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Abstract— We address the problem of designing a stabilizing
output feedback, via the separation principle. Our aim is to
propose a more usable technique. The system can be written
in any coordinates and is supposed to be locally uniformly
observable. Starting form a known state feedback we do one
step of backtepping to have access to the input derivative.
This is sufficient to design a high gain observer in the original
coordinates that we modify to prevent peaking and constrain
the estimated state to remain in the observability domain

I. INTRODUCTION

We address the problem of designing a stabilizing output
feedback. We remain in line with the many contributions
dealing with general systems satisfying a stabilizability and
observability property, following the separation principle and
relying on a high gain observer. For example, in [1], the state
estimate is reconstructed through a function of the output
(and its derivatives) and the input (and its derivatives); the
ouput derivatives being obtained from a high-gain observer,
and the input derivatives are given by several steps of back-
stepping. In [2] the uniform observability assumption of [1]
is relaxed. In [3] the authors proposed a different approach
but they require minimum phase assumptions. Finally in [4]
a solution is proposed with the observer designed in the
original coordinates.

In this context, our goal is to propose a design easier to
use in applications. But for this we ask for observability
and stabilizability properties which are too restrictive from
the theoretical view point. (Compare with [8], [2]). A first
simplification comes with the fact that, in the general case,
we need only one step of backstepping, reducing in this way
the need of formal computing. Also, taking advantage of
recent results in [5], and inspired by [6], [4], we reduce
the order of the observer itself and design it in the original
coordinates. But, as observed in [4], in doing so, the task of
managing the estimated state is made harder. We solve this
problem thanks to a convexity restriction on the observable
set, as in [4], but with a different solution.

We follow the arguments of [12, Chapter 12.3] to prove
that all these ingredients can be merged appropriately.

II. PROBLEM STATEMENT

We consider a nonlinear system whose dynamics are:

ẋ = f(x, u) , y = h(x, u) (1)

with state x ∈ X , measured output y ∈ R, and control u ∈ U ,
where X and U are connected open sets containing the origin
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in Rn, and R, respectively. The function f : X×U → Rn and
h : X × U → R are sufficiently many times differentiable
and zero at the origin. We are interested in the design of
a stabilizing output feedback starting from the knowledge
of a stabilizing state feedback and knowing the state x is
observable via the ouput y. The precise context is as follows.

Define recursively the following functions ϕi :
Rn × Ri+1 → R, for i = {1, . . . , n− 1}, as

ϕ0(x, v0) = h(x, v0)

ϕi(x, v0, . . . , vi) =
∂ϕi−1

∂x
f(x, v0) +

i−2∑
k=0

∂ϕi−1

∂vk
vk+1 .

Then, with the notation v̌ = (v0 · · · vn−1)
T , let the

functions Φc, Φc and Φ be defined as:

Φc : X × U × Rn−1 → Rn

(x, v̌) 7→
(
ϕ0(x, v0) , . . . , ϕn−1(x, v0, . . . , vn−1)

)
,

Φc : X × U × Rn−1 → U × R2n−1

(x, v̌) 7→
(
v̌ , Φc(x, v̌)

)
,

Φ : X × U → Rn

(x, u) 7→ Φc(x, u, 0, . . . , 0) .

Assumption 1 (Stabilizability): There exists a sufficiently
many times differentiable function θ : X → U such that the
origin of the system (1), with u = θ(x), is asymptotically
stable with domain of attraction Xs.

Assumption 2 (Observability): There exists a connected
open set O ⊂ X containing the origin such that:
O1. the function Φc is injective on O × U × Rn−1 ;

O2. the matrix
∂Φ

∂x
(x, u) is invertible for any (x, u) ∈ O×U ;

O3. for any positive real number r, the set

{x ∈ O : ∃u ∈ U : |u| ≤ r, |Φ(x, u)| ≤ r}
is bounded.

