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Almost exact modelling assumption in adaptive linear control
LAURENT PRALYT

Modern adaptive controllers are known to give bounded solutions when the system
‘normalized’ unmodelled effects are bounded by a small constant. This paper studies
this unusual characterization of uncertainties. We show it encompasses more clas-
sical approaches. We discuss how feedback and by-passing may allow this assump-
tion to be satisfied. We conclude by proposing the notion of almost exactly linearly
modelled systems.

1. Introduction

Modern adaptive controllers, in particular those incorporating so-called normali-
zation, guarantee boundedness (but possibly not stability) of all the solutions when
placed in feedback with a physical process for which the main sufficient property is as
follows.

Assumption A

Let n,, g, 4, 7 be two integers and two positive real numbers, respectively,
obtained from the adaptive controller, with y strictly positive and g strictly smaller
than one. The physical process input—output signals satisfy

|4(g~1)y(5) — Blg™ "u(t — 1) <ys(t) + B(t)}

1
s()2=pls(t — 1) +u(t— D2+ y(t—1)? )

where 8 is a bounded sequence and A, B are polynomials in the unit delay operator
g~ ! whose coefficients, in R", R"? respectively, are arbitrary but lie in a compact set
given by the controller.

Assumption A is unusual compared with those used in linear system theory, such
as singular perturbations or norm-restricted multiplicative or additive uncertainties,
for example. The topic of this report is to discuss the meaning of this assumption, to
study what class of physical processes can be represented this way and to see how it is
related to more standard approaches.

The main aspect of Assumption A is the fact that it involves two components
available to the designer:

— the collection of the input—output signals (&, y) which is the only way the physical
process is known,
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— the model (A, B), element of a parametrized family of mathematical dynamical
systems.

This parametrized family of dynamical systems is chosen for providing an adequate
description of the physical process without being excessively complicated. However,
this limited complexity and the idealization of representing a physical process by a
mathematical dynamic system lead to inability to explain exactly the output signals
from the input signals. Consequently, approximation is involved which motivates
Assumption A. This assumption is meant to qualify, if not to quantify, the allowable
misfit between this limited complexity idealization and the physical process, as
observed from its input—output signals.

A fundamental factor affecting this misfit is the way the input—output signals we
are trying to relate are measured. For instance, if the mean values are the only
measurements, a (possibly non-linear) gain will be sufficient to explain the
input—output relation. Let u,, y, be the physical process input and output sequences,
respectively, From these ‘primitive’ signals, we define measurements z as the signals
given by

U.(q™1)z(t) = Vilg™ ) yp(t) — Wolg™ Huy(0) (2)

where U., V., W. are respectively prime polynomials, U, is monic (ie. lim U_(z™!)
= 1) and ‘exponentially stable’. In other words, z is the output of an e-xponentially
stable completely reachable finite dimensional time-invariant linear system with the
physical process input—output signals as inputs. In particular, we define a measured
input sequence i, by

U, (g™ "u(t) = Vg™ )yo(t) — Wil Hug(®) (3)
where, in this case, ¥, is monic to allow the computation of u, by
Wla™ up(t) = V(g™ ) y(t) — Unlg™ " u(®) (4)
Similarly, we define a measured output sequence y by
Uy(g™ (1) = V(g™ )yp(t) — Wlq™ (1 — 1) (5)

Note the delay in u,. The roles of (U,, V,, W,) and (U,, V,, W,) will be defined by
studying the misfit between the process limited complexity idealization and the
physical process itself.

In § 2, we define the model, our process limited complexity idealization. In § 3, we
give a mathematical description of a physical process candidate for satisfying
Assumption A. In §4, we propose a measurement system aimed at making the
measured process satisfy Assumption A effectively. Then § 5 summarizes our results
by introducing the notion of almost exactly modelled processes and by giving their
properties. Finally, we give in § 6 some notes and references related to our topic.

2. Model

The model is an idealization of the physical input—output relation process. It is
used for the design of the adaptive control law and for the evaluation of the ‘ideal’
closed-loop system behaviour. We have mentioned our choice of the model as an
element of a parametrized family of mathematical dynamical systems. However, both
the parameter fitting problem and the control law design impose a limited complexity
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system. The model is consciously only an approximate process description. Typically
for realizing the compromise between admissible complexity and better approxi-
mation, we prefer a model of a pragmatic mathematical nature motivated by the
input—output relation representation more than a deduction from known basic
physical laws motivated by the description of the mechanisms involved in this
relation. Even more, in the adaptive control context the input—output relation needs
only to be represented as far as it is sufficient for meeting the control objective at each
point in time.

Typically, the model is a discrete-time linear time-invariant finite-dimensional
system, leading to an adaptive linear controller. Noticing that unobservable modes do
not modify the input—output signals, complete observability can be assumed. There
are many equivalent ways to represent such a system. With the complexity minimality
requirement, we prefer canonical forms among which the more convenient for our
specific application happens to be the following.

2.1. Backward shift operator observable representation

With u, v the measured input and output signals, respectively, we describe the
model by

A(g™*)y(¢) = B(q™ Ju(t — 1) + C(q ™ *)u(t) (6)

where A, B, C are polynomials in ¢~ !, 4, C being monic and C exponentially stable.
We use u(t — 1) instead of u(¢) to express the necessary delay present somewhere in the
closed-loop system. The model family of dynamical systems among which we are
looking for our model is completely determined by choosing n 4, ny, ne the degrees of
A, B, C respectively. Within this family, a model is obtained by (possibly implicitly)
choosing the polynomial coefficients. v is an extra sequence needed fully to explain the
measured output y from the measured input u. Namely C(q~)u() is the part of (1)
which cannot be explained only from knowledge of {y(z), u(t), T <t}. In fact, the
correct definition of v is as follows.

