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Abstract: This paper deals with the characterisation of the sensitivity to high-frequency
measurement noise of nonlinear high-gain observers. The proposed tool provides bounds for
the steady-state estimate in presence of noise when the high-gain parameter characterising the
speed of convergence of the observer is fixed. The nonlinear analysis captures the effect of the
noise frequency showing the “low-pass” filtering properties of the observer.

1. INTRODUCTION

High-gain observers have been routinely used since the
beginning of 90’s as a tool of fast-state estimation in many
control-feedback scenarios (see, for instance, the special
issue in Khalil and Praly (2014) and references therein).
One of the most important features is that of having a
rate of convergence that can be made arbitrarily fast by
augmenting one single parameter, also known as “high-
gain parameter” (denoted with ` throughout this work). In
general, this parameter has to be large enough in order to
overcome the Lipschitz constant of the observed nonlinear
system. Furthermore, the larger ` becomes, the smaller
becomes the estimation error bound in presence of certain
disturbances and parametric uncertainties. Nevertheless,
increasing the speed of convergence may incredibly de-
teriorate the asymptotic estimation in presence of high-
frequency measurement noise. Also, by augmenting the
high-gain parameter, peaking may increase, and digital
implementation is more demanding. This trade-off is very
well-known in literature and many efforts have been done
in order to round the above problems. As reported in
Khalil and Praly (2014), “a sound strategy to achieve
fast convergence while reducing the impact of measure-
ment noise at steady state is to use a larger ` during the
transient time and then decrease it at steady state”. Most
of the proposed techniques rely in varying the high-gain
parameter with some scheme (see among others, Ahrens
and Khalil (2009), Boizot et al. (2010), Marino and San-
tosuosso (2007), Prasov and Khalil (2013), Sanfelice and
Praly (2011)).

In this note we focus on the effect of the measurement noise
on the steady state of the high-gain observer estimate. In
particular we consider the case when measurement noise is
a high-frequency signal. To the best of the author’s knowl-
edge, attempts of analysis have been done but only H∞

bounds have been characterised (see, for instance, Ball and
Khalil (2009), or Vasiljevic and Khalil (2008)). As already
noticed in Vasiljevic and Khalil (2006), the H∞ analysis is
too conservative and fails to catch the “low-pass” filtering
characteristics of the high-gain observer when ` is fixed
to some (eventually large) value. We propose a technique,
which may be eventually applied to other frameworks, to
analyse the error estimate steady-state behaviour of the
high-gain observer, based on the approximation of a solu-
tion of a partial differential equation modelling the steady
state of the estimate. The given bound captures both the
effects of the high-gain parameter and the frequency of
the measurement noise, highlighting the “low-pass” filter
properties that can be extracted by a frequency analysis
in the linear case.

2. PROBLEM DESCRIPTION AND PRELIMINARIES

We consider the class of nonlinear systems that, maybe
after a change of coordinates (see, for instance, Gauthier
and Bornard (1981)), are described in the uniform observ-
ability form

ẋ = Ax+Bϕ(x)

y = Cx+ ν(t)
(1)

with state x ∈ X ⊆ Rn (X a bounded set) and measured
output y ∈ R, where ϕ(·) is a locally Lipschitz function
and (A,B,C) is a triplet in prime form of dimension n,
that is

A :=

(
0(n−1)×1 In−1

0 01×(n−1)

)
, B :=

(
0(n−1)×1

1

)
,

C :=
(

1 01×(n−1)

)
,

and ν(t) is a bounded measurement noise. For such non-
linear system we consider a standard high-gain observer of
the form
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˙̂x1 = x̂2 + `k1(y − x̂1)

˙̂x2 = x̂3 + `2k2(y − x̂1)
...

˙̂xn−1 = x̂n + `n−1kn−1(y − x̂1)

˙̂xn = ϕs(x̂) + `nkn(y − x̂1)

(2)

where here x̂ = (x̂1, . . . , x̂n)T ∈ Rn is the estimated
state, kj , j = 1, . . . n, and ` are positive coefficients to be
designed (with ` ≥ 1 the high-gain parameter), and ϕs(·)
is a locally Lipschitz bounded function that agree with ϕ(·)
on a bounded set Xδ ⊃ X, namely there exists a ϕ̄ > 0
such that |ϕs(x)| ≤ ϕ̄ for all x ∈ Rn and ϕs(x) = ϕ(x) for
all x ∈ Xδ.