Remark 1:
• Because we insist on having a design in the given coor-

dinates, the observability assumption, though of the same
nature as the one in [1], is more restrictive since we impose
at most n− 1 derivatives in Φc. On the other hand, as in
[4], because this is more realistic, we do not assume this
assumption holds globally.

• Because the state feedback takes values in U , we are
forced to have the same input set U in the observability
assumption as in the stabilizability assumption.
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Since the system is not affine in u and u is an argument
of the functions involved in the observability assumption, we
choose to consider the input u as part of the state. This is
done by considering the extended system:

ẋe = fe(xe, v)

which is a compact notation for:

ẋ = f(x, u) , u̇ = v (2)

with extended state xe = (x, u) .

With Assumption 1 and relying for instance on the back-
stepping technique, we know there exists a sufficiently many
times differentiable function θe : X × U → R such that the
origin of the system (2), with v = θe(x, u), is asymptotically
stable with domain of attraction S = Xs × U . Also there
exists a function Ve : S → R for the extended system
which is C1 positive definite and proper on S and such that
the function x 7→ ∂Ve

∂x (x, u)f(x, u) + ∂Ve

∂u (x, u)θe(x, u) is
negative definite on S. Unfortunately, in general we do not
know this latter function but instead one which has the right
properties only on a (strict) subset of S that we denote Sm.

On the observability side, to exploit Assumption 2, we
need a mechanism to keep the state estimate in O and
possibly to prevent peaking. To be able to design it, we may
have to consider a (strict) subset Or of O having a convexity
property to be made precise below (see H3).

These various points leads us to pay our attention to the
open subset SO of Xs×U we define as follows. Let v∞ be
the real number:

v∞ = inf
(x,u)∈Sm, (x,u)6∈Or×U

Ve(x, u) (3)

and SO be the set:

SO =
{

(x, u) ∈ Sm : Ve(x, u) < v∞

}
.

This is a sublevel set of the function Ve related to stabiliza-
tion. By construction, it is made forward invariant by the
state feedback θe. Since it is a subset of (Xs ∩ O)× U , by
imposing the system state remains in SO, we are guaranteed
that both stabilizability and observability properties hold.
Unfortunately SO may be much “smaller” than (Xs ∩ O)×
U , but, at this time, we do not know how to design a state
feedback making forward invariant this less restrictive set.

Proposition 1: If Assumptions 1 and 2 are satisfied, then
for any compact set Cx,u contained in SO, there exist
functions γ, h2, satθ and θe,mod, matrices K, P and a real
number ` ≥ 1 such that, for all ` ≥ `, the origin of the
system (1) in closed loop with:

˙̂x = f(x̂, u) +

(
∂Φ

∂x
(x̂, u)

)−1

LK[y − h(x̂, u)] +M(x̂, u)

(4)
u̇ = satθ(θe,mod(x̂, u))

where:
L = diag (`, . . . , `n) (5)

M(x̂, u) = −γ(x̂, u)

(
∂Φ

∂x
(x̂, u)

)−1

LP−1L
(
∂Φ

∂x
(x̂, u)

)−1T

×

× ∂h2

∂x
(x̂, u)Th2(x̂, u) . (6)

is asymptotically stable with domain of attraction containing
the set {(x̂, x, u) ∈ O × Cx,u : h2(x̂, u) < 1

2}.
In the next section we show a possible design for the

functions γ, h2, satθ and θe,mod and matrices K and P .

III. OUTPUT FEEDBACK DESIGN

We start form the normal form introduced in [5]. It is an
extension to the case of systems non affine in the control of
the one given in [9]. Specifically, under Assumption 2, the
image z in Rn by Φ of (x, u) in O × U , satisfies:

ż1

...

żn−1

żn


=



z2

...

zn

a(u, z1, . . . , zn)


+



b1(u, z1)

...

bn−1(u, z1, . . . , zn−1)

bn(u, z1, . . . , zn)


u̇.

