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Abstract—When the SPR condition is not satisfied then there
exist input signals for which the considered output error
algorithm is locally unstable. A condition is given which delimits
the sharp stability—instability boundary in the case of slow
estimation, whereas local stability properties are guaranteed by
a more conservative signal-dependent average SPR condition.
These conditions are also illustrated by an example.

1. Introduction

THE ROLE of the strictly positive real (SPR) condition of a
transfer function H{z) in establishing stability properties of
output error estimation algorithms is well known (Ljung, 1977,
Landau, 1979; Goodwin and Sin, 1984). In this paper it is shown
that when this condition is not met, a sharp stability—instability
boundary exists and limits the spectral content of the regressor
vector ¢. The spectrum of ¢ in the range where Re H < 0 leads
to instability. To preserve stability, it must be dominated by the
spectrum in the range where Re H > 0. The stability is assured
il ¢ is such that on average H behaves as an SPR transfer
function, The stability boundary is derived under the assumption
that the estimation is slow, ie. the update gain & is small. This
assumption allows us to focus on the drift-type instability which
can occur even at extremely low values of ¢. It is also assumed
that the input signal u is bounded and periodic, an assumption
made for clarity.

This paper extends the continuous-time results of Riedle
and Kokotovic (1984, 1985). It is written as a discrete-time
counterpart of Kokotovic et al. {1985). The discrete-lime algor-
ithm to be analyzed is an “A-class” identifier of Landau, p.292
(1979), Goodwin and Sin, pp, 8387 (1984), with the proportional
gain zero and the integral gain ¢f. For a study of the effects of
@ non-SPR transfer function, the fixed moving average filter is
deleted, ie. let D{g~') = | in the Goodwin-Sin notation. The
update law, with (') denoting transposition, is given by

Ok + 1) = k) — [edlk)/1 + e RIGERUP T — yike + 1)
(LN

where y(k) is the output of the plant to be identified. The
identifier output j(k), adjustable parameter vector (k) and
regressor vector (k) are

Bk = F'(k — Dk (1.2)
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(k) = [—d,(k), —da(k), ..., a (k) By (k). BT (1.3)
Py = [FkY Fik — Do, 5k + T — m)ulk),..oulk + 1 — 1))
(1.4)

where (k) is the input signal. For the analysis of this imple-
mentable algorithm, its non-implementable form

Bk + 1) = B(k) — eV @ UK + 1) — yk + 1), (L.5)

will also be used. Along with @(k), the “plant regressor”,

Plk) = Dvtk), ik — 1), plk + 1 — n) k), .. ufk + 1 — n,
(1.6)

is introduced and p(k) is said to be “matchable™ if 8(k) can be
“tuned” to a constant value 0. such that

wk + 1) = ¢'(k)d,, vk (1.7)
I u(k) is a persistently exciting (PE) signal for the plant, then
the output matchability (1.7) implies the plant—identifier transfer
function matchability. However, if the identifier is of lower order
than the plant, (1.7) can still be achieved, but only for a severely
restricted class of inputs u(k). For example, u(k) can be an input
containing an exact minimum number of [requencies required
to be PE for the identifier and, hence, exciting only a matchable
part of the plant. Local stability properties of all such “tuned
regimes” {j(k) = y(k), 0(k) = 6.} are of interest, because they
show the tendency of the algorithm to converge to, or move
away from, an equilibrium point 8. in the parameter space 0,

For a local analysis the variables

k) = ik} — yik), 0(k) = Otk — 0., wik) = @ik) — p(k) (1.8)

are introduced, representing the deviations around a tuned
regime. The equation governing the output error is

gk + 1) = (k) + RY Ok + 1) + g (k)0 (1.9)
where a; denotes the tuned value of 4,(k) and
Wik = — )i amk + 1 —i). (1.10)
i=1
In terms of (1.8) the update law (1.5) is rewrilten as
Bk + 1) = 6(k) — lebik) + pikn(k + 1). (1.11)

It is clear from (1.9)-(1.10) that n(k) is the output of the transfer
[unction

H@) ="+ ai="" '+ 4 a,_z + d)) (1.12)
when its input is (¢(k — 1) + (k — DYO(K).
Remark 1.1. When H(z) is SPR and @(k + N) = §i{k) is PE then
the function Wic) = O'(k)Xk) satisfies W(k + N) — W(k) < 0, and
hence, (k) = tKk) — 6. = 0 as k — oo, because
k+N=1

S OO + 1) > 0,k (1.13)

-
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When H(z) is not SPR, the sign of this sum depends on the
spectrum of (k). To make this dependence cxplicit @i(k) is
approximated by ¢{k) and ytk + 1) by pi(k)(k), where vy(k) is
the output of H(z), when its inpul is ¢(k). Then instead ol (1.13),
the sum

' +i_ L@@ (1.14)

i=k

can be used o determine the stability properties of the tuned
regime when H(z) is not SPR.
The stability crilerion based on (1.14) is extremely simple: it
is & test of the eigenvalues of the matrix
k+N-1
R= Z iy’ oli), (1.15)

=k

which delimits a sharp stability—instability boundary for slow
estimation.

