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Technical Notes and Correspondence 
Lyapunov Design of Stabilizing Controllers for 

Cascaded Systems 

Laurent Praly, B. d' AndrCa-Novel, and Jean-Michel Coron 

Absrract-We are interested in designing a state feedback law for an 
affine nonlinear system to render a (as small as possible) compact 
neighborhood of the equilibrium of interest globally attractive. Follow- 
ing Artstein's theorem 111, the problem can be solved by designing a so 
called control Lyapunov function. The object of this note is to show 
how such a function can be explicitly constructed for some cascaded 
nonlinear systems. 

I. INTRODUCTION 

We consider the following affine nonlinear system: 

where x lives in If]", n L 2 ,  U is a scalar input, f and g are at 
least C' vector-fields, and f ( 0 )  = 0. The state being measured, our 
objective is to design a state feedback rendering a (as small as 
possible) neighborhood of the origin globally attractive. 

To solve this problem, inspired by Lyapunov's second method, 
we design the control law for the time derivative of a scalar function 
h (x )  to be strictly negative, h being positive, C' and radially 
unbounded, i.e., h (x )  + w iff 1)  x1I --* + W .  

This note is organized as follows. In Section I1 we use Artstein's 
theorem [ l ]  to show that the solution to our problem can be reduced 
to designing a so called control Lyapunov function ( c l f )  (see 
Definition 1). In Section Ill ,  we propose such a design for a 
cascaded system and give illustrative examples. We give our conclu- 
sion in Section IV. The proofs of all Lemmas are given in the 
Appendix. 

In the following, for the sake of simplicity, our assumptions will 
be global in x. However, if they are satisfied only in the open set 
{ x I h( x)  < M # O}, the corresponding conclusion applies to solu- 
tions whose initial conditions are in this set. 

11. THE CONTROL LYAPUNOV FUNCTION APPROACH 

Let h be a C' function, its time derivative at x along the 
solutions of (1) is: (L ,h  denoting the Lie derivative of h along f) 

A(.) = L,h(X) + u L , h ( x ) .  (2) 

Our stabilization problem is solved if we can assign some strictly 
negative value to A(x). Clearly, this is possible at all points x 
where L , h ( x )  is not zero. The difficulty is to deal with the points 
where L,h(x) is actually zero. This justifies the following defini- 
tion. 

Definition 1 (clf) [I] ,  1111: A control Lyapunov function ( c l f )  
for system (1) is a positive function h which is zero only at zero and 
satisfies 
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1 )  h is C'. 
2 ) h ( x ) + w i f f  I IxI(- '+w.  
3) L,h(x)  = 0 =) (Lfh(X) < 0 or x = 0) 

From this definition, the origin is the only stationary point of a clf. 
Moreover, such a function is proper, i.e., the preimage of a 
compact set is also compact. 

To study continuity of the feedback law, we will need the notion 
of "small control property" introduced by Artstein [l]. 

Definition 2 (scp) [IJ, [IIJ: A crf h is said to satisfy the small 
control property (scp) if for all strictly positive 6 ,  we can find a 
strictly positive 6 such that, for all x ,  11 x I I  < 6, x # 0, there exists 
U ,  I U ]  < E ,  satisfying 

L,h( x) + uL,h(  x) < 0. (3) 

The following result due to Sontag [ l l ]  (see also Artstein [I]) 
states that our stabilization problem can be solved if we can find a cl 

Theorem I [ I l l :  If there exists a clf h for system ( l ) ,  then the 
f :  
following control law: 

0 if Lfh( x) < 0 and L , h ( x )  = 0 

U(.) = J f h W  + JLfW2 + L , W 4  (4) 
L , h ( x >  I if not 

is defined on 3" - {0}, has the same regularity as L,h and Lfh 
and makes h( x) strictly negative for all nonzero x .  Therefore, any 
prespecified compact set containing the origin as an interior point 
can be made globally continuously attractive. 

Moreover, U is at least continuous at the origin if the clf h 
satisfies scp. In this case, the origin can be made globally continu- 
ously asymptotically stable. 