Given the model polynomial A, B, C on the one hand and the measured
input—output signals on the other, v is defined by

Clq™")o(t) = A(q~")y(1) — B(q™ u(t — 1) (7

Consequently » depends on the model and is called the modelling error. We can think
of our model as being a good model if all the meaningful information of the
input—output relation has been extracted. This means that knowledge of
{¥(1), u(z), v(7), T < ¢t} should give no information on the actual value v(f). We say (ina
very loose sense) that v is unpredictable. We could appeal to the stochastic framework
to define this notion (see Goodwin and Sin 1984): v is said to be unpredictable if v is a
sequence of integrable random variables on a probability space such that if F(t) is the
increasing sequence of sub-o-fields generated by {#(1), t(1), y(t), T < t}, we have

E(v(t)/F(t— 1)) =0 as. (8)
E(m()*/F(t—1)< +o as. (9)

Unfortunately, in practice, the approximation inherent with any modelling implies
the inability of reaching this absolute property of unpredictability. To be more
pragmatic, it is sufficient to define a property related to an objective and to express the
idea that this particular objective can still be achieved. Assumption A in the
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Introduction has been proved to be sufficient for replacing this unpredictability
property as far as the boundedness problem is concerned. However, it is known to be
insufficient for more specific performance problems.

3. Process

To allow a mathematical description to encompass more physical phenomena,
weaker structures must be used. Typically, inequalities replace equalities. Looking for
a wider class of physical process candidate for satisfying Assumption A, we consider
linearly dominated systems characterized as follows.

Definition 1

Let u be a given positive constant strictly smaller than one; a process with input u,,,
output y, is said to be a linearly dominated system if y, can be scaled, namely if there
exist a bounded sequence f§, depending on the initial conditions, and a positive
constant y such that for any input sequence u,, we have at each time ¢

[yp(8)l < vsp(1) + B(2) (10)
where s, is defined by

=1
sp(t)? = ;U T,y (D + |y (D)

= 1sp(t — 1)* + (I, (t = DI + lup(t — DI?) (11)

Inequality (10) expresses that the output at time t can be bounded in terms of the
past inputs and outputs weighted by a forgetting factor. Formally, the square of the
process output is dominated by the output of

v’
L4 (* —y*)q™!
with the square of the process input as input. This process representation is unusual,
but it has been shown to be well adapted to our topic. To get a better grip of this
definition, let us state several properties.

Property 1

Any discrete-time linear time-invariant finite-dimensional system is a linear
dominated system for any u, 0 < u < 1, where the corresponding f sequence can be
chosen to be pu-exponentially decaying.

Proof

Choose any u4, 0 < i < 1. From the canonical structure theorem, this system can be
represented in the following state-space form:

Xl +1) Ay 0 A || x,(0) B,
X (t4+1) [ =] 0 Ay Ay || xa(t) |+ | By [uy(0) (12)
x3(t+1) 0 0 Az || x3(0 B,
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x4(8)
yp()=(0 0 Cj)|x,(2) (13)
x5(1)

where the pair (433, C3) is completely observable and the eigenvalues of A,, are in
the open disc of radius p. From the complete observability property, we can find K
such that the eigenvalues of (455 — KC;) are in the open disc of radius g, Then let us
consider the following non-minimal representation of (12), (13) with £,(0) = 0

x(t+1) A4, 0 A3 Ais x(8)
xp(t+1) 0 Aa Aas Ass x5(1)
X3+ 1) —%5(c+1) B 0 0 A;;—KC, 0 X3 (t) — X4(1)
X+ 1) 0 0 0 Az — KC, 238
B, 0
B, 0 [up(:)}
+ (14)
0 0Ly
B, K
With the properties of 4,,, A33 — KCj, there exist positive constants a, A with 1 < g,
such that, with || - || denoting the euclidan norm,
Ass Az Aas 3
0 A;;—KC4 0 <o, Ynz0 (15)
0 0 Ay —KC,

Hence applying the variation of constants formula and taking the euclidean norm, we
obtain, for some positive constants y,, f4,

x2(1) x,(0)
x3(t)

With the Cauchy—Schwarz inequality, we obtain:

-1 /1 t—1—n ) ,
2. (—) £ g ()| + [y (m)|*) 12
n=0 \M
1=1 FAN20— 1= /2 e — 1/2
< [ . (—) } [ ;ﬂ P  fuy (m) +yp(n)I2)J (17)

<P A

-1
+71 2 AT (lu ()P + |y () )2 (16)
x3(0 n=0

n=0 ,u
< —=—5,() (18)
lit® —4*
The result follows from (13). |

Remark 1

In the course of proving this property, we have established that the state
components, which are either in the observable subspace or in the unobservable
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subspace but with an ‘unobservable’ pole strictly smaller than g, can be scaled by s,:
x(t)
x3(t)

For this reason, we have the following definition.

8p() + B(1) (19)

Definition 2
We call s,(t) a scaling signal for the system.

Its main property is its availability from the process input-output signals. As soon
as p is given, we know how to compute s,(t) and therefore have the possibility of
scaling all the signals in the process. In order to prove that this scaling property
extends to measurements given by time-varying systems, let us prove the following
lemma.

Lemma 1

Let w be a sequence scaled by s,; let C(t) be a monic and exponentially u-stable
time-varying polynomial. The sequence v defined by

C(t, g~ )u(t) = w(t) (20)

is scaled by s, with a sequence fiu-exponentially decaying if the same holds for w.

Proof
Since C(f) is monic and exponentially u-stable, there exist positive constants 3,

(depending on the initial conditions), y,, 4, and A, 4, <A < g, such that, for any
sequence w:

1
(D) < B4} + v, .ZO A w(i)] (21)

However, since w can be scaled by s, there exist y and a bounded sequence f§ such
that:

OIS B+ 7, Y, 475, + D) (22

The conclusion follows since, y~2*

Schwarz inequality yields:

' Gt o ' Al 2 —-i)7)1/2 . r 20 T 1/2
Y asis<| ¥ (T K| X ) (23)

At
= (2222 — 7)1 Sp(?) (24)

ST )

s,(t)* being an increasing sequence, the Cauchy—

and

i AR < sup{ ) }
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Property 2
Let u,, y, be respectively the input and output of a linearly dominated system; let
Ay(t), By(t), Co(t) be any time varying polynomials with bounded coefficients, C,(t)
monic and exponentially p-stable. The measurement v defined by
Cpolt, g™ )o(t) = Ap(t, g7 1)yp() — Byt g~ Nug(t = 1) (26)

is scaled by s,, namely, there exist some constant y and bounded sequence f,
independent of u,, y,, such that

|o(0)] < ysp(e) + B(t) (27)

Moreover, f is a p-exponentially decaying sequence if the same holds for the system.