By considering the change of coordinates

x̂j 7→ ej := x̂j − xj j = 1, . . . , n ,

it turns out that system (2) transforms as

ė = Fe+B∆ϕ(e, x) +Gν(t) (3)

where

F :=



−`k1 1 · · · 0

−`2k2 1
...

. . .

−`n−1kn−1 1

−`nkn 0 · · · 0


, G :=


`k1
...

`nkn

 ,

and ∆ϕ(e, x) is the locally Lipschitz function defined as

∆ϕ(e, x) := ϕs(e+ x)− ϕ(x) .

It is a well-known fact that if the kj ’s are chosen so that
the polynomial equation

λn + k1λ
n−1 + . . . kn = 0

has roots with negative real part and if ` is taken suffi-
ciently large then system (3) is input-to-state stable with
respect to the input ν. In particular, by means of standard
Lyapunov arguments, it is possible to prove (see Khalil and
Praly (2014)) the existence of positive constants c1, c2 and
c3 such that the j-th error component can be estimated as

‖ej(t)‖ ≤ max{c1 `j−1 exp(−c2` t) ‖e(0)‖ ,
c3 `

j−1‖ ν(·)‖∞} (4)

for all t ≥ 0, j = 1, . . . , n. If the measurement noise is ab-
sent, the previous result implies that the estimation error
converges to zero asymptotically with an exponential de-
cay rate that can be arbitrarily decreased by increasing `,
with the term `j−1 in factor of the exponential decay mod-
elling the so-called “peaking” phenomenon. Otherwise,
for a generic bounded measurement noise, the observer
guarantees bounded trajectories with a linear asymptotic
gain. The asymptotic gain of the j-th state estimates, in
fact, depends on `j−1 namely tends to be worst as long as
“higher” components in (3) are considered.

The goal of the paper is to better characterise the asymp-
totic gain in presence of high-frequency noise with ` that is
fixed in order to have the above mentioned ISS property.
Towards this end we model the measurement noise as

εẇ = Sw , ν = Pw , (5)

where S is a neutrally stable matrix, P is a row vector,
and ε ∈ (0, 1) is parameter that will be taken small in the
forthcoming analysis. System (5) can be conveniently seen
as generator of m > 0 harmonics at frequencies ωi/ε > 0,
i = 1, . . . ,m, namely, the matrices S and P take the form

S = blkdiag(S1, . . . , Sm) , Si =

(
0 ωi

−ωi 0

)
and P = ((0 1) (0 1) · · · (0 1)). In the following we assume
that w ranges in a compact invariant set W .

As a preparatory step towards the nonlinear analysis, it
is instructive to consider the linear case, namely the case
in which ϕ(x) = Φx with Φ a row vector. In this case
the observer (2) can be taken 1 with ϕs(x̂) = Φx̂, thus
resulting in an error system (3)-(5) given by

εẇ = Sw

ė = (F +BΦ)e+GPw

with the matrix F +BΦ that is Hurwitz for ` sufficiently
large. Using the fact that S is neutrally stable and that
F +BΦ is Hurwitz it follows that the state of the previous
system reaches a steady state fully described by the state
of the noise generator. In particular, denoting by Πε the
matrix solution of the Sylvester equation

ΠεS = ε(F +BΦ)Πε + εGP

it turns out that

lim
t→∞

(e(t)−Πεw(t)) = 0 . (6)

The solution of the previous Sylvester equation can be
characterised at high-frequency (namely for small value
of ε) to have more insight about how the gain between
the measurement noise and the j-th estimation error is
affected by `. In particular, using that the fact that S is
not singular, it is easy to check that

Πε = εGPS−1 + ε2Π̄ε

with

Π̄ε :=

∞∑
k=2

εk−2(F +BΦ)k−1GPS−k ,

is a solution of the Sylvester equation. In particular, the
series defining Π̄ε is convergent as long as ε is taken
sufficiently small. Namely, there exist ε?1 > 0 and π̄ > 0
such that ‖Π̄ε‖ ≤ π̄ for all positive ε ≤ ε?1 By bearing
in mind how ` enters in G, and by denoting with Πj the
j-th row of Πε, j = 1, . . . , n, it is thus possible to claim
the existence of a positive ε?2(`) ≤ ε?1(`) such that for all
positive ε ≤ ε?2(`) the following holds

lim
ε→0
‖Πj‖ ≤ c ε `j

where c is a positive constant. From this, using (6) and the
fact that W is compact, we can then conclude that for all
positive ε ≤ ε?2(`) the following holds

lim
t→∞

sup |ej(t)| ≤ c ε `j |w|∞ .