2. The stability-instability boundary

For a local analysis around | y{k), 0., k)], the seccond order
quantities y'(k)0(k + 1) and yr(k)y(k + 1) are neglected and (1.9)-
(1.11) are approximated by the lincar time-varying system

gk + 1) = — i amlk + 1 — )+ R0k + 1), (2.1
i=1

Mk + 1) = k) — ek + 1), (2.2)

Using x(k) = [jth),..., 5k + I — n)]" as the state of H(z), (2.1)-
2.2) is rewritten in the form

x(k 4+ 1) = Ax(k) + bp'th)kk + 1), (2.3)

Ok + 1) = 0(k) — edp(B)[P' R0k + 1) + Ix(R)]. (24)

where b = [1,0,...,0], ¢' =[—u}..... —a,] and 4 is in the
corresponding canonical form, see Fig. 1, Note from these

definitions that the sum in (2.1) is ¢'x(k) and the brackeled term
in (2.4) is y(k + 1). The implementable form of (2.4) is

Ok + 1) = kY — cglh, e)p(RXH (RYNEK) + ¢'x(R),  (2.5)

where gk, e) = [1 + e’ (D)p(k)] " < 1. In order to replace
¢'(k)(k + 1), the input of H(z), by '(k), the transformation

E(k) = x(k)y — Lk, &)0(k) (2.6)

is used, requiring that the n x m matrix L(k, ¢) be a bounded N-
periodic solution of

Lik + L) = ALtk e) + bp'(ky + eglk el Ltk + Ley  (2.7)
— b (kK p'(k) + 'Lk, &)
All the results of this paper are obtained under the following
assumption.

Assumption 2.1. The plant to be identified is unilormly asympio-
tically stable (u.a.s.), that is |A(4)] < 1, the input u{k) is a boun-
ded N-periodic sequence k) = u(k + N), and, hence,
k) = ik + N) is also bounded.

¢'(K)G(k+1) n{k+1)

1+czI-A b

k) 8K Bk

Fig. 1. Linearization ol the output error algorithm.

As a consequence of this assumption, an N-periodic bounded
solution L{k,0) = Lk} of the non-linear equation (2.7 al e =0
exists and represents the steady state periodic responsc of the
linear time-invarant system

Lotk + 1) = ALk} + bp'(k),  Lofk + N) = Ly(k). (2.8)

Noting that at ¢ =0, L = L, the right-hand side of (2.7) is
continuously differentiable with respect 1o both £ and L, the
implicit function theorem is invoked to state the following result.
Lemma 2.1 (Existence of L). There exists ¢; > 0 such that for

all ce(—eg,e;) and all k, (2.8) has a bounded N-periodic solution
L(k, £), which is unique and can be represented by

Lik, &) = Lo(k) + eL,(k,¢) (2.9)

where the norm of L {k, £) is bounded by a constant independent
of &
Remarl 2.1. Bounds for &, and L,{k,£) can be calculated via a
contraction map proof of this lemma, as in the continuous-time
case {Kokotovic et al,, 1985).

The L-transformition separates a fast &-system from the slow
f-update system, that is,

E(k + 1) = [A + eglk, el Lk + 1,8) — b’ (kDep(l)c TEK).
(2.10)

Ok + 1) = [I — eglk, e)p(k)'tk, £)]0Ck) 3 1]
— ek, e)pth)e’ E(F). 210
where

v'ik,e) = (k) + 'Lk, e) = py(k) + ec’L(k,8).  (2.12)

The last expression introduces the signal

volk) = @'(k) + ¢'Lyfk), (2.13)

the output of H(z) for the input ¢'(k). As stated in Remark
1.1, this signal will be used to delimit the stability-instability
boundary. The next result points out that this boundary is
determined by the (-update dynamics, because for £ small the
E-system (2.10) remains w.a.5,

Lemma 2.2 (uwas. of £). There exists &4 > 0 such that for all
e€(—t,,6,) the E-system {2.10) is was.

Remark 2.2. Whereas the proof of this [emma is by a standard
perturbational argument and need not be repeated here, an
important fact is that £, > ¢ and, hence, whenever Lemma 2.1
holds then (2.10) is also v.a.s. This result is established as in the
continuous-time case (Kokotovic et al., 1983).

