satisfying (72), for all positive real numbers i there exists a positive real number v such that

IM<gi = Vg (117
Now let #{x, r) be defined by

‘I(x,r)=I(V(x,p*))+§r2 (118)

with £ a strictly positive real number to be made precise later. The previous arguments prove that ¥7is
a C! positive definite and radially unbounded function. Let the unmodelled effect associated with the
solution X(r) be

w=k-a(x,u)— Alx,u)p* (119)
with (70) in Assumption S (69) and (75), (76) in Assumption UEC(w, 7o, ¥, T) (73), according to the
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property (72) of T, the derivative of #along this solution satisfies
{09414

——(a+ Ap* + w) — er(ar — ¥(T1)) (120)
T dx
c@{a)\ ¥ 5 F(TY ¥~ (wr)
< —(1-p - et ————¢
( m T(V)) e ¥ +er¥ 121
Now we have
2aq,-1
T Har) g T w < ¥ (T) {122)
and, since ¥ (x){x is non-decreasing,
2,1
T ar)>T = ngwr) (123)
This yields
. DA 2 ’
v — (1 — 1 —cpa — CT((V))) ‘1'?— ear’ + (paa + £)r¥ (124)

Now we are going to prove the existence of positive real numbers v*, r* and \* > 0 such that at each
time ¢ where V() 2 v™ or r(¢) = r* we have

*

5 A 2 2
") < —?(‘I’(T(V(!)))“+r(r)“) (125)
Indeed, by assumption we have
def anl 2 e e
i T el ) = i = 2 (126)
v—w T(c) c

Then let us define /' by

p Mebgg 1 Byl (1, 1 _‘“‘ZC"Z) (127)
2c c
and choose
Eq_fra(Z—Zm—Scm—ch) (128)
c
We have obtained that at each time ¢ where @(2°)/T(V(¢)) <!’ we have
() < = N (T(TW O + (1)) (129)

where A" is the smallest root of

AN =1+ 2a®)(1 — 1 —ops — oy — epae® ] N+ 0 (1 — py —cpn — ") (1 — g — 2epa — e’y =0 (130)

which is strictly positive thanks to (88). On the other hand, from the definitions of / and /' there exists
a positive real number v* such that

r *

@G
( )> = ULV (131)

Tw) =
It follows that at each time ¢ where @(2")T(V(¢)) = !' we have

iy < 1B = g ) - ear () + Gz + (OO
C
ICS ;
+ -1 (T(V( (132)
(T(V(r)) ) iRl

< —)\E(\II(T(V(I‘)))E+r(r)2)+}\?(r*2—r(t)2) (133)
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where, thanks to the continuity of the function \I'(T(v))z,"[‘(v), the positive real number r* is defined by
w2 et 29(2) T(r@)’

134
N oogvss® TE) e
Now assume that T is finite. This implies that
lim | X(#) || =0 (135)
=T

However, since #{x, r) is radially unbounded, V satisfies point (3) in Assumption S (69) and ¥ is strictly
negative whenever V or r is large, there exists a compact set Ky in R" such that

x(t)eK, vte[0,T) (136)
With continuity of v, and Assumption BO (66), this implies the existence of a compact set Ky such that
X()eKy vtel0,T) (137)

which contradicts (135). It follows that 7= oo and the solution X(¢) is bounded.

Now let us consider the case where D(t) =0 vt = Ty. We know from the above analysis that all the
solutions with X(0) € & are well defined and bounded on [0, =), so also in particular on [0, Tp).
Therefore we can reproduce this analysis but starting now at time Ty, allowing us in this case to replace
@(a) by 0. This leads to v* = r*=0. It follows that for each ¢ > T, we have

7(1) < — N (H(T(VON? + 1)) (138)

From Assumption R (65) and Barbdlat’s lemma (Reference 21, p. 211) it follows that ¥ (T (V(x(¢), p ™))
tends to zero as ¢ tends to infinity. With the properties of ¥ and points (2) and (3) of Assumptions S
(69) we conclude that

D=0 vizTo = limx()=¢ (139)
I—ea
O

Proof of Proposition 2

Since the right-hand side of (64), (96) is locally Lipschitz, for each initial condition f(0) eIT and
X(0) € & there exists a unique solution (x(z), 5(z)) of (64), (96) defined on a right maximal interval
[0, T'). Along this solution we have, with (97),

