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Abstract— The behavior of the solutions of large-scale nonlin-
ear dynamical systems close to their omega-limit sets is studied.
Exploiting small-gain like conditions we extend the results in
[1], considering the interconnection of p of subsystems, and the
results in [2], presenting a block version of the weak nested
Matrosov theorem.

I. INTRODUCTION

The qualitative study of the asymptotic behavior of the

solutions of large-scale nonlinear dynamical systems is a

challenging problem.

For dealing with asymptotic stability, an elegant tool is the

small-gain theorem. Several versions of the theorem have

been developed, depending on which property is used to

describe the input-output behavior of the various subsystems.

Classical versions of the theorem use the Lp-gain, yielding

an Lp small-gain (see e.g. [3], [4] and [5]), whereas more

recent versions are based upon a Lyapunov formulation

(see e.g. [6]) derived from the property of input-to-state

stability (ISS) (see e.g. [7] and [8]). Other formulations

have been presented (see e.g. [9], [10] and [11]). Therein

interconnections between possibly non-ISS subsystems have

been considered. The large-scale version of the theorem for

interconnected linear systems can be found in [3], whereas

a more general nonlinear formulation has recently been

developed in [12].

Herein, in the spirit of the results of [2] and [1], we

wish to go beyond stability and study the behavior of the

solutions approaching their omega-limit sets, in particular

when the convergence is not fast enough to guarantee some

asymptotic phase/shadowing property. We propose a weak

(to be defined) version of a very special kind of small-

gain theorem. The paper extends both the results in [1],

considering the interconnection of a large number p of

subsystems, and the results in [2], presenting a block version

of the weak nested Matrosov theorem.

Our analysis studies the properties of functions hi : R
n →
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R+ satisfying the (square) system of differential inequalities1

V̇1(t)≤−α1(h1(t))+ β12(h2(t))+ · · ·+β1p(hp(t)),

V̇2(t)≤−α2(h2(t))+ β21(h1(t))+ · · ·+β2p(hp(t)),
...

V̇p(t)≤−αp(hp(t))+ βp1(h1(t))+ · · ·+βp(p−1)(hp−1(t)),
(1)

where the functions αi : R+ → R+ are continuous and

positive definite, the functions βij : R+ → R+ are con-

tinuous and the functions Vi : R+ → R are absolutely

continuous and bounded. When compared for instance with

the Lyapunov version of the small-gain theorem (see below)

the key feature here is, in line with the approach followed in

[2] and [1], that the arguments hi of the function αi and βij

are not related a priori with the functions Vk in the left-hand

side.

As discussed in [1] and illustrated in the counter-example

therein, the result that we are going to prove here may

not hold when the functions α and β are nonlinear and

they satisfy a nonlinear small-gain like condition. A more

restrictive linear small-gain like condition may be required.

This justify the use of the linear framework in the following.

In the particular case in which, in equation (1), Vi = hi it

is possible to interpret our analysis within the usual small-

gain paradigm. Specifically, consider a nonlinear system

described by the equation

ẋ = f(x), (2)

where x ∈ R
n is the state of the system and the function f is

locally Lipschitz. System (2) is viewed as an interconnection

of p subsystems, namely

Σ1: ẋ1 = f1(x1, x2, . . . , xp),
Σ2: ẋ2 = f2(x1, x2, . . . , xp),

...

Σp: ẋp = fp(x1, x2, . . . , xp).

(3)

We assume there exists an equilibrium point which we

choose as the origin of the coordinates, i.e., fi(0) = 0,

and for each i, we have a positive definite C1 function

xi 7→ Vi(xi) such that, when evaluated along the solutions,

1There is no loss of generality in writing

q∑

j=r

βij(hj) instead of

βi(hr , . . . , hq). Since we can always pick

βij(h) = max
hr≤h,...,hj−1≤h,hj+1≤h,...,hq≤h

βi(hr, . . . , hj−1, h, hj+1, . . . , hq).
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we have

V̇1 ≤ −α1(V1) + β12(V2) + · · ·+ β1p(Vp),

V̇2 ≤ −α2(V2) + β21(V1) + · · ·+ β2p(Vp),
...