Henceforth the stability apalysis focuses on the 0-system
(2.11), where the bounded forcing term is not essential and can
be disregarded. The state transition matrix F(k, ko) of (2.11) is
defined by

Fik + 1,ky) = [ — eglh, e)pllh'(k, ) 1F(k, ky), (2.14)
Flkg ko) = 1.

The stability of this linear N-periodic system is determined by
the eigenvalues F(k, ky) evaluated over any period N, say
Fy=FNOLIMAdF) < Lforalli=1,..., i+ r, then (2.14) is
exponentially stable, and if |4 {Fy)| > 1 for some j, then (2.14) is
unstable, In order to convert this condition into a practical
stability criterion, Fy, must be expressed in terms of some easily
interpretable quantities.
Lemmua 2.3 (Averaging). The matrix Fy can be expressed as
vt
Fo=1-— ;;( S Btk o) + ;:M) (2.15)
k=0
and there exists t,, > 0 such that for all ee(—¢y,, £,) the norm
of M is bounded by a constant independent of &.
To prove this lemma the fact that gik,e)= 1+ O
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v'(k) = v'{k) + Ofe) is used and &, is determined such that for all
ee(—&y,6y) 2 contraction property of the operator can be
cstablished.

K-t
UR) =1 UF)k)=1—¢ Z gli, e}’ (i, e)F(D), (2.16)
i=o
k=12,...,N.

The rest of the proofl is the same as in the continuous-time case
(Kokotovic et al.. 1985).

The stability of (2.19), and, hence, of the whole linear system

(2.1)=(2.2), is concluded to be determined by the eigenvalues of
the matrix R defined by (1.15).
Theorem 2.1 (Stability—instability boundary). Under Assumption
2.1 there exists & > 0 such that for all £e(0,&,) the f-system
(2.14) and, hence, the full system {(2.1)-(2.2), are exponentially
stable if forall i=1,..., n+r

Rei{R) = Re A,.(Nf qb(k)v’n(k)) >0, 2.17)
k=0

unstable i for some je {1,...,n +r}

N—

ReA(R) = Re ;_J,[ zl (]){k]v'n(k)} <0. 2.18)
0

k=

To prove this theorem, the way the eigenvalues of
Fy=1— &R — ¢*M depend on the eigenvalues of R is examined.
Let ¢ +jf be an eigenvalue of R + eM and A(F) the cor-
responding cigenvalue of Fy. Then

[A(Fl = [1 = 260 + 6202 + ]2 = | — to + O(%)
(2.19)

and, since ¢ = Re AR + eM) = Re I(R) + ols),
|[A{(Fy)) =1 — eRe A(R) + ofe), (2.20)

noting that, il the eigenvalues of R are distinct, ofe) can be
replaced by O(e).

3. Discussion and example

To interpret the meaning of the above stability theorem, we
recall that v'y(k) is the output of H(z) for the input ¢'(k), and
express the regressor vector ¢(k) as

N

Plk) = i xff)elk,

i==N

w; = 2n/Ni, al—i) = afi),

(3.1)

where (i) is the complex conjugate of (i) and N, <IN, N, <
HN — 1). Then the vector vy(k), and the matrix R are given by

N,
vkl = 3 (D H(eR ek, (3.2)
i=—N;
N-1 N, o
R=Y dkwoky=N Y Hie™ada(i) (3.3)
=0 i==N;

Corollary 3.1 (Instability). I H(z) does not satisfly

Re H{e’) = 0, Ywe[—nx], (3.4)
then there exists an N-periodic (k) and &, > 0 such that the
model (2.1)-(2.2) is unstable for all ce(0,£,].
The proof is by observing that if
NZ
traccR = % |ali)l* Re H(e!*) < 0 (3.5

i==N

then at least one ecigenvalue of R satisfies the instability condition
(2.18). This corollary leads to the following interpretation of the
SPR property:

AUT 22:4-0

if stability is required for all possible bounded N-periodic
sequences (k), then the SPR property of H(z) is necessary.

In other words

the only way to relax the SPR requirement is to restrict
the spectrum of ¢(k).