(7)

Our interest in this form comes from the fact, established in
[10, Theorem 6.2.2] for instance, that a high gain observer
can be used to estimate the state (z, u) of this system using
(z1, u) as measurement and with v = u̇ as input.

However, we do not follow the standard route of imple-
menting the high gain observer in the (z, u) coordinates since
this involves to find on line a solution x for the equation
z = Φ(x, u), when (z, u) is given. It is very often a too
demanding task to realize. Instead we follow the suggestion
of [6] and we write the observer in the original coordinates
as was done already in [4]. This explains why in (4) we need
only to invert the matrix ∂Φ

∂x (x̂, u) instead of inverting the
function Φ.

A. Observer design
Consider the observer in (4), with M = 0 for the time

being, with the matrix L defined in (5), and with a vector
K, whose components are ki, such that the matrix:

K =



−k1 1 0 . . . 0

... 0 1 . . . 0

...
...

. . . 1

−kn 0 · · · · · · 0


has all its eigenvalues with strictly negative real part. In
general this observer does not guarantee that x̂ remains in O
and therefore that ∂Φ

∂x (x̂, u) is invertible. It is to round this
problem that, as in [4], we introduce the modification M.
Here it is not designed via projection, but by considering a
dummy measured output. Namely we assume the knowledge
of a C1 function h2 : O × U → R≥0 such that:
H1. For each u in U , the set {x ∈ Rn : h2(x, u) < 1} is a

subset of O.
H2. The function (x, u) 7→ h2(x,u)

| ∂h2
∂x (x,u)| is continuous onO×U .

H3. For any u in U , for any real number s in [0, 1], and any
x1 and x2 in O satisfying:

5928



h(x1, u) ≤ s , h(x2, u) ≤ s
we have:

h2(x, u) ≤ s
for all x which satisfies for some λ in [0, 1]:

Φ(x, u) = λΦ(x1, u) + (1− λ)Φ(x2, u) .

This means nothing but the fact that, for any non negative
real number s and any u in U , the image by Φ of the
set {(x, u) ∈ Rn+1 : h2(x, u) ≤ s} is convex.

H4. The set Or defined as:

Or =
⋂
u∈U
{x ∈ O : h2(x, u) = 0} (8)

has a non empty interior which contains the origin;
H5. For any strictly positive real number r, the set:

{x ∈ O : ∃u ∈ U : |u| ≤ r, |h2(x, u)| ≤ 1
2}

is bounded.
Existence of the function h2 is always guaranteed under the
observability assumption as we show in Appendix.

The set Or defined in (8) is the one mentioned in Section
II. It is such that we have:

h2(x, u) = 0 ∀(x, u) ∈ Or × U .
This motivates us for introducing a dummy measured output:

y2 = h2(x, u)

and to consider that its measured value is always 0. With this
we modify the observer by adding the modification term M
defined in (6), with γ : Rn×U×R→ R>0 a locally Lipschitz
function for which we give a lower bound in (24).

An important feature is that, thanks to this additional term
M, no other modification – saturation, . . . – is needed.

We may dislike the convexity property mentioned in H3
above. Unfortunately it is in some sense necessary if we
choose to keep an Euclidean distance in the image by Φ as
a Lyapunov function for the error system incoporating the
modificationM. Indeed, in this case the correction term must
dominate all the other ones in the expression of ˙̂x when h2

becomes too large. Namely we need an infinite gain margin,
as defined in Definition 2.8 in [11]. Then as proved in Lemma
2.7 [11] the convexity assumption is necessary.

B. State feedback design
Because both the input and its first time derivative are used

in the observer, our very first step is to design a stabilizing
state feedback for the extended system (2).