: @ 2 2q,—1
Uvg - (1 — C::((;j))) q’——sar3+uzw+ er¥ —y(5—p"p* (140)

However, thanks to Proj, 5 remains in the compact set I1. Since by assumption the same holds for p*
and || " || € p, there exists a positive real number k, depending only on II, such that

o " 2 2 -1
Us“(l_mw_my__ 2 ZW

cars+p
T ¥

Then, as in the proof of Proposition 1, we can show the existence of positive real numbers v*, r* and

2 > 0 such that at each time ¢ where Vieyz v™* or r(t) = r* we have

+erv (141)

U(r) s%(‘P(T(V(I)))Z-H(f):) (142)

Now assume that T is finite. Since §(t) remains in the compact set IT, this implies that
lim || X(0)|| = = (143)
uT

However, since U(x,r, #) is radially unbounded, j remains in the compact set I, V satisfies point (3)
in Assumption S (69) and U is strictly negative whenever ¥ or r is large, there exists a compact set K,
in R" such that

x()eK, vie[0,T) (144)

With continuity of u, and Assumption BQ (66) this implies the existence of a compact set Ky in R" such
that

XMeKx vwtel0,T) (143)
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This contradicts (143). It follows that T= e and the so!utlon X(¢) is bounded. Finally we observe that
ifp=0and D(t)=0 vt3> Ty, then we can choose v* = r*=0 for t = Ty. This implies that

Ug =\ (T2 + 1Y) (146)

From Assumption R (65) and Barbilat’s lemma (References 21, p. 211) it follows that ¥ (T(F(x(t))))
tends to zero as ¢ tends to infinity. With the properties of ¥ and points (2) and (3) of Assumptions S
(69) we conclude that
p=0 and D=0 wviz2T, = Ilimx(1)=¢ (147)
{—o
We remark that if @(2°) =p =0, the compactness of IT is not needed since in this case (142) implies
the boundedness of U and therefore of f— p™ O

Proof of Proposition 3

Since the right-hand side of (64), (106) is locally Lipschitz, for each initial conditions 5(0) € IT, 7(0) 2 0
and X(0) ¢ & there exists a unique solution (X (¢), (¢}, r(z)) of (64), (106) defined on a right maximal
interval [0, T). Along this solution we have, with (97) and U defined in (104),

- _ea(@) Y (1) (ar) AL
UQA[_(l a T(V)) c R T +Er‘l”rTé‘pp WA
V 2
- S YOO Gyr (149)
o T(v) 2

To go further, we observe that,
" p k
(1 + ! T(¢) dt)
0
m
1+S (E(TENT()) de
1]

being a non-decreasing function, we have by taking its logarithm,

e ik

T(v)

0 <k (150)

1+ 5 (T(T )T dr
0

Then with (97), (106) and (107) we have

¥iav . 1yt aV e
£—— X, A XunlX, — X, 151
Tap ‘ AT ( p)H ” (x,n(x, )7 ( b) (151)
< \Pzﬁ (152)
Y
Returning to (148) and following the same steps as after (121), we get
i C 71808 2
Usl [_ (1 _ _cﬁzﬂ_—c_ﬂ())) —‘I,——sar2+(£+f1pz)f"l':| (153)
A ¥ T c
Then we define
LT _,_[)(;,Q‘), PR #l—cﬂz—cdk,w-c!>l, (154)
ufvua T(v) 2c
At each time ¢ where @(&)T(V(t)) <!’ we have
U'gl[—i(l pl—cw—ﬂ—cl)‘l'z—sar2+(£+a;cz)r¢] (155)
A 2c ¥

x&
< —?(wzwz) (156)
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where A* is the smallest root of

dk
4en? - 2(1 — ut —C;Lz—c——cl+2(.'ea))\+ [2ae(l —m *Cﬂz—ﬂ—cl) —c(e+ cv,uz)z} =0 (157)
Y Y

which is strictly positive thanks to (109). On the other hand, there exists a positive real number v* such
that

9
(r);r = vt (158)
T(v)