Proof
Since u, and y, are scaled by s, and the coefficients of 4,(t), B,(t) are bounded, w
defined by
wit) = A, (t, ¢~ ) y(t) — By(t, g~ Duy(t — 1) (28)

is scaled by s,. The conclusion follows from Lemma 1. O

Property 3

For a process with u,, y, as input and output respectively, if there exist time-
varying polynomials A,(t), B,(t), C,(t) with bounded coefficients and 4,(t) and C,(r)
monic, such that the measurement v given by

Cp(ty qil)u(t) = A].,(f, q_l )yp(t) - Bp(ts q_ ! )“p“ - l) (29)
satisfies, for some constant y some bounded sequence ff and some p 0 u<1,
|u()] < ps,p(1) + B(2) (30)

then the process is a linearly dominated system.

Proof
Since A,(t) is monic, (29) can be rewritten as

yp(t) = [(I(I - Ap(te q_ 1))1}”p(t_ 1) + Bp(tv q_ I)Hp(t_ 1) + Cp('ta qil)v(t) (31)

which means that y,(¢) is a *finite’ linear combination, with bounded coefficients, of
terms which can be bounded in terms of s,(¢). The conclusion readily follows. O

Remark 2

(i) With Properties 2 and 3, we see that if a particular measurement vy, given by
some triple (A,5(t), Byo(t), Cpo(t)) is scaled by s, then any measurement v given by
(A, (2), B,(1), C,(1)) is scaled by s, if the coefficients of these time-varying polynomials
are bounded and C,(¢) is exponentially p-stable.

(ii) One could propose an alternative definition of linearly dominated systems: ‘A
process is a linearly dominated system if one can find some time-varying polynomials
A, (1), By(1), C,(t) with bounded coefficients, C,(¢) exponentially p-stable and A (1),
C, (1) monic, such that for the measurement v given by

Cp(ts q_l)v(t) = Ap(te qil)y(t) - Bp(ta qil)up(r_ 1) (32)
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there exist a constant y and a bounded sequence f satisfying

e(e)] < ps, (1) + B(E)

(33)

This definition is more attractive for the similarity of (32) and the model equation (6).
Unfortunately it is in fact very ambiguous for the arbitraryness of the triple of
polynomials (A,(t), B,(t), C,(1)). Using one triple instead of another would simply

change f and y.

It is also worth noticing that though (32) and (6) can be similar, replacing the
unpredictability property of v for the model, by inequality (33) for the process allows
us to encompass many more effects. We illustrate this aspect by means of examples.

Example 1: Bounded disturbance
Let the process be described by

yp(t) = —ay(t = 1) + buy(t — 2) + n(t), [(n(e)| < f
Clearly (32), (33) are satisfied by choosing

Ag™) =1+aq™, B,(g7')=bg™", Cy(g"')=1
0>0, y=0, v(t)=n(t) }
Also, we can check that we have a linearly dominated system. Indeed
$p(1)? 2 [yt = DI + p?luy (¢ = 2)P
and (10) is satisfied since
[y < 3(a® |y, (t — DI + b2y (¢ — 2)17 + In(8)[?)
o)l < /3 Max {lal, [bl}s,(1) + /3

Note that f is a constant in this case.

Example 2. Infinite dimensional system
Let the process be described by

yp(t) = —ay,(t —1) + bu,(t —2 i (a;yp(t — i) + bu,(t —i))

where the infinite impulse responses a;, b; satisfy, for all i and with 4 < 1

lg;A7 i <6, |b;A7Y <e

Let us take
Ag Y =1+aq™!, By(g " )=bg™!, Cylg =1, i<p<l

we get

Z!:ayp i)+ bu,(t—1))

i=3

(34)

(35)

(36)

(37)
(38)

(39)

(40)

(41)
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Hence:
()i <e _ZB Ayt = D) + luy(t — 1)) (43)
] A 2N\ 112 I i 1/2
SE(; (#) ) (2 .;’ .uz'(ly,,(f—i]z+(u,,(r—i))|2) (44)

where we have used the Cauchy-Schwarz inequality in the last step. It follows that
(33) holds with

1
y=t/2———=, f=0 (43)
AT
Example 3: Non-linearities
Let the process be described by
bu,(t—2)?
= — -+ —2— 4
Vplt) = —ayy( )+1+up(r—2)2 (46)
We notice that the non-linear function
3
u
o) 4
S = 15— 47
is linearly dominated since
|f(u) —ul <% (48)
This linear domination property of f implies that it belongs to the process. Taking:
Afg ) =1+aq™', By(g~')=bg™', Cyg7")=1 (49)
yields:
_ —=bu(t—2)
W) = T (=2)? (30)
Also, (33) holds with
]
=0, f="1 51
=0, p== (51

Another very important property of linearly dominated systems is that, when
placed in feedback with a linearly dominated controller, the signals cannot grow faster
than exponentially. Namely, we have the following property.

Property 4
Let u, be the input of a linearly dominated system with output y, and such that,
with 8. a bounded sequence:

lup (O] < (5, (8) + 1y (D)) + Be(2) (52)
There exists a constant M and a bounded sequence « such that:

sp() < Ms,(t — 1) + a(2) (53)
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Remark 3

With arguments similar to those used in the proof of Property 3, we can see that
(52) holds if the input u, is given by

R(t, g~ up(t) = —S(t, g~ 1)yp(0) + T(t, g~ Htig(2) (54)

where R(1), S(t), T(t) are time-varying polynomials with bounded coefficients, R(z) is
monic and u,, is a bounded set point sequence.

Proof
With (10), (11) and (52), we easily obtain

sp(8)7 < syt — 12 + 277 (14 392) + 3y2) + 2B(0)*(1 + 3y7) + 3Be(0)*  (59)

The conclusion follows taking the square root. [

Up to now, we have established that a linearly dominated system can incorporate
a wide class of phenomena and is characterized by the existence of an (available)
scaling signal. Let us now study linearly dominated systems in terms of graph
topology, ie. the weakest topology in which feedback exponential p-stability is
defined on open neighbourhoods of time-invariant linear systems and closed-loop
transfer functions are continuous (see Vidyasagar 1985). Though the general scope of
this report prevents us from pursuing this topic too far, this will allow us to relate the
results, obtained for adaptive linear controllers, to those obtained for time-invariant
linear controllers.