Alternative explicit expressions of suitable control laws U (  x)  are 
proposed by Tsinias [14] or Praly, d'AndrCa and Coron [lo]. 

111. DESIGN OF A clf 

Let us apply the aforementioned theorem to the following cas- 
caded system: 

( 5 )  i j = l 4  z = k ( y ,  z ,  
where z is in $ j " - '  and y in $2 and such that a positive C' proper 
function h,( z )  and a CO control law U,(  E )  are known and satisfy 

U O ( O )  = 0, ho( z )  = 0 =. z = 0, 

and L k ( u o ( z ) . z ) h O ( ~ )  < 0 V Z E W " - '  - (0 ) .  ( 6 )  

A typical example for ( 5 )  is the case of a system which has been 
maximally linearized by feedback and diffeomorphism [8]. 

From (6), a C' proper function h satisfying the following two 
implications is necessarily a clf for system (5) 

ah 
- ( Y , Z )  ay = O * y = u , ( z )  (7) 
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ah practical expression for such a feedback 
Y = uo(Z) =) - ( J ' ,  z ) k ( Y ,  Z )  = L k ( u , ( z ) , z ) h O ( ~ ) .  (8) 

k )  is 

az 

a h  
Indeed, in this case, if L,h 

negative. A simple solution to (7) and (8) is 

is zero, Lfh ( =  

(9) 

If u0 is smooth enough, this function h is an appropriate clf. For 
example, it can be used to reestablish the Property [7, Corollary 
3.21 and [15, Theorem 3c]: if z = k(u ,  z )  is smoothly stabilizable, 
the cascaded system (5)  is smoothly stabilizable as well. 

However, in general, the given control law u, is not smooth 
enough for h in (9) to be a C' proper function. To overcome this 
difficulty, one may replace u0 by a smoother global stabilizer. This 
is always possible from Artstein's Theorem [12, Sect. 7 ,  Corollary]. 
Unfortunately, for engineering applications, this regularization is 
usually not practical. Another solution is to replace, in (9), y - 
u,(z) by a so called "desingularizing" function p(y, z ) .  We have 
the following lemma. 

Lemma I: If there exist a positive C' proper function h,  and a 
CO function uo such that: 

1) after possibly a C' change of the z-coordinates in R'-', for 
all i in {I ; . . ,  n - I}  and all (zI;.*, z , - ~ ,  z ~ + ~ ; * . ,  z n - l )  in 

, the real numbers z ,  where - ( z l , .  * ., z,; . * ,  z,-  1 )  is 
a u 0  
az,  

~ n - 2  

not defined are isolated in R; 
2) there exists a scalar CO function p(y, Z )  such that 

a +  
ay 

where 0 is a CO function with the same sign as - . It makes sense 

when a continuous extension at the zeros of - exists. 
a +  
ay 

Example 1: Consider the following planar system studied by 
Kawski [5]: 

The system linearized at the origin is not stabilizable and therefore 
there is no C' control law asymptotically stabilizing this point. 
However, Kawski has proposed a general method for small-time 
locally controllable systems in the plane which, in this example, 
gives a locally Holder control law guaranteeing asymptotic stabiliza- 
tion. 

To apply our method, we check that points 1 and 2 of Lemma 1 
are satisfied when, according to (14), we choose 

u 0 ( z )  = ( c z ) i ,  s ( z )  = 0, p(y, z )  = y 2 P - '  - ( c z ) W ,  

p r  2 (17) 

with c strictly larger than 1 .  Point 3 holds also with 

ho( Z )  = z 2  V ( Y ,  z )  = 0 e y = u o ( z )  (10) 

+ ( y ,  z )  is C' in 3' and, for all z in Zi'-', 9 ( y ,  z )  --t +03 if 
I y 1 + + 03, where 9 denotes the antiderivative This leads to the following clf: 

+ ( Y ,  z )  = s y p ( s ,  z )  ds; 