Therefore at each time ¢ where @(&2)fT(V(¢)) = ' we have

Co1 1 . G
U.{Zl:——'-(1—p.]—Cuz—ﬂ—c‘f)‘llz—.‘.‘ar2+(£+oz,uz)r‘I’+(M i')\PZJ
Y

2 TV
1 . D .
<= =N(F*+r)+ sup ZATTI0) (159)
A ooy T(v)
The proof is concluded with the same arguments as in the proof of Proposition 2. O
REFERENCES

1. Praly, L., G. Bastin, J.-B. Pomet, and Z. P. Jiang, ‘Adaptive stabilization of nonlinear systems,’ in Kokotovi¢,
P. V. (ed.), Foundations of Adaptive Control, Springer, Berlin, 1991, pp. 347-433.
. Kanellakopoule, 1., P. V, Kokotovi¢, and A. 5. Morse, ‘Adaptive output-feedback control of systems with output
nonlinarities’, in Kokotovi¢, P. V. (ed.), Foundations of Adaptive Control, Springer, Berlin, 1991, pp. 495-525.
3. Kanellakopoules, I., P. V. Kokotovi¢, and A. S. Morse, ‘Systematic design of adaptive controllers for feedback
linearizable systems’, JEEE Trans. Automatic Control, AC-36, 1241-1253 (1991).

4. Taylor, D. G., P. V. Kokotovi¢, R. Marino, and 1. Kanellakopoulos, ‘Adaptive regulation of nonlinear systems
with unmodeled dynamics’, IEEE Trans. Automatic Control, AC-34, 405-412 (1989).

5. Kanellakopoulos, 1., P. V. Kokotovi¢, and R. Marino, ‘Robustness of adaptive nonlinear control under an
extended matching condition’, Proc, IFAC Symp. on Nonlinear System Design, Capri, ltaly, 1989, pp. 192—197.

6. Campion, G., and G. Bastin, ‘Lyapunov design of an adaptive external linearization feedback control for
manipulators’, in Bensoussan, A., and J. Lions (eds), Analysis and Optimization of Systems, Springer, Berlin,
1986, pp. 172—187.

7. Campion, G., and G. Bastin, *Analysis of an adaptive controfler for manipulators: robustness versus flexibility’,
Syst. Control Lett., 112, 251-258 (1989).

8. Reed, J. S., and P. A. loannou, ‘Instability analysis and robust adaptive control of robotic manipulators’, JEEE
Trans. Robotics Automation, RA-5, 381-386 (1989).

9. Praly, L., ‘Commande adaptative indirecte multivariable: stabilité et robustesse’, Collog. Nar. du CNRS, Belle-
Ile, September 1982.

10. loannou, P., and K. Tsakalis, ‘The class of unmodelled dynamics in robust adaptive control', Proc. 1988 Am.
Control Conf., pp. 337-342.

Li. Praly, L., ‘Commande linéaire adaptative: solutions bornées et leurs propriétés’, Docteur en Mathématiques et
Automatique, Université de Paris IX Dauphine, UER Mathématiques de la Décision, October 1988,

12. Praly, L., ‘Almost exact modelling assumption in adaptive linear control’, Int. J. Control, 51, 643—668 (1990).

13, Pomet, I.-B., and L. Praly, ‘Adaptive non-linear stabilization: estimation from the Lyapunov equation’, IEEE
Trans. Automatic Control, to be published.

14, Tsinias, 1., ‘Sufficient Lyapunov-like conditions for stablization’, Math. Control Signals Syst., 2, 343-357 (1989).

15. Coron, J.-M., and L. Praly, ‘Adding an integrator for the stabilization problem’, Syst. Controf Lett., 17, 89-104
(1991).

16. Hardy, G., J. E. Littlewood, and G. Polya, Inegualities, 2nd edn, Cambridge Mathematical Library, Cambridge,
1989.

17. Kokotovi¢, P. V., H. K. Khalil, and J. O'Reilly, Singutar Perturbation Methods in Control: Analysis and Design,
Academic, New York, 1986.

18. loannou, P. A., and P. V. Kokotovi¢, Adaptive Systems with Reduced Order Models, Lecture Notes in Control
and Information Sciences, Vol. 47, Springer, Berlin, 1983,

19, Vidyasagar, M., ‘The graph metric for unstable plants and robustness estimates for feedback stability’, JEEE
Trans. Automatic Control, AC-29, 403—-418 (1984).