First we notice that, possibly up to a change of f# in (33), one can add to v(t) in (32)
(with (4,, B, C,) time invariant), any p-exponentially decaying sequence o(t)
satisfying

Cplg™1)é(1) =0 (56)

This justifies rewriting (32) as

v(t) = P(q)y,(1) — Q(q)uy(t — 1) (57)

where P, Q are exponentially u-stable proper fractions, P being monic. This type of
representation in terms of stable fractions is called the factorization approach and
gives the context in which one can define the graph topology. For this topology, a
basic neighbourhood of a system represented by (P, Q) is simply defined by the set

V((P, 0),8) = {(Pla 0, )/ISILIP {IP,(2) = P> + 172104 (2) — Q(2)]} < 52} (58)
H T
Property 5
Given p, y and A4, B, C, polynomials in g~ 1, 4,, C, monic, C, exponentially y-

stable, the set of linear time-invariant finite-dimensional systems whose input—output
signals satisfy for some p-exponentially decaying sequence f3

Colg™ o(t) = Ap(g™ ) yp(t) — Bylg™ Dy (t = 1) (59)
[o(2)] < ys,(2) + (1) (60)
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contains the open neighbourhood

Vv A, B, }J
C C
of the graph topology of exponential ,u—stabihty.

Proof
The main point of this proof is to notice that for any exponentially p-stable proper

fraction P, we have as a consequence of Plancherel’s theorem (with zero initial
conditions)

e

1 P(gu(n)]* < sup {IP(2)*} Z w2 () (61)

t z|2zp

Then let P, Q be defined by

Ala™") By(g™")
Colg™ ")’ Colg™)
and consider V((P, 0), (y/u)). Our proof will be established il any process in this

neighbourhood satisfies (59), (60). Hence let (P,, Q,) represent such a process, i.e. its
output is obtained by

P(q) = 0(q) =

(62)

Po@)y,(0) = O (gt — 1) (63)
With (59), v is defined by
o) = Pg)yy(6) — O(@)uy( — 1) (64)
(1)
—(Pla)— P1(a) Qi(q)— Q(q))[ 8 } (65)
u(t—1)

In the following, we assume zero initial conditions. As already mentioned, the only
consequence of this assumption would be a modification of § (thanks to the
exponential p-stability with g < 1). We notice that, P and P, being monic, g(P — P,) is
proper. Then, applying a two-dimensional version of inequality (61), we obtain

p=* e < sup {|P(z) = Py(2)]* + 17 21Q(2) — 0, (2)*}

lzlZn

x Z 1Ay (01 + uy (0] (66)

i

Since (P, @,) belongs to V((P, 0), (y/u)), with (58), we obtain

T 27-1
HTRTIPS Y w0 < (#) Z 121y (O1 A+ lup (1)) (67)
The conclusion follows by multiplying by u*7. O
With this fact, we have established that if a property holds for a set of systems

satisfying (59) and (60), it is preserved in the presence of (i.e. we say is robust to) any
(sufficiently small) linear time-invariant perturbation for which linear-feedback
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exponential p-stability is preserved and the closed-loop transfer function remains
continuous,

It is important to notice the role of u in the above analysis. In Property 1, we have
remarked that state components in an unobservable subspace associated with an
eigenvalue larger or equal in modulus to g may not be scaled by s,. However, as
mentioned earlier, unobservability does not affect input—output signals. It is not the
case of unreachability. This property corresponds to the existence of a common factor
of 4, and B, in (60) or of both the numerator and denominator of P and Q in (57).
Since P and @ must be exponentially u-stable in our framework, we cannot consider
as a small perturbation the fact of introducing a nearly unreachable mode correspond-

ing to an eigenvalue larger than or equal to y. This point will be illustrated in the
following section.

4, Misfit between model and process and the measurement system

The process is known to be a linearly dominated system as defined by (10).
However based on some complexity consideration we fix the degrees n,, ng, n and
therefore define the model family of § 2. Is it possible to find a model of the process
within this class? More precisely, is it possible to determine the coefficients of A4, B, C
such that the measurement v, given by

Clg™")o(t) = Alg™)y(t) — B(g™ ' u(t — 1) (68)

where u, y are measured input and output respectively, is an ‘unpredictable’ sequence
in the sense of (8)—(9) for example?
For instance, let us consider the process described by

(1-(A4+eg)g (1 +ag™ —ea g~ 2)y,(1)
=(1—(A+eg,)g ) (—eb, +bg~! —sbzq‘z)up(t— ) +n(t) (69)

where n(1) is a sequence bounded by f,. If ¢ were very small and |4| < 1 so that stable
cancellation could occur, one would like to take a simpler model defined by

Alq™)=1+aq™", Blg"")=bq™!, Clg™")=1 (70)

taking the measured input—output equal to the process input—output. In fact, in
doing so we neglect

(a) the nearly unreachable mode corresponding to the nearly cancellable 4 4+ eg,,
A+ &g, pole-zero pair,

(b) the fast stable pole &a, /g,
(c) the fast stable zero eb, /b,

and we represent the fast unstable zero b/eb, by a pure delay.
For this model, v is given by

U(t)=(1+aq_1)yp(t)—bq_1up([— 1) (71)
Hence with (11), we obtain
(1—Ag™")u(t) =el(g, (1 + ag™" —eayq™?) +a;(1—Ag™ )g™ )y, (t— 1)
+(go(eb, —bg~ ' +ebyq™ %) — (b, + byq™ %)
x (1 —=24g™ " Nuy(t — 1)1+ n(r) (72)
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Choosing u, 1> p>|A|, we can apply Property 2 and obtain the existence of a
constant y and a bounded sequence f§ such that

lo(t)] < yse(e) + B(r) (73)

The constraint p > || illustrates the last remark of the previous Section: for our
analysis to apply, the neglected nearly unreachable modes must be associated with
eigenvalues strictly less than p.

As predicted at the end of §2, the ‘unpredictability’ property is not satisfied.
Instead, with (15), we have a ‘scaling’ property. However, as mentioned in the
Introduction, as far as boundedness is concerned this scaling property is sufficient
provided the associated y is sufficiently small. Hence the question: ‘the model family
being chosen in (12), how can we reduce y (without increasing s,)?

An answer is obtained from the general principle: ‘To process data by a system
with limited possibilities, they should be formated according to these possibilities’.

