
Energy Level Stabilization of Pendulum on

a Cart with Restricted Cart Track Based

on Elliptic Functions and Integrals

Türker Türker ∗ Laurent Praly ∗∗

∗ Control and Automation Engineering Dept, Yildiz Technical
University, Esenler, 34220, Istanbul, Turkey, (e-mail:

turker@yildiz.edu.tr).
∗∗ CAS, ParisTech, Ecole des Mines, 35 rue Saint Honore, 77305,

Fontainebleau, France, (e-mail: Laurent.Praly@ensmp.fr).

Abstract:
This study presents an energy level stabilization algorithm for the pendulum on a cart system
with restricted cart track length. The objective is to bring the pendulum to its unstable
equilibrium. To do so the energy level of the pendulum is increased or decreased by accelerating
the cart in the appropriate direction while keeping within imposed limit positions. To achieve,
the equation of motion of the pendulum is solved by means of elliptic integrals considering the
cart is moved with constant acceleration, and all the calculations are performed numerically
to obtain the bounds for elapsed time and change of the energy level of the pendulum. The
algorithm is tested on the system by means of numerical simulations.

1. INTRODUCTION

The stabilization of the pendulum on a cart system at
the unstable equilibrium point of the pendulum is a well-
known problem in the area of control theory. In general,
this problem is solved by making the cart move on a
linear track in such a way that it forces the pendulum
to swing up. Since the system is underactuated and losses
linear controllability property when the pendulum is at
its horizontal configuration, many well-known nonlinear
controllers can not be applied directly to this particular
system. On the other hand, linear controllers are only
able to stabilize the system in a small interval in the
neighborhood of the unstable equilibrium.

The structure of the nonlinear controllers developed for
dealing with the pendulum on a cart system can be split
in two main groups. The first ones aim at asymptotically
stabilizing the pendulum at its upward equilibrium. They
are obtained by exploiting local properties only. The
second ones aim at driving the pendulum close to its
upright position. They are typically energy based methods
and their objective is to drive the energy level of the
pendulum to a predefined energy level which corresponds
to the upward equilibrium of the pendulum.

Among the control structures to swing up the pendulum,
[1] gives the general properties of the energy based ap-
proaches and compares several different type controllers
that swing up the pendulum from its hanging position. A
passivity based continuous controller structure presented
in [2] provides to swing up the pendulum with the conver-
gence to the unstable equilibrium. More recently, another
solution is proposed in [3] for the global stabilization
problem of partially linearized pendulum on a cart system
which possesses a switching in the control structure. How-
ever, the motion of the cart is not analyzed in detail and

the cart track length is assumed to be sufficiently long in
these studies. To be more realistic, some algorithms have
been developed in which the travel of the cart was also
considered. A stabilization algorithm is presented in [4]
that also bounds cart travel distance from above in order
not to allow the pendulum to fall while it is in the upper
half plane. Another study, [5], swings up the pendulum
from hanging position with restricted cart track length.
However, the proposed controller is not global in that
study and it is defined only if the cart stands in between
the limit positions. On the other hand, a globally stabiliz-
ing controller algorithm is given in [6]. In this algorithm,
the motion of the cart is determined by the trajectory of
the pendulum. In order to provide the energy increase or
decrease, the sufficient time for the pendulum to reach to
horizontal configuration or to zero velocity is shown to
be bounded, and this bound is utilized to determine the
desired acceleration for the cart.

An energy level stabilization algorithm for the pendulum
on a cart is given in this paper. The cart is forced to
move with a constant acceleration (and deceleration) to
change the energy level of the pendulum. The time needed
for the pendulum to reach its horizontal configuration
or to zero angular velocity is calculated numerically by
means of elliptic integral of first kind. This calculated
time is compared to the time for the cart to reach its
limit position in order to make the decision on forcing it
to move. In addition to that, the change on energy level
of the pendulum is also calculated by means of elliptic
integral of first kind and Jacobi elliptic function ’sn’ before
accelerating the cart which helps to make the energy level
convergent to the desired energy level.