In applications, a careful design of the spectrum of (k) is
required, a conclusion reached by loannou and Kokotovic
(1982) via a different route. Theorem 2.1 offers guidelines for a
design of ¢(k), that is, the choice of u(k), bused on some a priori
information about H(z). First note that if n(k) is PE for H{z),
then ReA(R)# 0 and the stability condition (2.17) is both
necessary and sufficient. As this condition is equivalent 1o the
existence of P =P >0 such that PR+ R'P >0, it can also
be derived by using W, = 0'(k)PO(k) as a Lyapunov [unction.
Different choices of P lead to different sufficient conditions for
stability which may be more conservative than (2.17), but simpler
to interpret. The simplest choice, P = I, has already been made
in Remark 1.1 which is now reconsidered. From (2.1), (2.5) and

(2.6).

nk + 1) = 'xtk) + ¢'(B0k + 1)
= glk.e)[p(e)0k) + c'x(k)] (3.6)
= ((k) + ' LolkN0tk) + ¢'Ek) + Ofr)
= v’ (k)NE) + O(r)

is obtained where the last step disregarded &(k) as an expo-
nentially decaying term. This expression shows that the goal of
approximating (1.13) by (1.14) has been achicved, not by
linearization alone, but primarily due to the L-transformation
and smallness of & The choice P = I, although conservative,
leads to a convenient relaxation of the SPR condilion.

Corollary 3.2 (Average SPR), If

i Re H(e™) Re afi)e (i) > 0, (3.7

i==w,

then there exists £, > 0 such that (2.1)-(2.2) is exponentially
stable for all £e(0,&4].

This relaxation of the SPR condition allows Re H{e™) < 0
for some i, as long as the sum in (3.7) is positive. In other words:

¢(k) should be PE and have more Re H-weighted energy
at the frequencies where Re H > 0 than at those where
ReH < 0.

It may not be obvious that (3.7) is more conservative than
(2.17). Its conservativeness is illustrated in Case (c) of the example
below. As it is better o be conservative than risk instability, the
sufficient condition (3.7) seems to be a reasonable objective to
satisly by the choice of u(k), or by filtering, as suggested by
Johnson et al. (1984).

Example. As an illustration results of simulation experiments
are presented in which the output error algorithm (1.1)-(1.4) was
used to estimate the parameters —1.6 and 0.8 in the transfer
function

w2

Hiz)= ——— (3.8)

1

2 — L6z + 08
Note that H(z) is stable, but not SPR. For the input signal
N,

u(k) = Z reivd (3.9)

i==N,
the matrix R is found to be

N, - ju
R=N Y |H{c")2He) g

i==N

(3.10)

el ]
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Case (a). Let the input u(k) and the corresponding R be

102 —0.17
98 109 G0

2n
u(k) = 0.064c05(ﬁk),R =13

where u(k) has period N = 13, In this case A(R) = 13(1.02 + j0.58)
and both Theorem 2.1 and Corollary 3.2 predict exponential
stability. This is confirmed by simulated trajectories in the
(¢iy, &2)-plane shown in Fig. 2a.

Case (b). If instead of (3.11)

—107 -3.19

4TE
) = 1.2 il = 5
uk) = 1.2 cos(”k),R 13‘ 108 1.07‘ (3.12)

is used, then A(R) = 13(—1.07 & j2.51) and Theorem 2.1 predicts
instability. A simulated trajectory shown in Fig. 2b “unwinds”,
as predicted. However, this local instability does not necessarily
imply unboundedness and it appears that the trajectory in Fig.
2b has a tendency to remain bounded.

Case (c). To the input w(k) in (3.12), which led to instability, a
d.c. component is now added, namely,

(3.13)

13

4n
0 = 2 i =
k) =0.11 + l._cos( A),R 13 3.49 0.45

045 — l.68|

This final experiment is of interest because the sufficient
condition of Corollary 32 is not satisfied, while
A(R) = 13(0.45 & j2.42) satisfies the exponential stability con-
dition of Theorem 2.1. The prediction of exponential stability
is confirmed by trajectories in Fig. 2c. Near the equilibrium they
are similar to the trajectories of a linear system with oscillatory
but stable eigenvalues.

Most of the stable simulated trajectories show the charac-
teristic pattern of a fast transient followed by a slow “averaged”
behaviour. The same pattern, but in the reverse direction of
lime, is present in unstable trajectories. The local theory predicts
the qualitative behaviour of the averaged parts of trajectories.
When the parameter error is large, the adaptation is fast even
for small values of «, and the assumptions of local theory are
not met.

4. Concluding remarks

The local theory presented in this paper contributes to the
understanding of stability and instability mechanisms in slow
adaptation with non-SPR (ransfer functions. For some test
inputs the output of a non-matchable plant can still be matched
by the output of a lower order model. If, for an algorithm, all
such tuned solulions are exponentially stable, it is rcasonable
to expect that the algorithm is more robust than if this were
not the case. A “total stability” analysis by small gain theorems
or similar analytical lools can be used to estimate the stability
region around expenentially stable tuned solutions.

Another useful aspect of the stability criterion presented here
is a qualitative indication how to influence the frequency content
of relevant signals in order to enhance the stability properties,
As a rule, the signal energy in the range where Re H > 0 should
dominate.
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