In our case, formating is obtained by the measurement. The main idea we wish to
develop now is to consider the possibility of transforming the process by feedback, by-
pass and filtering in order to allow a better fit between this transformed process, called
the measured process, and an a priori fixed-complexity model.

For specificity, in the above example assume that A is known and »(t) is constant:

(I—g H)n()=0 (74)
We choose the following model (still two parameters):
Alg™ ) =(1+ag ") 1~q7"), Blg™')=bg™}, Clg")=1 (75)
and the following measurements;
() = L= 111(;_“' 1)up(z), (1) =%yp(r) (76)
Now, v is given by:
o(t) =(1+aq ") (1—q~")y(t) —bg™'ult — 1) (7

and, by (69), it satisfies:
o(t) =e(1—q (g (1 +ag™" —eayq™*) +a, (1 —Ag™ g™ )yt = 1)
+(g2(eby —bg™" +ebyq™?)
—(by +b2g7*) (1 =A™ )uy(t — 1)] (78)
Hence v(¢) no more depends on n(f) or {u,(1), y,(7), n(t), 7<t—1} but only on
{yalt=1), .., po(t —4), u(t — 1), ..., u,(t — 4)}. In particular, this means that if the
input—output signals were large in the past, say at time t — 5, then, in the former case,
v(t) is influenced by those large terms (though weighted by A°). In the latter case, this
influence is removed.

Notice that our measurement procedure is a disguised way of reintroducing
complexity in the model. However, the model incorporates free parameters to be
adapted on line whereas the measurement system does not.

In the general case, the measured input—-output signals u and y are defined by

[Uy(q-w y(:)}[mq“l) —qlwy(q-l)][y,m] -
UJg™") u(®) Vg™ =Wila ) || w0
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and, given (4, B, C) as an element of the model family, we obtain its associated
modelling error v by

Clg~ () = Alg™")y() — Blg™ u(t — 1) (80)

The problem of choosing this element being taken care of by the adaptation law, here
we are interested in choosing the measurement system for any possible model. A first
objective is clearly as follows.

Objective 1

The modelling error v should be made as ‘unpredictable’ as possible. Practicaily,
the process effects that cannot be represented, or that we choose not to represent, by
the model should be made as unobservable as possible by the measurement system.
Or, equivalently, the measured signals should be as insensitive as possible to the
unmodelled effects.

To understand how this can be achieved, let us assume that the process is exactly a
finite dimensional linear time-invariant observable system, ie.

Ap(q_l)yp(t) :Bp(q_l)up(t_ 1) (81)

for some polynomials 4, B, with 4, monic, In this case, the measured input—output
signals are related by

AU Vg™ )

U(g! 0
{ (a7 ][y(z)}o -
0 Udg || uo

—Wia™") g7 'Wil(q ")
(A7) —q_pr(q_l))[ :l

That is

Alg™ ")) =Blg™ u(t—=1) (83)
where

A=(—A,W,+a 'B,V)U, (84)

B=(—A,W,+q 'B,V,)U, (85)
Hence

{a) the measurement y, obtained by by-passing the process, may be used to move
and/or add zeros;

(b) the measurement &, obtained by feedback around the process, may be used to
move and/or add poles.

Clearly, reduced-complexity models may be obtained by conjunction of both
measurements leading to stable pole-zero cancellation. However, by the same token,
this shows the drawback of this measurement system, namely the possibility of
creating an unstable pole-zero cancellation. In such a (very unlikely) case, the
measured process is not stabilizable even if the process is.

Another objective, assigned to the measurement system, is as follows.

Objective 2
The control law will be designed for the model to impose some properties on its
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input—output signals, i.e. on the measured signals. The measurement system should be
such that these properties are transferred to the actual process input—output signals.
The least requirement is: ‘boundedness of u, ¥’ implies ‘boundedness of u,, y,’.

Let us see how these objectives can be met.

About Objective 1, typically the unmodelled effects are divided into two compo-
nents: unmodelled dynamics and exogenous signals.

The unmodelled dynamics prevent the restricted complexity model from fitting the
process frequerncy response at all frequencies. On the other hand, in Objective 2 we are
usually interested in the properties of the input—output signals only in a restricted
frequency range. Practically, we may define this frequency range as a finite set of
values given by the zeros of a monic polynomial D with all its zeros on the unit circle.
Then Objective 2 may be: ‘y(t) and y,(t) should have the same amplitude and phase at
each frequency given by a zero of D, whatever the corresponding amplitude and phase
of u, may be’. Invoking linearity of the measurement system and Fourier decompo-
sition, we write this objective as

Vi, st D(g™ ) =0, Dlg™)y(1) =Dlg™ )yp(t) = 0=y} =y, ()  (86)
For example, if we choose
D(g™")=1-¢"" (87)

(86) implies equality of the d.c. components of y and y,,.
We now have the following property.

Property 6
Let U, and D be relatively prime; then (86) is satisfied if there exist two
polynomials ¥, W, such that

U=V+V.D W=WD (88)
Proof
We have
Uylg™ () = yp(0)) = =V, (qa™ " )D(g™ ") yplt) — g7 W, (g™ ") D(g" )uy (1) (89)

Hence

D(g™")¥(t) = Dla™")yp(t) = D(a™Yup(t) = 0=>U,(q ™ ") (1(1) — y,(1))

=D(g™ ") (1) — yp(1)) =0 (90)

But, D and U, being relatively prime, there exist two polynomials o, f such that
oD+ U, =1 (91)
Applying this operator identity to y(t) — y,(¢) gives the result (50). O

With this property, choosing U, exponentially stable, we can rewrite the
measurement y as (up to the addition of an exponentially decaying sequence):

(PR B
.1(1)—(1—W)J’p(f) U;(q'l)D(q Yu,(t —1) (92)
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This expression can be understood as follows.

Interpret
1 — nD and nD
U U

¥ ¥

as pass band filters in the frequency range of interest and its complements,
respectively. Then we have y = y, in the bandwidth of

(-%)
U}’

and V,y = —g~ ' W,u, in its complement. Writing a model for y, this allows us to fit
model and process in the bandwidth. However, outside the fitting may also be
obtained trivially by choosing W,, ¥, so that —z~* W, /¥, is simply the model transfer
function.