As discussed above, a consequence of Assumption 1, is
that we know a function V : Xs → R which is positive
definite and proper on the given set Xs and such that:

V̇ (x) =
∂V

∂x
(x)f(x, θ(x)) = −W (x)

where W is positive definite on Xs. This function V may
be given by the design of θ but not necessarily be proper on
Xs. If this is the case, we make it proper by modifying it as
follows. With c̄ a strictly positive real number satisfying:

c̄ ≤ min
x 6∈Xs

V (x) ,

we replace the given function V by V
c̄−V . Accordingly W

becomes W
(c̄−V )2 . But then the given domain attraction Xs is

replaced by its strict subset Xsm = {x ∈ Rn : V (x) < c̄}.
In the following we denote by Vm, Wm and Sm = Xsm×

U these functions and set whether they are modified or not.
Now to design a stabilizing state feedback for the extended

system (2), we do one step of backstepping. To deal with the
constraint that u should remain in U , following [7, Lemma
1], we consider the function Ve defined as:

Ve(xe) = Vm(x) +

∫ u

θ(x)

s− θ(x)

d(s, ∂U)
ds

where d(s, ∂U) is the distance between s and the boundary
of the set U . To fix the idea we consider the case where U is
the interval =]−1,+1[ choosing d(s, ∂U) = 1−s2, knowing
that the general case can be dealt with as easily. The function
Ve we obtain is C1, positive definite and proper on Sm. By
picking

v = θe(x, u) = (1− u2) [−w1(xe)− w2(xe)]− (u− θ(x))

with:

w1(xe) =
∂Vm
∂x

(x)

(
f(x, u)− f(x, θ(x))

u− θ(x)

)
w2(xe) = −

∫ 1

0

2(θ(x) + s(u− θ(x)))

1− (θ(x) + s(u− θ(x)))2
ds

we obtain:

V̇e(xe) = −We(xe) = −Wm(x)− (u− θ(x))2

1− u2
(10)

where the function We is positive definite on Sm. Note that
θe may be defined only on Sm. In the following, we need
this function to be defined on Rn+1. So we may need an
extension. See after (11). We denote by θe,mod this extension.

Now, as discussed in Section II, to be guaranteed that both
stabilizability and observability hold, we consider the open
set:

SO =
{

(x, u) ∈ Sm : Ve(x, u) < v∞

}
with v∞ defined in (3). Then, for vi in [0, v∞), we define
the compact set:

Ωvi = {xe ∈ Sm : Ve(xe) ≤ vi} .
and, given the compact set Cx,u of the statement, we con-
sider the following three sets contained in SO and forward
invariant for the extended system under θe,mod:

Cx,u $ Ωv1 $ Ωv2 $ Ωv3 $ SO . (11)

Now we are in position to modify θe if needed. As written
above this function may be defined on Sm only. If this is the
case, we modify it as:

θe,mod(xe) = ρ(Ve(xe)) θe(xe) ∀xe ∈ Ωv3 ,

= 0 ∀xe 6∈ Ωv3 ,

where ρ : R≥0 → [0, 1] is any C1 function satisfying:

ρ(s) = 1 if s ≤ v2

= 0 if v3 < s .

In this way we obtain a (extended) state feedback law
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θe,mod : Rn+1 → R guaranteeing that u remains in U and
stabilizing the origin with domain of attraction containing
Ωv2 . This function θe,mod is the one used in (4). In the
following we denote by θe,mod this function whether it is
modified or not.

Finally, the function satθ used in (4) is the saturation:

satθ(s) = min

{
1,

Θmax

|s|

}
s . (12)

where:
Θmax = max

xe∈ Ωv2

|θe(xe)| .

IV. PROOF OF THE MAIN RESULT

A. Analysis of the extended system

The function satθ is bounded and satisfies:

|satθ(sa)− satθ(sb)| ≤ |sa − sb| ∀(sa, sb) ∈ R2 .

Also the function We is positive definite, the functions ∂Ve

∂xe
,

fe and θe,mod are continuous, and the sets Ωv1 and Ωv2
satisfy (11) and are compact. This implies:
1. There exists a positive real number W such that:
∂Ve
∂xe

(x, u)fe(x, u, satθ(θe,mod(x̂, u))) ≤ W

∀(x̂, x, u) : (x, u) ∈ Rn × Ωv2 .