V̇p ≤ −αp(Vp) + βp1(V1) + · · ·+ βp(p−1)(Vp−1).

(4)

The above set of inequalities implies that each subsystem

Σi, with state xi, is input-to-state stable (ISS) or integral

input-to-state stable (iISS) (depending on the properties of

αi’s) with respect to the states of the other p−1 subsystems.

The small-gain condition implies the (function) invertibility

of the “matrix” composed of the gain functions γij = βij◦α
†
j

where α
†
j is an “inverse” function of αj . See [3], [12], [6],

[13] for further details.

The rest of the paper is organized as follows. In Section II

some technical results are given. After preliminary lem-

mas and definitions, that are instrumental for the following

section, a new small-gain like condition for interconnected

systems is stated. Section III provides the main result of

the paper, i.e., a weak version of the small-gain theorem for

large-scale systems. In Section IV some concluding remarks

are drawn.

Due to space limitation, we provide only the proof of

Lemma 2. The other proofs will appear in a longer version

of the paper.

II. TECHNICAL RESULTS

This section contains a series of technical lemmas and

definitions that are instrumental to establish the main result

of the paper.

The following lemma is a rephrasing of the results proved

in [3, Lemma 6.1.9] and in [14, Chapter 6]. In addition,

for the class of matrices studied herein the condition on the

determinants of the leading principal minors is equivalent to

requiring that the spectral radius of the matrix is less than

one (see [3, Lemma 6.1.8], and [13] where this condition is

used).

Lemma 1: The inverse of any matrix with non-positive

off-diagonal elements, positive diagonal elements and having

all the leading principal minors with strictly positive deter-

minant, has non-negative entries.

Definition 1: A family of continuous functions αi : R+ →
R+ and βij : R+ → R+, where the αi are positive definite,

is said to satisfy the boundedness assumption if, for all (i, j),
with i 6= j, there exists a non-positive real number γij
satisfying2

sup
b>0

βij(b)

αj(b)
≤ −γij .

For a family satisfying this assumption, we call test matrix

Γ the matrix with γij as off-diagonal elements and 1 as

diagonal elements. Note that Γ is a matrix with non-positive

off-diagonal elements and positive diagonal elements.

2This implies βij(0) = 0.

Lemma 2: Let i ∈ {1, . . . , p} and j ∈ {1, . . . , p}. Let ai :
R+ → [−a, a] be bounded absolutely continuous functions

and bi : R+ → [0, b] be bounded, piecewise continuous,

functions. Assume there exist continuous positive definite

functions αi : R+ → R+ and continuous functions βij :
R+ → R+ such that the boundedness assumption is satisfied

and the following hold.

1) The differential inequalities

ȧ1 ≤ −α1(b1) + β12(b2) + · · ·+ β1p(bp),

ȧ2 ≤ −α2(b2) + β21(b1) + · · ·+ β2p(bp),
...

ȧp ≤ −αp(bp) + βp1(b1) + · · ·+ βp(p−1)(bp−1),
(5)

hold for almost all t in R+.

2) The test matrix Γ has all the leading principal minors

with strictly positive determinant.

Then

lim inf
t→∞

p
∑

i=1

bi(t) = 0. (6)

Proof: The claim holds if there exists a positive real

number α such that we have
∫ t

0

p
∑

i=1

αi(bi(s))ds ≤ pα, ∀t ≥ 0. (7)

To prove this last claim suppose, by contradiction, that there

exist b and T > 0 such that

p
∑

i=1

bi(t) ≥ b, ∀t ∈ [T,+∞).

In fact, there exists α such that

p
∑

i=1

αi(bi(t)) ≥ α, ∀t ∈ [T,+∞).