The previous relation clearly shows the “low-pass” filtering
properties of the high-gain observer, namely

1 Because of linearity, boundedness of the function ϕs(x) is not

needed.
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lim
ε→0

lim
t→∞

sup |ej(t)| = 0 ,

and the fact that the asymptotic gain of the j-th error
component at high-frequency depends on `j (whereas the
H∞ bound is proportional to `j−1, as shown by (4)).

The main goal of this note is to present the theoretical
tool that allows one to get the same kind of result also in
the nonlinear setting.

3. MAIN RESULT

By compactly writing the system dynamics (1) as

ẋ = f(x)

the overall dynamics given by the observed system (1),
the observer error dynamics (3) and the noise generator
(5) read as

εẇ = Sw

ẋ = f(x)

ė = Fe+B∆ϕ(e, x) +GPw .

(7)

Having tuned the parameters ki, i = 1, . . . , n, and ` as
said before, the trajectories of this system are bounded.
The system in question, thus, has a well-defined steady
state that can be characterised with the tools proposed in
Isidori and Byrnes (2008). More specifically, the triangular
structure of the system (with the x and w subsystem
driving the e subsystem) implies that the existence of a
possibly set-valued function πε : X ×W ⇒ Rn such that
the set

graph(πε) =
{

(w, x, e) ∈W ×X × Rn : e ∈ πε(w, x)
}

is asymptotically stable for (7). Furthermore, the proper-
ties of the high-gain observer when the measurement noise
is absent (i.e. when w = 0) show that

πε(0, x) = {0} ∀ x ∈ X .

The following technical lemma provides an arbitrarily
accurate approximation of a continuous selection of πε(·, ·).

Lemma 1. Consider system (3) and let r be an arbitrary
positive number. There exist continuous functions ψ̄j,i :
X ×W → R, j = 1, . . . , n, i = 1, . . . , r, such that having
defined

Ψj(w, x) :=

r∑
i=1

`j+i−1ψ̄j,i(w, x) εi

Ψε(w, x) := col
(

Ψ1(w, x) · · · Ψn(w, x)
)

and

Eε(w, x) :=
∂Ψε(w, x)

∂w
Sw +

∂Ψε(w, x)

∂x
f(x)

− FΨε(w, x)−GPw −B∆ϕ(Ψε(w, x), x) ,

the following holds

lim
ε→0+

Eε(w, x)

εr−1
= 0 , lim

w→0+
Eε(w, x) = 0 .

Proof. Let

ψj,i(w, x) := `j+i−1ψ̄j,i(w, x)

so that

Ψj(w, x) =

r∑
i=1

ψj,i(w, x) εi . (8)

Since w and x range in bounded sets and the function
ψj,i(·, ·) are continuous, we have that

lim
ε→0+

Ψε(w, x) = 0 ∀ (w, x) ∈W ×X .

Expanding ∆ϕ(Ψε, x) by Taylor around Ψε = 0 we obtain

∆ϕ(Ψε, x) =

r∑
i=1

ϕi(x)[Ψε]
i + ρr(Ψε, x)

in which ϕi(·), i = 1, . . . , r, are properly defined contin-
uous functions, ρr(·, ·) is a properly defined continuous
remainder function, and the [Ψε]

i are monomials of the
form

[Ψε]
i =

n∏
j=1

Ψ
kj
j ,

n∑
j=1

kj = i .

By replacing Ψj with the expressions (8) and grouping the
terms with the same power of ε, the Taylor expansion of
∆ϕ(·, ·) can be rewritten as

∆ϕ(Ψε, x) =

r∑
i=1

εiφi(w, x) + εr+1Rε(w, x) (9)

where the functions φi(·), i = 1, . . . , r, and Rε(·, ·) are
appropriately defined continuous functions. As far as the
φi’s are concerned, in particular, we observe that, because
the Ψj are polynomials in ε and the [Ψε]

i are polynomials
in the Ψj , only the coefficients of power smaller or equal to
i in ε in the Ψj can be in φi. Namely, φi(·, ·) depends only
on ψj,k with k ≤ i, for all i = 1, . . . , r and j = 1, . . . , n.

Consider now the expression of Eε(·, ·) and, denoting by
E1(·, ·), . . ., En(·, ·) its components, note that

E1(w, x) = Ψ̇1 + `k1Ψ1 −Ψ2 − `k1Pw
...