2 p -  1 
( C Z ) ?  + P(z ' )" ,  

Y Z P  
2P 2P 

(11) h ( y ,  z )  = - - y ( c z ) Y  + ___ 

a >  - .  1 (19) 

2 
3) for all nonzero z ,  we have 

( 1 2 )  About scp, we observe that (16) exhibits the following homogeneity 
property: 

h ( Y ,  z )  = * ( Y ,  z )  - +( uo( z ) ,  z )  + Oh,( z ) "  (13) (X'z) - (Ay)' = q z  - y 3 ) .  (20) 
With our choice, uO satisfies the same homogeneity 

is a clf for system (5) for all real cy such that h," is a C' function 

Hence, we have reduced the design of a clf to that of searching 

a strictly positive integer p such that ( u o ( z )  - S ( Z ) ) ~ ~ - '  is C',  a 

and for all strictly positive real (3. U,( X3z) = XU,( z ) .  (21) 

for a function p. If we can find a C' function s and Then choosing a = P / 3 ,  in (19) is homogeneous and 

simple choice is given by L,h(XY, 1'2) = X2PL,h(r, z ) ,  

L,h(Xy,  A3z) = PP- 'L ,h(y ,  z ) .  (22) p(y ,  z )  = ( y  - s( z ) ) 2 P - 1  - (U,( 2) - s ( z ) ) 2 P - 1 .  (14) 
This implies that scp is satisfied. It follows from Theorem 1 that the 
origin can be made asymptotically stable with a control law continu- 
ous on R2. Moreover, the larger p ,  the smoother on W 2  - ((0, o)} 
this stabilizing control is. 

Having a clf h, (4) is an appropriate control law for stabilizing 
any compact neighborhood of the origin. However, the particular 
expression ( 1 3 )  for h allows us to propose the following more 
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On the other hand, with a suitable choice of 0,  expression (15) 
satisfies the following homogeneity (expected from (22)): 

u ( x y ,  x3z) = h u ( y ,  z ) .  (23) 

For example, with p = 2, we get 

(24 ) 
Finally, we remark, as already done by Kawski [SI, that the simpler 
control law 

U( y ,  2 )  = 3c2z' - 3c( y - z : )  (25 1 
is sufficient for this stabilization. This may be checked by looking at 
the time derivative of (see Appendix A.3) 

obtained from (19) by choosing p = 2, CY = t, and p = c2. Note 
that on the contrary of [SI, this Lyapunov function is strictly 
decreasing along solutions of ( 16) - (25). 

For the case, where we have a cascaded system more involved 
than a simple integrator, we proceed by induction. At each step, the 
difficulty is to find a desingularizing function to avoid the lack of 
smoothness of the control given by the previous step. 

Example 2: Consider the following three-dimensional system 
proposed by Kawski in [6]: 

From (25) in Example I ,  we have to find a desingularizing function 
p which is zero iff 

y - x 3  = 3c2z+ - 3c(  y - z'). (28) 
A solution is 

I + m  
p(x, y ,  z )  = [27c3z(c + 1)3 + [ x 3  - (1 + 3 c ) y I 3 ]  

with m an even integer. With p a C" function and h, given by 
(26), (13) provides an appropriate crf h. Moreover, we have 

p(xx, x3y, 192) = x 9 ( l + m ) p ( X ,  y ,  z ) ,  

It follows by choosing 

28 
m = 2 ,  C Y = -  

12 

that h in (13) is a homogeneous crf function with degree 28. 
Hence, scp is satisfied. This allows us to conclude that the origin of 
(27) is continuously globally asymptotically stabilizable. 

The above arguments show that, to solve the problem of asymp- 
totically stabilizing the origin of system (3, it is essential to find an 

appropriate C1 proper function h, and a CO function uo satisfying 
(6) for all nonzero z ,  i.e., Condition 3 of Lemma 1. Such a remark 
has been written many times in the literature (see [9, Theorem 51 or 
[7, Corollary 3.21 for example). For system (5) in 2', existence of 
h, and U, satisfying (6) is necessary. 