The remainder of the paper is organized as follows. Sec-
tion 2 gives the mathematical model of the pendulum on a
cart system considered in this study, and before describing
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Fig. 1. Pendulum on a cart.

the aim of the paper it also presents some observations
derived from mathematical model. Section 3 is devoted to
explain the proposed algorithm in detail. Following, illus-
trative numerical simulations are presented in Section 4.
Lastly, Section 5 concludes the paper, and appendices give
a brief information on elliptic integral of first kind and
Jacobi elliptic function ’sn’, and their utilization to obtain
the numerical solution to the pendulum dynamics.

2. MATHEMATICAL MODEL AND PROBLEM
STATEMENT

The pendulum on a cart system considered in this study
is depicted in Fig. 1. Total energy of the pendulum on a
cart can be given as,

Epc =
1

2

(

aθ̇2 − 2b cos(θ)θ̇ẋ+ cẋ2
)

+ bg(1− cos(θ)) (1)

where a = I + 1
4ml2, b = 1

2ml and c = M + m, θ is
the pendulum angle on clock-wise from the bottom and x
is the cart position, and θ̇, ẋ are angular velocity of the
pendulum and velocity of the cart. I,m, l,M and g denote
inertia, mass and length of the pendulum, mass of the
cart and gravitational acceleration, respectively. Dynamic
equations of motion can be obtained by applying Euler-
Lagrange equation as

aθ̈ − b cos(θ)ẍ + bg sin(θ) = 0 (2)

−b cos(θ)θ̈ + cẍ+ b sin(θ)θ̇2 = F (3)

where F is the force acting on the cart. Note that from
(2), the (θ, θ̇)T subsystem is independent from (x, ẋ)T

subsystem by considering ẍ term in (2) as a virtual control

input (u0) to the (θ, θ̇)T subsystem [5] (see also [1, 4]). By
setting,

F =
b2g

a
sin(θ) cos(θ) + b sin(θ)θ̇2 +

(

c−
b2

a
cos2(θ)

)

u0

(4)
the system equations can be rewritten as,

θ̈ =
b

a
cos(θ)u0 −

bg

a
sin(θ) (5)

ẍ = u0 (6)

where u0 is the new control input. Note that the coefficient

of u0 in (4) is
(

M +
mI+ 1

4
m2l2(1−cos2(θ))

I+ 1

4
m2l2

)

and is therefore

always strictly positive. On the other hand, total energy
of the pendulum can be given as,

Epen =
1

2
aθ̇2 + 2bg sin2

(

θ

2

)

. (7)

Utilizing (5), the time derivative of total energy of the
pendulum can be calculated as,

Ėpen = b cos(θ)θ̇u0. (8)

In order to change the energy level of the pendulum, u0

can be selected as

u0 = u · sign(cos(θ)θ̇). (9)

For the sake of simplicity, we impose here u is a bounded
constant. Then, the time derivative of total energy func-
tion takes the form of

Ėpen = bu
∣

∣

∣
cos(θ)θ̇

∣

∣

∣
. (10)

Notice that, the maximum value for Ėpen occurs at
cos(θ) = 1 which means the transferred energy from cart
to pendulum takes its maximum or minimum value around
cos(θ) = 1 when the constant u 6= 0. Therefore, the most
efficient way to increase or decrease the energy level of the
pendulum is to act when the pendulum is around down
vertical. Accordingly, the change of the energy level of the
pendulum while applying the control input given in (9) in
a time interval (t1, t2) can be calculated as

Epen(t2)− Epen(t1) = bu |sin(θ2)− sin(θ1)| , (11)

unless cos(θ)θ̇ changes sign where θ1 = θ(t1) and θ2 =
θ(t2). On the other hand, constant cart acceleration, u0,
allows us to rewrite (5) as [4]

θ̈ = −
b
√

u2
0 + g2

a
sin

(

θ − tan−1

(

u0

g

))

. (12)

Defining new coordinate

θ̄ = θ − tan−1

(

u0

g

)

, (13)