2. Given any strictly positive real number δx0, there exists a
K∞ function α such that:
∂Ve
∂xe

(x, u) [fe(x, u, satθ(θe,mod(x̂, u)))− fe(x, u, θe(x, u))]

≤ α(|x̂− x|)
∀(x̂, x, u) : (x, u) ∈ Ωv2 , |x̂− x| ≤ δx0.

3. With this last inequality, let δxw be the strictly positive
real number defined as:

δxw = α−1

(
min

(x,u)∈Ωv2
\Ωv1

We(x, u)

)
.

There exists a strictly positive real number W such that:
∂Ve
∂xe

(x, u)fe(x, u, satθ(θe,mod(x̂, u))) ≤ −W

∀(x̂, x, u) : (x, u) ∈ Ωv2\Ωv1 , |x̂− x| ≤ min{δx0, δxw}.
Collecting all this, we have established:
∂Ve
∂xe

(x, u)fe(x, u, satθθe,mod(x̂, u))

≤ W ∀ (x, u) ∈ Ωv2 , ∀ x̂ ∈ Rn (13)

≤ −We(x, u) + α(|x̂− x|) (14)

∀(x, u) ∈ Ωv2 , ∀x̂ : |x̂− x| ≤ δx0

≤ −W ∀ (x, u) ∈ Ωv2\Ωv1 (15)

∀ x̂ : |x̂− x| ≤ min{δx0, δxw} .

B. Analysis of the observer

1) Preamble: Thanks to the property H5 of h2, the set:

C = {(x̂, x, u) ∈ O × Ωv2 : |h2(x̂, u)| ≤ 1
2} (16)

is a compact subset of O×Ωv2 . Hence ∂Φ
∂x (x̂, u) is invertible

when (x̂, x, u) is in C.

On another hand, with the observability assumption and
the implicit function theorem, we know the set Φ(O×U) is
open and the function:

(z, u) 7→ x : z = Φ(x, u)

is C1. Since (7) implies:
∂Φ

∂u
(x, u) = b(Φ(x, u), u) ,

we conclude that the function b is defined on the open set
Φ(O×U)×U where it is C1. Moreover, according to (7), the
ith component of b depends on u and the first i components
of Φ(x, u), only. It follows that there exist real numbers
LΦ−1 and Lbi (depending on C) such that we have:

|x̂− x| ≤ LΦ−1 |Φ(x̂, u)− Φ(x, u)| ∀(x̂, x, u) ∈ C (17)

and, for each i,

|bi(ẑ, u)− bi(z, u)| ≤ Lbi
i∑

j=1

|ẑj − zj | ∀(x̂, x, u) ∈ C (18)

with the notation:

ẑi = Φi(x̂, u) , zi = Φi(x, u) .

2) Analysis: We define the error vector z̃ as made with
component:

z̃i =
ẑi − zi
`i−1

=
Φi(x̂, u)− Φi(x, u)

`i−1
(19)

Similarly, the error in the x-coordinates is denoted:

x̃ = x̂− x .
Also, in view of (7), we define:

∆a(x̂, x, u) =
a(x̂, u)− a(x, u)

`n−1
,

∆bi(x̂, x, u, v, `) =
bi(x̂, u)− bi(x, u)

`i−1
v ,

∆ = (∆1, . . . ,∆n)
T

=
(
∆b1, . . . ,∆b(n−1),∆bn + ∆a

)T
.

With ignoring the modification M for the time being, the
system and observer dynamics give:

˙̃z = `K z̃ + ∆(x̂, x, u, v, `) .