Let us now treat the problem of corrupting exogenous signals. Among these
signals the ones that will prevent v from being unpredictable are those strongly
autocorrelated and in particular the sequences n that are solutions of (i.e. the purely
deterministic component in the Wold stationary process decomposition—Ash and
Gardner 1975):

E(g™")n(t) =0 (93)

where E is monic with all its zeros on the unit circle,
For specificity, let us assume that the process can be described by:

Apla™Myp() = Byla™Huy(t — 1) + (1) (94)

with A, monic and n satisfying (93). We wish to remove the dependence of (ie. to
decouple) y, on n.

According to Objective 2, this should be made at least in the frequency range of
interest. However, if y, equals y in this frequency range, it is sufficient to decouple the
measured signal y from n.

Since
[Uy(q‘l)y(r):| _ [Vy(q‘) —q'l%(q"l)}[yp(t)] -
U™ Hu(t) Vg™ =W tp(2)
Proceeding as in (82), (94) can be rewritten as
Alg™")y(t) = B(g™ Du(t — 1) + Alg™ " )n(1) (96)

where A is the determinant

A=q VW~ VW, 97
Property 7
Assume that (94) holds. Given u, any sequence y that is a solution of (96) for some

n satisfying (93), is also a solution for any other n satisfying (93) iff there exists a
polynomial A such that

A=AE (98)
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Proof
If. With (96) and (98), we readily obtain

Alg™")u(t)=Blg u(t— 1)+ Alg™")E(q™")n(t) = Blg™")u{t — 1) (99)

Only if. Let n, n, be sequences satisfying (93). The same sequence y being obtained
for n;, n,, we have

Alg™")p(e) = B(g™"u(t = 1) + Alg™"Iny (1)

=Blqg™ " u(t— 1) + Alg™ )na(1) (100)
This implies
Alg™ ") (ny (1) =y (1)) =0 (101)
In particular, choosing for n, the zero sequence, we have established
VY, st Eg D (=0, Ag Hn,(0)=0 (102)
The conclusion follows. O

With (96) and Property 1, we have also established the following property.

Property 8

If the process is any linear system which can be described by (94), with a
corrupting exogenous signal n satisfying (93), then, choosing the measurement system
50 as to satisfy (98), the measured process is a linearly dominated system. More
precisely, for any u, 0 < p < 1, there exist a constant y and a p-exponentially decaying
sequence f such that

[v(0)] < ys(e) + B(r) (103)
with

(07 =3, B2 + ) (104

In practice E is unknown; but with Objective 2, restricting our interest to the
frequency range defined by D, we take

E=D (105)
With Property 6, this yields
AD=A=q"'V,W,D-U,W,+ V,W,D (106)

Consequently, D should be divisible by U,W,. However, choosing U, to be
exponentially stable, we have to take

W,=W,D (107)
In these conditions, the measurement u may be rewritten as
W,(g~")D(g™ uy(t) = U, (g~ Jult) — V(g™ ")y,(0) (108)

This expression can be seen as an application of the internal model principle: ‘The
polynomial acting on the process input in the control law should have in factor the
annihilating polynomial of both the set point and the exogenous disturbances’.
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In Objective 2, we have also mentioned that the measurement system should imply
the process signal boundedness from the measured signal boundedness.
We now know that

[ Bg™)p,(0) J _ [ W,(qg ) —q" ' Wy(q™Y) }[Uy(q‘l)y(c)}
Ag™")D(g™ Y, (1) —~Vq™Y) Ug~ ) —Ta=D(g™") || Uulg~ )u()
(109)

Hence, if 4, y are bounded, so are Ay,, ADu,, and if A is exponentially stable, y, and
Duy, are bounded. Therefore we have the following property.

Property 9

Assume that V,, W,, W, satisfies (88), (107), if g~' ¥, W, — V, W, is exponentially
stable then y, is bounded whenever u, y are bounded. Moreover u, is bounded if D is
chosen such that u, is bounded whenever y, and Du, are bounded.

Remark 4
To understand this last assumption, notice that if the process is described by
Ap{q_i)yp(t)=Bp(q—l)up(t_1)+n(t) (110)

with A, monic and »n bounded, then the condition holds if B, and D are relatively
prime, Indeed in this case there exist two polynomials «, f§ such that, with D monic,

aqg”'B,+pD=1 (111)
Hence
up(8) = o(q™ ) Ay (g™ )y,(0) + Bla™ ") D(g™ up (1) — a{g ™ Yn(e) (112)

from which the condition follows.

In fact, by extension, we have the following property.

Property 10

(i) Assume that V,, W,, W, satisly (88), (107); if ¢! ¥, W, — V, W, is exponentially
p-stable then there exist a u-exponentially decaying sequence f3, (depending on the
initial conditions) and a constant y, such that

=1 1/2
(izo #2“_‘_"Iy,,(i)|3> < 9,500 + B,(1) (113)

with s defined in (104). Moreover if D is chosen such that
=1 -1 i ) 1/2 t—1 . , " 1/2
(Eo () ) mu(,__zo u2<"1-"(|yp(i)|—+|D(q-‘)u,,(f)[-))
+£.(1) (114)

for some positive constant y, and bounded sequence f§, (depending on the initial
conditions), then there exist a bounded sequence f, (depending on the initial
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conditions) and a constant y, such that
8(1) S yps(t) + Bo(1) (115)

(iiy If U,, U, are exponentially u-stable, there exist a bounded sequence # and a
constant y such that

s(2) < ysp() + B(2) (116)

Remark 5

(i) Equations (115) and (116) show that s and s, can be exchanged. In particular,
we can use s, computed in terms of measured signals, instead of s, as a scaling signal
(see Remark 1).

(ii) Again notice that (114) holds if (110) holds and B, and D are relatively prime.