(12) can be reconstructed as

¨̄θ = −
bḡ

a
sin(θ̄) (14)

where ḡ denotes the magnitude of the new gravity like
vector. Notice that, not only magnitude but also the
direction of that new vector changes depending on the
sign of u0. This representation allows us to determine
the time interval elapsed between two distinct points of
the pendulum by means of elliptic integral of first kind
(see Appendix A and Appendix B). Comparing equations
(14) and (5), one can realize that, when the cart is moved
with a constant acceleration, the equilibrium points of the
pendulum are also changed to

θp = tan−1

(

u0

g

)

. (15)

The angle θp plays an important role. Its direction with
respect to down vertical configuration of the pendulum
changes depending on the sign of the constant acceleration
u0. Accordingly, an instant change on the sign of constant
acceleration causes a jump on equilibrium point from one
side to other.

Our aim here is to stabilize the energy level of the pendu-
lum around up vertical configuration of the pendulum by
keeping the cart in the track limits. Once the energy level
of the pendulum is around the desired energy level, the
controller algorithm can be switched to a local linear con-
troller to keep the pendulum at its unstable equilibrium.
To make sure the cart remains between these predefined
limits, the cart is accelerated forth and back. This forth
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and back acceleration is denoted by the term ’cycle’, and
it is described in two different phases namely pushing (ac-
celerating) and braking (decelerating) phases. One needs
to ensure that not only the cart stays between limit points
but also the energy level of the pendulum is changed in
desired direction before starting to push the cart. To do
so, we first define a trajectory for the cart consisting of
pushing and braking phases. This trajectory is tracked by
the cart synchronized to the motion of the pendulum. In
other words, if the trajectory of the pendulum allows the
cart to change the energy level of the pendulum in desired
direction, then the cart is forced to track this predefined
trajectory.

3. PROPOSED CONTROL STRUCTURE

This section presents the stabilizing controller algorithm
with brief descriptions of the computations that have to
be performed for the algorithm.

3.1 Energy Pumping Algorithm

Energy pumping algorithm is proposed in order to increase
the energy level of the pendulum up to the desired energy
level while the cart is forced to move forth and back be-
tween assigned boundary positions. The algorithm consists
of two parts, namely, pushing and braking phases which
are explained in the following in details.

Let Epen, ∆E and Ed denote the present pendulum energy,
the possible energy increase for the upcoming cycle and
the desired energy level, respectively. How ∆E can be
computed is discussed in Section 3.2.

Pushing Phase. We denote by θ0, θ̇0 and x0 the pendu-
lum position and velocity and cart position respectively at
the time the pushing phase starts. It does with the control
u0 = u sign(cos(θ0)θ̇0) if all the conditions are satisfied

(1) Epen +∆E < Ed,
(2) (a) cos(θ) = 1

or
(b) tm 6 tc,

(3) xlim − sign(cos(θ)θ̇)x > 0

where tm denotes the time duration for the pendulum to
reach from θ0 the horizontal position or to zero velocity,
tc denotes the time for the cart to reach the middle point
of its actual and limit positions, and ∆E denotes energy
increase at the end of the cycle, and xlim stands for
the maximum allowed distance for the cart from its zero
position.

Pushing phase continuous until one of the following con-
ditions occurs

(4) sign(cos(θ)θ̇) 6= sign(cos(θ0)θ̇0),

(5) | sign(cos(θ)θ̇)xlim + x0| < 2 sign(cos(θ)θ̇)x.

Braking Phase. As soon as the pushing phase finishes,
the braking phase starts. The corresponding pendulum
position is denoted θ = θf1. The control is then u0 =

−u sign(cos(θ0)θ̇0) and it continuous until the cart stops.
θf2 is defined as the pendulum angle when the cart stops.

Remark 1. Condition 1 that has to be satisfied to start
the pushing phase aims at increasing the energy level
of the pendulum towards the desired energy level. Note
that, unless the amount of the possible energy increase
for the upcoming cycle is computed, the energy level of
the pendulum may be above the desired energy level.
Therefore, satisfying condition 1 ensures that the desired
energy level will be converged.