En(w, x) = Ψ̇n + `nknΨ1 −∆ϕ(Ψε, x)− `nknPw

where, for sake of compactness, we omitted the argument
(w, x) from the functions Ψj , j = 1, . . . , n, and Ψε. By
embedding (8) and (9) in the previous expressions, the
following is obtained

Ej(w, x)

=

r∑
i=1

[
Lfψj,i +

1

ε
LSψj,i

]
εi + `jkj

r∑
i=1

ψ1,i ε
i

−
r∑
i=1

ψj+1,iε
i − `jkjPw

=
[
LSψj,1 − `jkjPw

]
+

r∑
i=1

εi
[
Lfψj,i + LSψj,i+1 + `jkjψ1,i − ψj+1,i

]
for j = 1, . . . , n− 1 and
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En(w, x)

=

r∑
i=1

[
Lfψn,i +

1

ε
LSψn,i

]
εi + `nkn

r∑
i=1

ψ1,iε
i

−
r∑
i=1

φiε
i − εr+1Rε(w, x)− `nknPw

= [LSψn,1 − `nknPw]− εr+1Rε(w, x)

+

r∑
i=1

εi [Lfψn,i + LSψn,i+1 + `nknψ1,i − φi]

in which ψj,r+1 := 0, j = 1, . . . , n, and

Lfψj,i :=
∂ψj,i(w, x)

∂x
f(x) , LSψj,i :=

∂ψj,i(w, x)

∂w
Sw .

The idea now is to iteratively select the functions
ψj,i+1(·, ·) to annihilate, in the previous expressions, the
terms in εi, i = 0, . . . , r − 1, j = 1, . . . , n. We start
by considering the terms of order 0 in ε which are all
annihilated by taking

ψj,1(w, x) = `j kj P S
−1 w := `j ψ̄j,1(w, x) ,

j = 1, . . . , n . (10)

We observe that ψ̄j,1(w, x), and thus ψj,1(w, x), j =
1, . . . , n, are polynomials in w of order 1 with constant
coefficients. We proceed now by induction by assuming
that all the functions ψj,k(·, ·), k = 1, . . . , i, j = 1, . . . , n
have been fixed in the form

ψj,k(w, x) = `j+k−1 ψ̄j,k(w, x)

for some continuous ψ̄j,k(w, x) that are polynomials in w
of order k with coefficients dependent on x, so that to
annihilate the terms in εk−1. Furthermore, since φi(·, ·)
only depends on ψj,k with k ≤ i, j = 1 . . . , n, we assume
that φi(·, ·) is a polynomial in w of order i with coefficients
dependent on x. In this case we see that the terms of order
i in ε are annihilated if ψj,i+1(·, ·) can be chosen so that

−LSψj,i+1 = Lfψj,i + `jkjψ1,i − ψj+1,i

j = 1, . . . , n− 1 ,

−LSψn,i+1 = Lfψn,i + `nknψ1,i − φi .

Using the induction assumptions on the functions ψj,i(·, ·),
j = 1, . . . , n, and φi(·, ·), and the fact that S is invertible,
it is easy to see that the previous PDEs admit solutions of
the form

ψj,i+1(w, x) = `j+i ψ̄j,i+1(w, x)

j = 1, . . . , n, for some ψ̄j,i+1(w, x) which, in turn, are
polynomials in w of order i + 1 with coefficients that are
continuous functions of x. The induction iteration can be
then used to choose ψj,i(·, ·), j = 1, . . . , n, i = 1, . . . , r, of
the form

ψj,i(w, x) = `j+i−1 ψ̄j,i(w, x)

where ψ̄j,i(w, x) are polynomial functions in w of order
i with coefficients that are continuous functions of x. By
embedding those functions in the expressions of Ej(·, ·),
j = 1, . . . , n, and bearing in mind the definition of Rε(·, ·),
it is readily seen that

Ej(w, x)=εr[Lfψj,r + `jkjψ1,r − ψj+1,r]

En(w, x)=εr[Lfψn,r + `nknψ1,r − φr] + εr+1wR̄ε(w, x)

(11)
where R̄ε(·, ·) is an appropriately defined continuous func-
tion, by which the claim of the lemma immediately follows.

�

The previous lemma is instrumental to the proof of the
next proposition which is the main result of the paper.

Proposition 1. Consider system (7) with x(t) ∈ X and
w(t) ∈ W for all t ≥ 0 with X and W bounded compact
sets. Let the function ϕs(·) embedded in ∆ϕ(·, ·) be chosen
so that it is locally Lipschitz and it agrees with ϕ(·) on a
set Xδ ⊃ X. Let ` be fixed so that system (3) is ISS with
respect to the input ν. Then, there exists a ε?(`) > 0 such
that for all positive ε ≤ ε?(`) the following holds

lim
t→∞

sup |ej(t)| ≤ c ε `j |w|∞ j = 1, . . . , n

with c a positive constant.