The inequality (7) in [T, t] gives

α(t− T ) ≤

∫ t

T

p
∑

i=1

αi(bi(s))ds ≤ pα, ∀t ∈ [T,+∞),

hence

αt ≤ αT + pα, ∀t ∈ [T,+∞),

which is impossible for t sufficiently large.

It remains to establish (7). Note that, by definition of the

matrix Γ, system (5) can be written, in compact form, as

[ȧ]i ≤ [−Γα]i, ∀ i = 1, . . . , p. (8)

where a = [a1, . . . , ap]
T , α = [α1, . . . , αp]

T , [v]i denotes

the i-th component of the vector v. Since Γ has all the

leading principal minors with strictly positive determinant,

by Lemma 1, Γ−1 has all non-negative entries, hence the

relation

[Γ−1ȧ]i ≤ [−α]i, (9)

holds. This can be seen noting that each of the inequalities in

(9) is obtained as a weighted sum, with non-negative weights,
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of the inequalities in (8). Integrating from 0 to t each of these

relations yields

∫ t

0

[α(b(s))]ids ≤ −

∫ t

0

[Γ−1ȧ(s)]ids,

≤ [Γ−1(a(t)−a(0))]i,

where b = [b1, . . . , bp]
T . Since the functions ai are bounded,

there exists a positive real number α such that we have for

all i,

∫ t

0

[α(b(s))]ids ≤ α.

Finally, the claim follows adding all these inequalities.

Remark 1: For p = 2 Lemma 2 is consistent with the

results in [1]. In addition, the condition on the determinants

of the leading principal minors of the matrix Γ reduces to

the small-gain like condition (determinant of Γ)

γ21γ12 < 1.

For p = 3 the condition on the determinants of the leading

principal minors of the matrix Γ reduces to the small-gain

like conditions

γ21γ12 < 1 (or γ31γ13 < 1, or γ23γ32 < 1),

γ21γ12 + γ31γ13 + γ23γ32 + γ32γ21γ13 + γ31γ12γ23 < 1.
(10)

Note that the last inequality (determinant of Γ) implies the

former three.

For p ≥ 4, as noted in [3], the condition on the determinant

of Γ is no longer sufficient; to establish the claim the

determinants of the leading principal minors of Γ have to

be strictly positive.

We conclude this section considering the triangular block

case that can be seen as a generalization of the weak nested

Matrosov theorem of [2]. To this end, we let rl =

l
∑

k=1

sk,

with r0 = 0, be the size of the column vectors

al =
[

a(rl−1+1) a(rl−1+2) . . . arl
]T

,

bl =
[

b(rl−1+1) b(rl−1+2) . . . brl
]T

,

V l =
[

V(rl−1+1) V(rl−1+2) . . . Vrl

]T
,

hl =
[

h(rl−1+1) h(rl−1+2) . . . hrl

]T
,

and introduce also the notation

αl(bl) =

























−α(rl−1+1)(b(rl−1+1)) + β(rl−1+1)(rl−1+2)(b(rl−1+2))
+ . . .+ β(rl−1+1)rl(brl)

β(rl−1+2)(rl−1+1)(b(rl−1+1))− α(rl−1+2)(b(rl−1+2))
+ . . .+ β(rl−1+2)rl(brl)

...

βrl(rl−1+1)(brl−1+1) + . . .+ βrl(rl−1)(brl−1)− αrl(brl)

























βlm(bm) =

rm
∑

j=(rm−1+1)













β(rl−1+1)j(bj)

β(rl−1+2)j(bj)

...

β(rl)j(bj)













.

By combining the proof arguments of [2] with those of

Lemma 2, we can prove the following statement.

Proposition 1: Let i ∈ {1, . . . , p} and j ∈ {1, . . . , p}.