Remark 2. Condition 2 that has to be satisfied to start
pushing phase consists of two parts. Pushing phase is
allowed to start as the pendulum passes through its
down vertical configuration. This is the condition 2a. This
condition deals with the situation in which tc < tm is
true for all possible configurations of the pendulum having
some particular energy levels. Condition 2b is introduced
to prevent the cart from reaching its half way to reach
limit position before the pendulum reaches its horizontal
position or zero velocity. In Section 3.3, we explain how
these terms are computed.

Remark 3. Condition 3 checks if there is a sufficient dis-
tance between present and limit cart positions depending
on the direction of motion. Note that, if the position of
cart is out of the limit positions at the beginning, then the
cart is only accelerated to one direction until it enters the
allowed interval of motion.

Remark 4. Condition 4 means that either the pendulum
has reached the horizontal position or the direction of
its velocity changes. Condition 5 means that the cart
has reached the the middle point of the interval between
the limit position and x0, position when the pushing
phase started. This condition ensures that the cart will
be stopped at most at the limit position.

3.2 The Change on the Energy Level of the Pendulum

When the control u is constant, the energy increase or
decrease in one cycle can be computed using (11). There
tm and θf1 are computed by means of elliptic integrals
consistently, and, θf2 can also be computed accordingly by
means of Jacobi elliptic function ’sn’ by taking the energy
change for the pushing phase into account. Recall that the
energy level of the pendulum does not change while the
cart acceleration is zero.

3.3 Computation of tc and tm

The time duration for the cart to reach the middle (de-
pending on direction of motion) of actual and limit posi-
tions is given with

tc =

√

√

√

√

∣

∣

∣

∣

∣

sign(θ̇ cos(θ))xlim − x

u

∣

∣

∣

∣

∣

. (16)

If one is able to compute the time duration tm for the
pendulum to reach the horizontal or to the angle at which
θ̇ = 0, then this value can be compared to the value
obtained by (16) and the decision on starting or not to
push can be made. Notice that, for different configurations
of the pendulum angle, the pendulum may approach
horizontal in various ways. Therefore the evaluation of tm
depends on the pendulum angle and velocity.
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3.4 Energy Removing Algorithm

We present here the energy removing algorithm only for
the case where the desired energy level is equal to the
upward vertical position of the pendulum. This implies
that it applies only when the pendulum rotates.

Pushing Phase. We denote by θ0, θ̇0 and x0 the pendu-
lum position and velocity and cart position respectively at
the time the pushing phase starts. It does with the control
u0 = −u sign(cos(θ0)θ̇0) if all the conditions are satisfied

(1) Epen +∆E > Ed,
(2) th 6 tc,

(3) xlim + sign(cos(θ)θ̇)x > 0

where th denotes the elapsed time for the pendulum to
reach from θ0 the horizontal position.

Pushing phase continuous until one of the following con-
ditions occurs

(4) sign(cos(θ)θ̇) 6= sign(cos(θ0)θ̇0),

(5) xlim + sign(cos(θ)θ̇)(2x− x0) < 0.

Braking Phase. As soon as the pushing phase finishes,
the braking phase starts. The corresponding pendulum
position is denoted θ = θf1. The control is then u0 =

u sign(cos(θ0)θ̇0) and it continuous until the cart stops.
θf2 is defined as the pendulum angle when the cart stops.

3.5 Control of the Cart

The cart dynamic is not taken into account in the energy
pumping and removing algorithms. It is simply assumed
that the cart acceleration is constant. But ignoring this
dynamic may lead to some problems in real applications
because of unmodelled and uncertain dynamics, friction,
noise, etc. To overcome such problems, we use the value
of the constant acceleration given by the energy pumping
and removing algorithms as desired values from which we
can compute a desired trajectory to be tracked by the cart.
Then a simple PD controller is implemented to minimize
the tracking error.