Proof. Let consider the change of variables

e 7→ ẽ := e−Ψε(w, x)

with Ψε(·, ·) introduced in the previous lemma with an
r > 1 and observe that, by bearing in mind the definition
of Eε(·, ·),

Ψ̇ε = FΨε +B∆ϕ(Ψε, x) +GPw + Eε(w, x) .

Furthermore, note that

∆ϕ(e, x)−∆ϕ(Ψε(w, x), x)

= ∆ϕ(ẽ+ Ψε(w, x), x)−∆ϕ(Ψε(w, x), x)

= ϕs(ẽ+ Ψε(w, x) + x)− ϕ(x)

−(ϕs(Ψε(w, x) + x)− ϕ(x))

= ϕs(ẽ+ Ψε(w, x) + x)− ϕs(Ψε(w, x) + x)

= ∆ϕ(ẽ,Ψε + x) .

Note that there exists a ε?1(`) ∈ (0, 1] such that for all
positive 2 ε ≤ ε?1(`)

∆ϕ(0,Ψε(w, x) + x) = 0 ∀ (w, x) ∈W ×X .

By the previous facts the error dynamics in the new
coordinates can be easily computed as

˙̃e = F ẽ+B∆ϕ(ẽ,Ψε(w, x) + x) + Eε(w, x) . (12)

Since the Lipschitz constant of ∆ϕ(·, ·) is not affected by
the value of the arguments, the same values of ` that
make system (3) ISS with respect to the input ν(t) make
also system (12) ISS with respect to the input Eε(·, ·). In
particular, there exists a positive constant c0 such that

lim
t→∞

sup |ẽ(t)| = lim
t→∞

sup |e(t)−Ψε(w(t), x(t))|

≤ c0 lim
t→∞

sup |Eε(w(t), x(t))|

≤ c0|Eε(w, x)|∞
Using the fact that, for any r ≥ 1, Eε(w, x) is a term in
εr, it follows that there exists a positive constant c1 such
that
2 The value of ε? depends, besides other, on the choice of the set

Xδ on which ϕs(·) coincides with ϕ(·).
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lim
t→∞

sup |ẽ(t)| ≤ c1εr|w|∞ .

Consider now the the expressions of the components
Ψj(·, ·), j = 1, . . . , n, of Ψε(·, ·) introduced in the previous
lemma. It turns out that there exist a positive ε?2(`) ≤ ε?1(`)
and a positive constant c2 such that

|Ψj(w, x)| ≤ c2 ε `j |w|
for all j = 1, . . . , n, for all positive ε ≤ ε?2(`) and for all
(w, x) ∈W ×X. From this,

lim
t→∞

sup |ej(t)| = lim
t→∞

sup |ẽj(t) + Ψj(w(t), x(t))|

≤ lim
t→∞

sup |ẽj(t)|+ lim
t→∞

sup |Ψj(w(t), x)(t)|

≤ lim
t→∞

sup |ẽj(t)|+ |Ψj(w, x)|∞
≤ c1ε

r|w|∞ + c2ε`
j |w|∞

by which the result follows by taking an appropriate
ε?(`) ≤ ε?2(`). �

4. CONCLUSIONS

The characterisation of the sensitivity to high-frequency
measurement noise of nonlinear high-gain observers has
been investigated and error bounds have been given. We
showed that the asymptotic value of the j-th components
of the estimation error can be bounded by a term propor-
tional to ε`j where ` is the high-gain parameter and ε is
the inverse of the noise frequency. This analysis suggests
that when high-gain observers are used in practice, the
high-gain parameter should be small enough with respect
to the lowest frequency characterising the measurement
noise, but large enough to guarantee convergence of the
observer. The proposed tool relies on the approximation
of a partial differential equation modelling the nonlinear
steady state of the estimates. The proposed analysis can
be extended also to a general class of nonlinear system in
the triangular form (see Bornard and Hammouri (1991)).

The tool presented in the paper can be also successfully
used to characterise the sensitivity to high-frequency noise
of the“low-power” high-gain observer recently proposed in
Astolfi and Marconi (2016). In that context, in particular,
it is possible to show that the j-th components of the
estimation error can be bounded by a term proportional
to εk with k > 1 for any j > 1, by thus substantially
improving the sensitivity at high-frequency for all the error
components. Details will be presented in a journal version
that is under preparation.
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