Lemma 2 (see also [13, Lemma 3.11): A necessary condition 
for the existence of a continuous control law U making all the 
solutions of 

z = k ( y ,  2 )  i j = U  

enter a connected compact set K c R2, containing the origin, 
within finite time is: for every C' proper function h, with no 
stationary point outside the set { z I3y,  ( z ,  y )  E K } ,  and for every z 
outside this set, there exists y such that - dh, ( z )  k( y ,  z )  is strictly 

dz 
negative. 

What may not be necessary in Lemma 1 are the smoothness 
assumptions in conditions 1 and 2. In particular, Dayawansa and 
Martin [4] have established that, if k is a real analytic function, 
then condition 3 only is necessary and sufficient for the existence of 
a locally asymptotically stabilizing CO control law. 

IV. CONCLUSION 

For an affine nonlinear system, we have studied the problem of 
rendering globally attractive a (as small as possible) compact neigh- 
borhood of the equilibrium. A solution consists of assigning the 
dynamical behavior of a Lyapunov function. The resulting control 
law has singularities. But, according to Artstein's theorem, a smooth 
control law exists if and only if we can find a Lyapunov function 
such that the open-loop dynamic makes this function decrease at the 
singular points. 

For systems which (possibly after feedback and diffeomorphism) 
are in a cascade form, we design a Lyapunov function meeting 
Artstein's conditions, assuming the knowledge of a control law 
stabilizing the equilibrium of the head nonlinear subsystem. In 
particular, for planar systems, this gives sufficient conditions and 
necessary conditions for a compact neighborhood of the equilibrium 
to be stabilized. 

APPENDIX 

A.I .  Proof of Lemma I 

First Step: h is a C' proper function. 
I )  h is C': To show that h in (13) is C ' ,  it is sufficient to prove 

that @(u0(z ) ,  z )  is C'.  Let us denote 

(33) * ( z )  = +(U&)> 2 ) .  

a u 0  

a z j  
For all z = ( z I , .  . . , 2,- I )  were - ( z )  exists, we have 

Since the definition of @ implies 

(35) 
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au0 

a z i  
we obtain, for all z = ( z 1 ; * * ,  z ~ - ~ )  where - ( z )  exists 

Now, for ( 2 ’ ;  * e ,  2,- z , + ~ ;  . . , z,-’) fixed at any arbitrary 
value a* 

and for any i ,  \ k ( z )  and - (uo(z ) ,  z )  are CO functions in R n - 2  

a z ,  
of z ,  and (36) is satisfied maybe except at isolated points of 3, It 

follows from [3, Proposition 1.2.61 that - ( z )  is defined and 

continuous on whole E?”-’. Since this holds for all i, \k is C’ (see 
[2, Statement 11.1.31). 

2) h is Positive and Proper: It is sufficient to show that for 
every y and z we have 

a* 
a z ,  

@(v, z )  - @(u, (z ) ,  z )  L 0. (37) 

Indeed if this is the case, when h ( y ,  I) is bounded, h , ( z )  is 
bounded. Moreover, h,  being proper, the same holds for z and 
consequently for @(uo(z ) ,  z ) ,  @ ( y ,  z ) ,  and y .  

To prove (37), we study @ ( y ,  z )  - @(u,(z), z )  as a function of 
y with z fixed. It is positive at infinity, zero if y = u,(z), and 
continuously differentiable. Its derivative satisfies 

and therefore vanishes only at y = U,( z ) .  This allows us to con- 
clude that (37) holds. 

3) h is Zero Only ut Zero: With (6), (13), and (37), if h ( y ,  z )  
= 0 ,  then 

a) h,( z )  = 0 and therefore z = 0 and U,( z )  = 0, 
b) @ ( y ,  z )  - @ ( u o ( z ) ,  z )  = 0 and therefore y = u,(z). 

Hence h ( y ,  z )  = 0 implies y = 0 and z = 0. 
Second Step: h is a crf: By construction, we have: 

L , h ( y ,  z )  = ~ ( y ,  z )  = 0 i f f y  = u , ( z ) .  (39) 

which is strictly negative for all nonzero z .  