The desired acceleration of the cart in one cycle

ud(t) =







±u sign(cos(θ)θ̇) , if t0 6 t < t1
∓u sign(cos(θ)θ̇) , if t1 6 t < t2
0 , if t2 6 t

(17)

where t0 denotes the time at which the cycle starts, t1
denotes the time at which pushing phase ends, and t2
denotes the time at which the cart stops (the cycle ends).
Note that, the direction of the acceleration depends on
whether the energy is pumped or removed at the beginning
of the cycle and switched at the end of pushing phase.
Using (17), the desired position and velocity of the cart
(xd, ẋd) can be determined for the cycle as

xd(t) =



















x0 +
1

2
ud(t− t0)

2 , if t0 6 t < t1

x1 + ẋ1(t− t1) +
1

2
ud(t− t1)

2 , if t1 6 t < t2

x2 , if t2 6 t

,

(18)

ẋd(t) =







ud(t− t0) , if t0 6 t < t1
ẋ1 + ud(t− t1) , if t1 6 t < t2
0 , if t2 6 t

(19)

where x0, x1, x2 denote the position of the cart at the
beginning of the cycle, at the end of pushing phase, at the
end of the cycle, respectively, and ẋ1 denotes the velocity of
the cart at the end of pushing phase. Notice that, velocity
of the cart at the beginning and at the end of the cycle is
imposed to be zero.

4. NUMERICAL SIMULATIONS

This section represents the numerical simulation results
that were performed to test the controller algorithms de-
veloped for the stabilization of the pendulum on a cart
with restricted cart track length. In order to test both
energy pumping and energy removing algorithms, two
different numerical simulations were implemented. Model
parameters of the pendulum on a cart system have been
assigned as m = 0.23kg, l = 0.6414m, I = 0.0078838kgm2

and M = 0.7031kg, and the gravitational acceleration
has been considered to be g = 9.81m/s2. The desired
energy level for the pendulum has been defined as the
on of the upward position of the pendulum with zero
velocity, the limit positions for the cart have been assigned
as ±0.2m (xlim = 0.2m), and the value of the desired
cart acceleration has been chosen as u = 2m/s2 for both

simulations. Initial states have been set to
[

θ θ̇ x ẋ
]T

= 0

for the first simulation and to
[

θ θ̇ x ẋ
]T

= [0 20 0 0]
T
for

the second simulation. In simulations, descending Gauss
algorithm has been implemented for numerical computa-
tions of elliptic integral of first kind and Jacobi elliptic
function.

Fig.2 to Fig.5 give the results for the first simulation.
Notice that the pendulum is at its hanging position at
the beginning with zero velocity for this simulation, and
the energy level of the pendulum is very close the desired
energy level after a few swings. Even the cart approaches
to its limit positions, it stays in the limits. When the
desired acceleration for the cart is zero, the cart is forced
not to move which can be seen in Fig.4. Similarly, the
results of the second simulation are depicted in Fig.6 to
Fig.9. According to initial state values, it can be observed
that the pendulum rotates clockwise for this simulation.
The energy level of the pendulum also converges to the
desired energy level, and the pendulum slows down until
the desired energy level is reached while the cart stays in
the predefined limit positions.

5. CONCLUSION

A globally stabilizing energy based controller algorithm for
the pendulum on a cart system with restricted cart track
length has been presented for which the desired energy
level of the pendulum is its upright configuration. The
proposed algorithm consists of two distinct parts namely
energy pumping and energy removing. To achieve, the cart
was considered to move with constant acceleration and
it was forced to move forth and back. The computations
necessary to keep the cart between predefined limit posi-
tions and to provide the convergence of the energy level of
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Fig. 2. Angular position(blue, darker) and velocity(red,
brighter) of the pendulum.

0 5 10 15
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t(s)

x
,
ẋ

Fig. 3. Position(blue, darker) and velocity(red, brighter)
of the cart.
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Fig. 4. Desired acceleration of the cart(blue, darker) and
applied force to the cart(red, brighter).
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Fig. 5. The change of the energy level of the pendulum.

the pendulum to the desired energy level were performed
numerically by means of elliptic integral of first kind and
Jacobi elliptic function ’sn’. Numerical simulations were
implemented for both of energy pumping and energy re-
moving algorithms and results were presented.
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Appendix A. ELLIPTIC INTEGRAL OF FIRST KIND
AND JACOBI ELLIPTIC FUNCTION ’sn’

This section gives brief definitions of the elliptic integral
of first kind and Jacobi elliptic function ’sn’. Please see
[7, 8, 9, 10] for further detailed information about the
subject.