Our choice of the ki’s implies the existence of a symmetric
positive definite matrix P ad a strictly positive real number
d satisfying:

PK + KTP ≤ −dP . (20)

With this, we define the positive definite function U as:

U(z̃) = z̃TP z̃ . (21)

We are interested in this function since, with (17), we have
the existence of a strictly positive real number LU such that:

|x̃| ≤ LU `
n−1
√
U(z̃) ∀(x̂, x, u) ∈ C . (22)

Also, still with ignoring the modification M, we have:

U̇(z̃) ≤ −` dU(z̃) + 2z̃TP∆(x̂, x, u, v, `) . (23)

The modification M augments U̇(z̃) with
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γ(x̂, u)z̃TL
(
∂Φ

∂x
(x̂, u)

)−1T
∂h2

∂x
(x̂, u)Th2(x̂, u)

= γ(x̂, u) [Φ(x̂, u)− Φ(x, u)]
T

(
∂Φ

∂x
(x̂, u)

)−1T

×

× ∂h2

∂x
(x̂, u)Th2(x̂, u) .

But, with the convexity property of h2 in H3 , when h2(x̂, u)
is in [0, 1] and h2(x, u) is zero, we have

0 ≤ [Φ(x̂, u)− Φ(x, u)]T
(
∂Φ

∂x
(x̂, u)

)−1T

×

×∂h2

∂x
(x̂, u)Th2(x̂, u) .

We conclude that (23) holds even with the modification M.

Moreover, we compute:

ḣ2(x̂, u)

=
∂h2

∂u
(x̂, u)u̇+

∂h2

∂x
(x̂, u) ˙̂x

= Tx(x̂, u) + Tu(x̂, u)

− γ(x̂, u)

∣∣∣∣∣P− 1
2L
(
∂Φ

∂x
(x̂, u)

)−1T
∂h2

∂x
(x̂, u)T

∣∣∣∣∣
2

h2(x̂, u)

where we have let:

Tx(x̂, u) =

∂h2

∂x
(x̂, u)

[
f(x̂, u, u̇) +

(
∂Φ

∂x
(x̂, u)

)−1

KL[y − h(x̂, u)]

]

Tu(x̂, u) =
∂h2

∂x
(x̂, u) satθ(θe,mod(x̂, u))

This motivates us for choosing γ satisfying:

γ(x̂, u) ≥ 4
(4h2(x, u))2 [Tx(x̂, u) + Tu(x̂, u)]∣∣∣∣∣P− 1

2L
(
∂Φ

∂x
(x̂, u)

)−1T
∂h2

∂x
(x̂, u)T

∣∣∣∣∣
2 . (24)

Thanks to H2, the function (x, u) 7→ γ(x, u) defined this way
is continuous on O × U . So we can use γ(x̂, u) as long as
(x̂, u) is in O×U . It implies that ḣ2(x̂, u) is strictly negative
when h2(x̂, u) is strictly larger than 1

4 . With uniqueness
of solutions, this implies that, for each s in [ 1

4 , 1] the set
{(x̂, u) : h2(x̂, u) ≤ s} is forward invariant.

Now, with (18), we know there exists a real number L such
that, for all (x̂, x, u, v) ∈ C × [−Θmax,Θmax], and ` ≥ 1,
we have:

|∆i(x̂, x, u, v, `)| ≤ L

i∑
j=1

|z̃j |
`i−j

.

This implies:

z̃TP∆(z̃, ẑ, u, v, `) ≤ Ln |P z̃| |z̃| ≤ Ln
λmax(P )

λmin(P )
U(z̃) ,

where λmin(P ) is the smallest eigenvalue of P and λmax(P )
the largest one. Thus, from (23), we get:

U̇(z̃) ≤ −
[
` d− 2Ln

λmax(P )

λmin(P )

]
U(z̃) (25)

∀(x̂, x, u, v) : (x̂, x, u, v) ∈ C × [−Θmax,Θmax] .

C. Stability

Let ` be fixed satisfying:

` ≥ `0 = max

{
1,

2Ln

d

λmax(P )

λmin(P )

}
.