Proof
(i) From (108) we notice that we can write

_[Pla™ U@ Tl ‘I)U(q“)J Y Lsn an
y"m_[ Ag ) T & [um o

with the sequence J satisfying:

Ag~")é(5)=0 (118)
From the assumption on A, § is A-exponentially decreasing for some 4 < p and
W(z"HU,(z™1) AW (EzTHULETY }
su - g s ® (119
|:|aﬂ{ R ) :

With (61), this proves the existence of a constant y,, such that

2=l i 2 . =) 2
Z Hyy(0) = SR < 5 T O + luli)) = “”7’s(r)~ (120)

Equation (113) readily follows since

Pp(i)? < 2y (3) — 6(i))* + 26(i)? (121)

- 172 — 2iN 172
#"(_Zl #”’“‘“lé(i)P) sls {lé(‘ }( 1(’1) )!
i=0 ,u i=0
i)l
éu { } (122)
(

By exactly the same procedure, an inequality equivalent to (113) can be obtained for
Du,,, 1.

and

| S 1/2
(Zl #_2‘"""’ID(q")up(i)F) < 7u5() + Bu(t) (123)
i=0

for some constant 7, and p-exponentially decaying sequence f§,. Then (115) follows
from (114) and the definition of s, in (11).
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(i1) is established in the same way from (81) with U, or U, playing the same role
as A. O

Finally, let us treat the typical case where Objective 2 is written as a tracking
problem. Namely, we want to impose the following property to the process output:

Vp(t) = ya(t) (124)

where y, is a desired known output sequence. Again, relaxing this objective within a
given [requency range, we suppose that

D(g™")ya(t) =0 (125)

Keeping in mind the idea of transforming the tracking problem into a regulation
problem and applying Properties 6 to 10, we modify the measurement system into

[%M”WM}_FM(H—K@”WW”)—4*%m”wm”q
Vig™") —Wila™")D(g™")

U, (g™ u(t)
xfuo—mmJ 385
yul)

We now have the following property.

Property 11

(i) Let us assume that the process is any linear system which can be described by
(94) with 4, monic and a corrupting exogenous signal n satisfying (93). If the
measurement system is given by (126) with y, satisfying (125), then the measurement
system is a linearly dominated system. More precisely, for any g, 0 < u < 1, there exist
a constant y and a g-exponentially decaying sequence f such that

()] < ys(z) + B(1) (127)

with s given by (104).
(ii) If g~ ' ¥, W, — V, W, is exponentially u-stable, then there exist a u-exponentially
decaying sequence f3, (depending on the initial conditions) and a constant y, such that

t—1 1/2
(.ZO e —i)|_vp(1') —,Va(i)|2) < y,s(t) + B,(2) (128)

with s defined in (104). Moreover if y, is bounded and D is chosen such that (114)
holds, then there exist a bounded sequence f#, (depending on the initial conditions)
and a constant y, such that

5p(1) < ¥p8(2) + (1) (129)

Proof
(i) As for Property 8, this follows from Property 1 and the fact that (94), (126)
imply an equation of the type
Alq™")y(t) = Blg™ " u(t — 1) + Mg ™) (n(t) — A,(q~ ") ye(1)) (130)
with 4, B some polynomials and
A=AD (131)
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(ii) follows exactly as in Property 10, noticing that

e (1 < 2(1y,(5) — ya(DI* + lya(DI?) (132)
]

With Properties 6 to 11, we have proposed a solution to meet Objectives 1 and 2.
Let us complete this introduction to the notion of measured process by the following
remarks.

Remark 6

(i) With Properties 6, 7, if ¥, is zero, 4, defined in (33), can be divided by D. This
allows us to write the model family as the triple (4D, B, C) with D given by the
control objective.

(ii) The notion of measured input is also helpful for dealing with actuator
limitations such as amplitude and/or speed constraints. For this, we introduce a
distinction between (linearly) computed inputs and (actual) inputs. To be precise, let
u,(t) be the computed measured input as computed by the controller at time t,
whereas u(f) is the actual measured input as sent back to the controller at time .
Similarly, let u,., u, be the computed and actual process input respectively. We
decompose the polynomial W, into:

Wy=W,—q ' W, (133)

where W, is monic and exponentially stable. Its zeros characterize the so called
‘tracking mode’. We choose to relate computed and actual inputs as

Wisla™ Jiape() = V(@™ )yp() + Wilg™ Dutglt — 1) — (1)

—[g(Ufg™ ") — 1)]u(t — 1) (134)
uy (1) = fue(t) (135)
w(£) = Wis(q ™ ") (1tpe (1) — u (1) + 1 (1) (136)

where f describes the actuator limitations. We can check that
Sluge) =g =u=1u,, U=t (137)

On the other hand, if f is not the identity, this decomposition guarantees that u, u,,
are bounded if u,, u,, y, are bounded.

(iii) More generally, the concept of the measurement « can be extended so as to
allow linearization of some non-linearities by feedback.

5. Almost exact linear modelling

The previous Sections motivate us to introduce the main definition of this report.
Given the integers n,, ng, nc and given a real p, 0 < u < 1, we define a model family as
the triple (4, B, C) of polynomials with degree n,, ny, nc respectively, with 4, C monic
and C exponentially p-stable.

Definition 3

We say that a process can be almost exactly linearly modelled if one can find a model
within this model family such that the modelling error given by the measured signals
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is scaled by s obtained from these signals. Namely, there exist a positive constant y, a
bounded sequence f, depending only on the initial conditions, and (4, B, C), an
element of the model family, such that the process output y, satisfies, for any process
input uy,

[u(B)] < ys() + B(¢) (138)
where
t—1
(= 3, 1T M@ + D)
= ps(t = )% + |u(t — P + (e — 1)? (139)
[Uy(q'l)ym} _ [Vy(q'l) —q! wg.(q-‘)] [ypm - yd(r)J —
U, (g~ )uli) Wig™")  —Wig™) (1)

Clq™")u(t) = Alg™")y(t) — Blg™ Yu(t — 1) (141)

or, respectively, if Properties 6, 7 are applied with E=D and V,=0
Clg™")o(t) = A(g™")D(g~")p(1) — Blg™ "Ju(t — 1) (141°)

where y, is a bounded sequence given by the control objective.

6. Comments

6.1. Following Properties 6 to 11, U,, ¥,, W, and U,, V,, W, may be chosen as

V,=U,—V,D, W,=W,D, W,=W,D (142)
where, to obtain process signal boundedness from measured signal boundedness, it is
sufficient to choose U,, U,, V,W, —g~ 'V, W, exponentially p-stable monic poly-
nomials and D satisfying (114) of Property 10. However, as explained in Remark 6, if
V, is zero, the model family should be the triple (4D, B, C).

0.2. Using Remark 5 and Property 2, we know that inequality (138) holds for linearly
dominated systems as defined in Definition 1 and for which Property 1 and Examples
1, 2 and 3 are illustrations.