A.2.  Proof of Lemma 2 

Since U is continuous, the solutions ( z ( t ) ,  y ( t ) )  of (32) exist and 
are C’ for any initial conditions. Hence, by assumption, for any 
initial condition, there exists a C’ time function y ( t )  such that the 
corresponding solution of 

enters the compact set { z 13y:( z ,  y )  E K } ,  within finite time. Fol- 
lowing a trivial extension of [13, Lemma 3.11, this implies: for 
every z outside the set { z I 3 y : ( z ,  y )  E K }  , there exists y such that 
zk(y,  z )  is strictly negative. 

To conclude, we note that, h, being a C’ proper function with 
no stationary point outside the connected set { z 13y:( z ,  y )  E K } ,  

which contains 0, z and - ( z )  have same sign outside this set. 

U 

dh, 
dz 

A .3 .  (2s) Stabilizes (16) 
Noticing that L f h  can be written 

L f h  = - C ( Y  - ( c z ) ’ ) ( z  - y ’ )  

+ 3c2z;(cz - y 3 )  - 3c2zf(cz - z )  (42) 

A satisfies 

A = - c ( y  - (cz)’)(y - zf)(2y’  + (3cf - q y z ;  

+ (3c5 - 1)z’) - 3c2(c - l ) z i  (43) 

where, c being strictly larger than 1, the quadratic form 

(2y2 + (3ci - l)yz$ + ( 3 2  - 1)z.f)  

in y and ( c z )  4 is always positive. Therefore, the only difficulty is 
when ( y - (cz)  +)( y - z’) is negative. In this case, y is between 
z t  and (cz) and we get the following inequalities: 

2 1  

(2y2  + (3cf - 1)yzf + (3c3 - 1 ) z f )  I 8 ~ 7 ~ 7 .  (45) 

This allows us to state that in any case 

A 5 -min{c2(cf - 1 ) , 3 c 2 ( c  - 1 ) ) ~ ; .  (46) 

is strictly negative for all nonzero ( z ,  y ) ,  we To conclude that 
note that for z = 0, we get 

it = -2cy4. (47) 
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Piecewise Monotone Filtering in Discrete-Time with 
Small Observation Noise 

W. H. Fleming, D. Ji, P. Salame, and Q. Zhang 

Abstract-A discrete-time model for filtering with small observation 
noise is considered in this note. A piecewise linear observation function 
is considered with two intervals of monotonicity. A sequential quadratic 
variation test is found to detect intervals of linearity of the observation 
function. Diffusion approximations to certain discrete processes are 
made to estimate the mean times for reaching a decision and the error 
probabilities. 

I .  INTRODUCTION 

There is substantial literature on the problem of optimal nonlinear 
filtering. In continuous time, an unobserved state X ,  and observa- 
tion Y, are modeled according to 

d X , = f ( X , ) d f + g ( X , ) d U , .  0 1 t 1  T 
(1.1) dY, = h(  X , )  d f  + F dV, ,  Yo = 0 

where U,, VI are independent Brownian motions and T is a finite 
number. To find the mean square optimal estimate X ,  for X ,  given 
Y, for 0 5 s I. t requires knowing the conditional distribution of 
X I .  Since the dynamics of the conditional distribution are governed 
by the nonlinear functional partial differential equation of nonlinear 
filtering, the problem is inherently infinite dimensional [8]. 