Elliptic integral of first kind is defined in Legendre form
as

F (ϕ, k) =

∫ ϕ

0

dφ
√

1− k2 sin2(φ)
(A.1)

where ϕ denotes amplitude and k denotes modulus and
they satisfy 0 6 ϕ 6

π
2 and 0 < k < 1 in general. F (π/2, k)

is defined as complete elliptic integral of first kind and it
is denoted by K(k).

Jacobi elliptic function ’sn’ is defined in terms of incom-
plete elliptic integral of first kind in the form

sn(ue, k) = sin(ϕ) (A.2)

where ue = F (ϕ, k).

Appendix B. RELATION BETWEEN PENDULUM
ANGLE AND THE TIME

Solving (7) for dt yields

dt =
dθ

√

2
a

√

Epen − 2bg sin2
(

θ
2

)

. (B.1)

Notice that, pendulum either swings or rotates depending
on its initial energy level. In order to determine the
relation between pendulum angle and the elapsed time,
these two different behavior of the pendulum has to be
analyzed separately. Consider the rotating case first for
which Epen > 2bg. Considering the initial velocity is

θ̇0, then the following equation can be derived with a
mathematical manipulation from (B.1)

sgn(θ̇0)

√

2Epen

a
dt =

dθ
√

1− 2bg
Epen

sin2( θ2 )
. (B.2)

Accordingly, defining kr =
√

2bg
Epen

and substituting φ = θ
2 ,

(B.2) turns out to be

sgn(θ̇0)

√

Epen

2a
dt =

dθ
√

1− k2r sin
2(φ)

. (B.3)

Integrating (B.3) from ϕ0 to ϕ1 gives

t1 − t0 =

√

2a

Epen

(F (ϕ1, kr)− F (ϕ0, kr)) (B.4)

which is the elapsed time between the pendulum angles
θ0 = 2ϕ0 and θ1 = 2ϕ1. Note that, the half of the rotation
period of the pendulum can be computed with ϕ0 = 0
and ϕ1 = π

2 . In the swinging case, one needs to scale the
pendulum angle in order to obtain the time in terms of
elliptic integral of first kind for swinging pendulum for
which Epen < 2bg. To do so, consider the equation given

by (B.1). Substituting sin(φ) =
√

2bg
Epen

sin
(

θ
2

)

gives

dt =

√

a

bg

dφ
√

1− k2s sin
2(φ)

(B.5)

with ks =
√

Epen

2bg . Integrating (B.5) from ϕ0 to ϕ1 yields

t1 − t0 =

√

a

bg
(F (ϕ1, ks)− F (ϕ0, ks)) (B.6)

which is the elapsed time between the pendulum angles

θ0 and θ1 where θi = 2 sin−1
(
√

Epen

2bg sin(ϕi)
)

. Note that,

the quarter of the swinging period of the pendulum can be
computed with ϕ0 = 0 and ϕ1 = π

2 .

Consider the integration of (B.3) from 0 to ϕ (0 6 ϕ 6 π
2 )

yielding
√

Epen

2a
(t1 − t0) = F (ϕ, kr). (B.7)

If kr and ur =
√

Epen

2a (t1 − t0) are given, then the

amplitude denoted by ϕ can be obtained as

ϕ = sin−1 (sn(ur, kr)) . (B.8)

Therefore, for given time interval and energy level, the an-
gle swept out by the rotating pendulum can be expressed
in terms of Jacobi elliptic function ’sn’. The same proce-
dure can be followed for swinging pendulum to compute
the swept out angle for given time interval and energy
level. To do so, (B.5) is integrated from 0 to ϕ yielding

√

bg

a
(t1 − t0) = F (ϕ, ks). (B.9)

If ks and us =
√

bg
a
(t1 − t0) are given, then the amplitude

denoted by ϕ can be obtained as

ϕ = sin−1 (sn(us, ks)) . (B.10)

See [7] for numerical computation algorithms of elliptic
integrals and Jacobi elliptic functions.
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