6.3. With Remark 2, we see that if a process can be almost exactly linearly modelled,
then we can use in (141) time varying polynomials A(z), B(t), C(t), with bounded
coeflicients and, conversely, if (141) and (138) hold for time varying polynomials, they
hold for time invariant polynomials. In particular, we can always impose C(t) = 1.
Using one triple or another changes the constant y and the sequence f8. This possibility
of modifying y is crucial for meeting Assumption A in the Introduction. However,
restrictions have to be imposed on the time variations, For example:

WOt = 1) + a(u(t — 1)
we—1%+u(t—1)2

—1y _ YOu(t — 1) —a(t)y(t — 1))
Blt.q™) = yE—1D2 4+ u(t—1)?

Alt,g ") =1— )q‘l,

(143)

Ct,g ') =1
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give a zero modelling error. However, not only is this model non-causal and may have
unbounded coefficients, but also its time variations may be very large. Actual proofs of
the boundedness of all the solutions call for constraints on these time variations.

6.4. With Properties 11(i) and 2, we know that § in (138) is a p-exponentially
decaying sequence if the measurement system (140) is chosen according to (142),
yq satisfies

D(g™")yy(t) =0 (144)
and if the process input—output relation is given by
An(a™")yp(0) = B(g™ Huy (e — 1) + (1) (145)
with A, B, polynomials, 4, being monic and n a bounded sequence satisfying
D(g™")n(t) =0 (146)

6.5. With Property 11 (ii), we know that y, — y, tends to zero if the same holds for s.

6.6. With Property 4, we know that if a linear time varying controller with bounded
coefficients is placed in feedback with this almost exactly modelled process, then the
signals cannot grow faster than exponentially.

6.7. With Property 5, we know that all the linear invariant systems belonging to the

neighbourhood
A B\ vy
Vil (2.2 =
((C’C)’#)

of the graph topology of exponential p-stability satisfy (138).

6.8. Since on the one hand we expect a better fit between model and measured process
(140), and on the other hand the properties of the measured signals can be transferred
to the physical process signals, using Properties 6 to 11, it is sufficient to develop the
theory for the measured process. However, recall that an unfortunate choice of the
measurement system may render the measured process not stabilizable.

6.9. From the Introduction, we know adaptive controllers which, in closed loop with
the measured process, guarantee boundedness of all the solutions if the corresponding
process is almost exactly linearly modelled by the model family with a constant y
imposed by the controller. As mentioned in § 2, this establishes that the scaling property
is sufficient to replace this boundedness problem by the unpredictability property.
Moreover, with Property 4, this also establishes that boundedness of all the solutions
is a robust property with respect to the graph topology of exponential p-stability for
linear systems.

7. Notes

Proofs of boundedness of all the solutions under Assumption A can be found in
many recent papers (see de Larminat and Raynaud 1988 and Praly et al. 1989, for
example). As far as we are aware, the first proof was given by Praly (1982 a). First
extensions to time varying models can be found in de Larminat (1984) (see also
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Landau and Dugard 1986) and Tsakalis and Ioannou (1986) for indirect schemes and
direct schemes respectively.

However, though bounded, the solutions may be unstable and/or correspond to
very bad performances. This has been observed by Egardt (1979) and Anderson
(1985), for example, and some elementary cases have been analysed by Mareels and
Bitmead (1986) and Praly and Espaiia (1987). On the other hand, Goodwin and Sin
(1984) prove that good, if not optimal, performances are obtained for ‘ideal’ systems,
i.e. those leading to unpredictable modelling errors.

The problem of modelling from process signals only is not particular to adaptive
control. It has motivated Willems (1986 a, b and c) to define dynamical systems as a
family of time series.

We have introduced the class of systems which can be almost exactly linearly
modelled. For such systems, closed loop solution boundedness is established. We have
shown that this way of representing unmodelled dynamics encompasses the more
classical singular perturbations (Kokotovic et al. 1986) or norm bounded additive or
multiplicative uncertainties (Vidyasagar 1985). However, for linear systems, these
latter two uncertainty representations have also the advantage of allowing us to study
performances.

The measurement system introduced in this report is only a formalization and a
synthesis of many methods used in almost all implementations of adaptive and even
linear controllers (see Harris and Billings 1981 and Astrém and Wittenmark 1984).
They have also been motivated by theoretical work, for example, among many others:

— Clarke and Gawthrop (1979) introduced by-passing to circumvent the unstable
zero problem (see also M’Saad et al. 1985).

— Bar-Kana (1586), Gawthrop (1987) and Riedle and Kokotovic (1985) proposed by-
passing to counteract the effects of unmodelled dynamics.

— Elliott and Goodwin (1984) and Gawthrop (1987) proposed using the internal
model idea to take care of deterministic disturbances. Goodwin et al. (1988) proved
that, in the presence of unmodelled dynamics (but with no unmodelled extraneous
disturbance), this achieves asymptotic optimal performances.

— Astrom and Wittenmark (1984) described how a measured input allows us to
handle actuator limitations.

An important method not represented in this measurement system is adaptation
signal filtering when it is different from the control signal filtering (see Anderson et al.
1986 and Egardt 1979).

The almost exact linear modelling assumption has been relaxed in the two following
ways.

(a) To guarantee closed-loop solution boundedness, it is sufficient that, instead of
(138), the mean value of the scaled modelling error be smaller than y when the
mean is taken on a time interval on which s is always larger than § and of
length larger than T. To be precise (see Praly 1982 b): there exist a positive real
§ and an integer T such that for any (z, 1) in I5 7(s), we have

vfi)

Bl (147)

t+r

i=t+1

where
lsr(s)={(t,7)|t=T and Vie[tt+1],s(i)=> S} (148)
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(b) Since (138) has to be satisfied by a fixed element of the model family for all
process inputs u,, the constant y needed to satisfy this global property may be
very large. In fact, most of the above results would hold even if the model were
allowed to depend on the process input, provided that the polynomial
coefficients are bounded uniformly in this process input. Unfortunately, such
an assumption is meaningless as long as the process input is not specified. On
the other hand, in practice, it would be sufficient to satisfy (147) for the actual
process input. The possibility of working with a model or a bound y related to
an input is offered when studying the system around some particular solutions.
This is the objective of the ‘local analysis’ (see Anderson et al. 1986).
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