20. Parks, P. C., ‘Lyapunov redesign of model reference adaptive control systems’, JEEE Trans. Automatic Control,
AC-11, 362-367 (1966).

21. Popov, V. M., Hyperstability of Control Systems, Springer, Berlin, 1973.

(18]



3 (R O TR Rt
‘ \
T e T N AR
r : 1 1
e ALy h ' ¥y .,
P X1 Vg tie Ml m S8 am we [} wid — Fre o e
b 1 ¥ : ] [
i N g b ten e e sk o el srE o (P00 venfy gy ohvagrs o el
- R R
ol Wt e b=
Lol
suphs w0 Vg EIYTAC L @ Sl | s o 8 g el
I [ J Sy R | 1
0 " . F N L A i . ! | ’
Fha o 4)*‘1.! 4 1D s 'n"{l..--‘f'"-_n.;-..i t}- .
! bpag B9 e F ok £
3 F AR s ouve. 3 8
A | § metemeesttas O L y THE L l
' 1‘!')! T | i)
SN U OO B L L P T T TPV T o | LI LR (PO TR SR T AR PR i
e R
Ay el s eotite g i g ap prapent 0w eaqhd T s 8 dan e B s w0 qa bt 8 L
BLA Y 2 SRC TN S B R S -:\,}["' (O 3 U s L e T
e ey S 1S et g sty annbn g mbns  eueiod s Lo lseoyied 3 S
A e S 7 U CRRUR T S BTN S PR CRIS s T S I S S AR IR (1 e VTS PR
ineflegs] 910 T e B e R [ e B el [ TR RS
e R S R LT I Il I3 ot DL (T2 Y= LT L Py il = ]
A e T e 4 i w's el T aad e o St R B I R
SURIPRE L A VST A fuuwash Aawmnd EEE N (L TR Ty PR L Y9093 13 AN LT
1y LTI Jbtnes ‘m-.;l-h fry rompeage ] oviait® S8 D saagbnied 40 4] sbiseamn Tbliag i
SL S I LI LTI L FLRSTRRNS T\ { VCLARPRRE 7 U | 1501 GERPAEINS SR PRI TS ST RIS B ATRCAS
AN TTPRE s, | P SR zo wpemhy gL apebh wmmgselt ool o Dse 0 s v 8
T R BT R ST 1 ERITIRTS R ¥.“_; K |_-,",' IETATIEI | l"ml LR T A (B LU "lar';?‘ W
LY B el
Shatlizah Caresr s L AR R W s PR e b S e B B T dlagink o
PCORRT o SR AN o JAREECHE U6 BT VETIES: T VR
A Sorslanpmin et e dnmeos ettt BB ng A ERlinl  tenrasst F Thind L@ K A @
L R A T T T S L 1o T JOTEY S St SORL I, P T
2 !."' Wil e et . B Jaegsiuin t wignn Sl i fui. PIUh ot Taer D e namina ¥ Y ,'.jq‘ i I
T Tl NI P |
e s pah sy o bt i e b dwenrn b anlend clidees Sbig 0T gyl
. Gy e e
L N T 10 T e R (St I PU WS LT RN TR TR e ITL B SRt T U SR T 0 LS T SRR LS I S S |

- f

YR Y ',"_:!'l:

LR I F el

Pl U N T St o il e

iy 2 © O LT L el 2 fil b b ey st e sEn 0w SRl b YIRS

LR b ot s idtlis . el PRSI T SR L ) ST ¢ GO M U

P IET S SRR IY AR TR B P TS LR SR T

et R B T | i ol ol A0 s 2 adedoinn L sl

ke Ay I T} S TR 1 TS AL ¥ el YO s T

thes [y

gt oty puibrd vl &b L ol vy =dued T 0 e Y

Ly

i) g f8 VRt Ry, e el e e el p ey R, R s e B F
AT LA el ety

ATRSHAN 2T mn g U0 Wy M S L e SR Gl 8 e L = il

L) g R T U T LA s s S

ANET N iR R AR S o = SR ' iz ht mi Alres Heins w 1 v ';fl.:‘

[ LI LS L SRR T AT ke et

R I | ] Ll i S “1t ik . fan oo wrwlon e gmna by it ued b ] Lt

} =t s ftC Ot
et e frar SR S R T T T