Let ai : R+ → [−a, a] be bounded absolutely continuous

functions and bi : R+ → [0, b] be bounded, piecewise

continuous, functions. Let αi : R+ → R+ be continuous

positive definite functions and βij : R+ → R+ continuous

functions with βij(0) = 0. Let al, bl, αl and βlm be

vectors of size sl, with components obtained from the ai’s,

bi’s, αi’s and βij’s, such that the boundedness assumption is

satisfied for the vectors αl and that the following hold.

1) The differential inequalities

ȧ1 ≤α1(b1),

ȧ2 ≤ β21(b1) +α2(b2),
...

ȧh ≤ βh1(b1) +βh2(b2) + · · ·+αh(bh),

(11)

with p = rh, hold for almost all t in R+.

2) The test matrix Γl associated to each vector αl has

all the leading principal minors with strictly positive

determinant.

Then

lim inf
t→∞

p
∑

i=1

bi(t) = 0. (12)

Note that the boundedness assumption is not required for the

vectors βlm.

Example 1: To illustrate the result in Proposition 1 con-

sider the four differential inequalities

ȧ1(t)≤−α1(b1(t)) + β12(b2(t)),

ȧ2(t)≤−α2(b2(t)) + β21(b1(t)),

ȧ3(t)≤−α3(b3(t)) + β31(b1(t)) + β32(b2(t)) + β34(b4(t)),

ȧ4(t)≤−α4(b4(t)) + β41(b1(t)) + β42(b2(t)) + β43(b3(t)).

Condition 2) of Proposition 1 are in particular

β31(0) = β32(0) = β41(0) = β42(0) = 0,

sup
b∈[0,b]

β21(b)

α1(b)
= γ21<+∞, sup

b∈[0,b]

β12(b)

α2(b)
= γ12<+∞,

sup
b∈[0,b]

β43(b)

α3(b)
= γ43<+∞, sup

b∈[0,b]

β34(b)

α4(b)
= γ34<+∞,
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and

γ21γ12 < 1, γ43γ34 < 1.

Remark 2: Proposition 1 establishes that in the block tri-

angular case it is sufficient to check the small-gain condition

for each diagonal block separately.

III. A WEAK SMALL-GAIN THEOREM FOR

LARGE-SCALE SYSTEMS

In this section the main result of the paper is stated, i.e.

a weak version of the small-gain theorem for large-scale

systems.

Theorem 1: Consider system (2), p C1 functions Vi :
R

n → R and p continuous functions hi : R
n → R+. Assume

there exist continuous positive definite functions αi : R+ →
R+, continuous functions βij : R+ → R+, which are zero at

zero, such that the boundedness assumption is satisfied for

the vectors αl, and that the differential inequalities

V̇ 1 ≤α1(h1),

V̇ 2 ≤ β21(h1) +α2(h2),
...

V̇ h ≤ βh1(h1) +βh2(h2) + · · ·+αh(hh),

(13)

with p = rh, hold for almost all t in R+.

Finally, suppose that the test matrix Γl corresponding to each

vector αl has all the leading principal minors with strictly

positive determinant.

Then, for any bounded solution x(t) of (2), we have

lim inf
t→∞

p
∑

i=1

hi(x(t)) = 0. (14)

Moreover, if the largest invariant set N contained in the set

{x ∈ R
n : h1(x) = h2(x) = · · · = hp(x) = 0},

is stable, then

lim
t→∞

p
∑

i=1

hi(x(t)) = 0. (15)

Proof: The property (14) comes directly from Proposi-

tion 1 with hi(x(t)) playing the role of bi(t). Property (15)

is a rephrasing of a well-known fact, see [8, Lemma I.4].

IV. CONCLUSIONS

The properties of the solutions of large-scale nonlinear

dynamical systems have been studied. It has been shown

that the stability of the resulting omega-limit set plays a

crucial role to assess asymptotic properties. A small-gain

like condition has been developed, thus extending the results

in [1] and [2] to the case of p interconnected subsystems and

to the case of general block-triangular systems.
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