If X I  and Y, are of the same dimension and h is one-to-one, then 
X I  would be. known exactly if e = 0. For small E > 0 good 
finite-dimensional approximate filters have been described in [7] and 
[9]-[Ill. An extended Kalman filter, or even a simpler approxima- 
tion of Picard [9], [lo], can be used to o_btain an approximation X ,  
to the conditional mean X,,  such that X ,  = X ,  + O ( t P )  for some 
p 2 2 and E ( X ,  - = O ( E ) .  However, if h(x)  is many-to- 
one, then for E = 0, h - ’ (  Y,) is a set rather than a point. For small 
t > 0 such approximations as the extended Kalman filter will not 
give accurate approximations to the optimal filter. References [3]- [ 5 ]  
are concerned with the case when h is piecewise one-to-one. Under 
a certain “detectability” condition, see (1.3) for scalar-valued 
processes, one can perform a hypothesis test based on observations 
on Y, to decide that X ,  belongs to a region on which h is 
one-to-one. Once this is done, anAapproximate filter of the type in 
171, [9]-1111 is used to estimate X , .  
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In this note, we consider the following discrete-time analog of 
(1.1): 

xk+l = Xk + E f (  X k )  + g (  X k )  & U , ,  k 0 ,  I ,  2 ; ” ,  [ T / E ]  

yk = h(Xk) + A u k ,  Y o  = 0 

(1.2) 

where u k ,  u k ,  k = 0, 1 ,2 ,  . . . , are independent standard normal 
random variables, and [ T / E ]  is the largest integer less than T/t .  

Actually, (1.2) approximates (1.1) in the following way. One 
discretizes (1.1) with time-step size E and replaces X k ,  by 
xk, y k + l ) t  - by A u k ?  y k + I ) c  - vkc by A u k ,  and 
e - l ( Y ( k + l ) r  - ‘ k c )  by Y k ’  

To illustrate the ideas without undue technical complications, we 
assume that all of the processes x k ,  y k ,  u k ,  uk in (1.2) are 1- 
dimensional, and that h(x)  has just two intervals of monotonicity. 
In fact, we suppose that h( x) is strictly decreasing for x < 0 and 
strictly increasing for x > 0, with h(0) = 0. The detectability 
condition is the following: if x+> 0, x- < 0 are such that h( x + )  
= h(x- )  = y ,  then 

(gh’)*(  x+) # (@’)*( x-) . (1.3) 

Our method is as follows, roughly speaking. First, we test for 
zero crossings of x k  on a time interval K 5 k I K + M .  If 

1 y ,  1 2 c > 0 for K I k 5 K + M ,  then for small E no zero 
crossings occur with probability very near 1 (Section 11). Next, we 
apply a test based on quadratic variations to decide whether x k  > 0 
for K 5 k 5 K + M or xk < 0 for K s k I K + M .  This test is 
based on observing y k  for K 5 k 5 K + N ,  where N 5 M is 
either fixed (Section 111) or random (Section IV). The third step is to 
apply an extended Kalman filter (Section V). 

To further simplify matters, we suppose as in [4] that g(x) is 
constant and h(x)  piecewise linear. In fact, we now assume in (1.2) 
that 

(1.4) 
a x i f x r O  
bx if x < 0, a > 0, p < 0, and a2 # p2.  

The last condition U’ # p2 is just the detectability condition 
(1.3). We also assume in (1.2) that f is smooth with f ’ ( x )  
bounded. For the sequential hypothesis test in Section IV, the 
assumption (1.4) allows us to find explicit estimates for the probabil- 
ities of incorrect decisions between positivity and negativity of x k ,  
and for the mean decision time. This is done by a diffusion 
approximation technique as e -+ 0. 

In this note, we focus on description of the method, on the 
diffusion approximation technique, and on numerical results re- 
ported in Section VI. Proofs of underlying mathematical results are 
omitted. In many instances, they are very similar to proofs given in 
[3] for the corresponding results for the continuous-time model. 
Another test for positivity or negativity of x k  on an interval 
K 5 k 5 K + M ,  based on likelihood ratios, is described in [SI. 
While this likelihood ratio test is mathematically appealing, it was 
found in [5]  that the sequential quadratic variation test gave consis- 
tently better results in numerical experiments. 

In a sequel to this note, extensions of our results without the 
special assumption (1.4) will be considered. In addition, in that 
sequel corrections between u k .  U ,  and between u k r  U, will be 
allowed for 1 k - 1 I 5 R with fixed R < 00. This is done to 
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