Let Γ be the compact set:

Γ = {(x̂, x, u) ∈ C : Ve(x, u) ≤ v1 , |x̃| ≤ δx0}.
Since it is a subset of C, the solutions of the closed loop
system are well defined as long as they are in its interior︷̊︷
Γ . Moreover the inequalities (14) and (25) are satisfied at
all the points in this set. Also, since Φ is a C1 and ` larger
than 1, there exists a real LΦ such that:

|z̃| ≤ LΦ |x̃| ∀(x̂, x, u) ∈ Γ . (26)

Finally let N` be an open neighborhood of the origin

contained in
︷̊︷
Γ where (x̂, x, u) satisfies:

Ve(x, u) + α
(
LU `

n−1
√
λmax(P )LΦ|x̂− x|

)
<

v1

2
,

|x̂− x| < δx0

2LU `n−1
√
λmax(P )LΦ

.

Now, consider a solution of the closed loop system (2),
(4), starting from any point (x̂, x, u) ∈ N`. Let [0, T [ be its
right maximal interval of definition when it takes its value in

the open set
︷̊︷
Γ . To simplify the notation we add (t) to denote

those variables which are evaluated along this solution. With
(25) and (26) we have:

U(z̃(t)) ≤ U(z̃(0)) ≤ λmax(P )L2
Φ|x̃(0)|2 ∀t ∈ [0, T [ ,

which implies, with (22),

|x̃(t)| ≤ LU `n−1
√
λmax(P )LΦ|x̃(0)| < δx0

2
∀ t ∈ [0, T [ .

(27)
This inequality and (14), where We is non negative, give:

Ve(x(t), u(t))

≤ Ve(x(0), u(0)) + α
(
LU `

n−1
√
λmax(P )LΦ|x̃(0)|

)
, (28)

<
v1

2
∀ t ∈ [0, T [ .

Thus, if the initial condition (x̂(0), x(0), u(0)) is in N`, then

the solution remains inside a strict subset of
︷̊︷
Γ . Hence T is

infinite and from (27) and (28) we can conclude that the
origin is stable.

D. Attractiveness

Consider again a solution of the closed loop system with
initial condition (x̂, x, u) such that (x, u) is in Cx,u and x̂
satisfies h2(x̂, u) < 1

2 . This initial condition is in the interior︷̊︷
C of the compact set C defined in (16). Let [0, T [ be its right
maximal interval of definition when it takes its values in the

open set
︷̊︷
C contained in Rn×Ωv2 . Hence, with the definition

of satθ, inequalities (25) and (13) are satisfied at any point
visited by the solution. So we have, for all t in [0, T [,

U(z̃(t)) ≤ exp

(
−t
[
`d− 2Ln

λmax(P )

λmin(P )

])
U(z̃(0)) , (29)
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Ve(x(t), u(t)) ≤ Ve(x(0), u(0)) + W t ≤ v1 + W t .

Since Ve(x(t), u(t)) is smaller than v2, this implies:

T ≥ v2 − v1

W

Ve

(
x

(
v2 − v1

2W

)
, u

(
v2 − v1

2W

))
≤ v2 + v1

2
< v2 .

(30)
Then let Umax be the real number defined as:

Umax = sup
(x̂,x,u,`)∈C×[1,+∞[

U(z̃) .

There exists `1 satisfying:

`2(n−1) exp

(
−v2 − v1

2W
`d+

(v2 − v1)Ln

W

λmax(P )

λmin(P )

)
Umax

≤
[

min{δx0, δxw}
LU

]2

∀ ` ≥ `1 .

Let ` be fixed satisfying:

` ≥ ` = max{`0, `1} .
From inequalities (29) and (22), we obtain:

U(z̃(t)) ≤

[
min{δx0,δxw}

LU

]2
`2(n−1)

∀ t ∈ [v2−v1
2W

, T [

|x̃(t)| ≤ min{δx0, δxw} ∀ t ∈ [v2−v1
2W

, T [ . (31)

Then, with (15) and (30), we obtain:

max{Ve(x(t), u(t)), v1} (32)

≤ max

{
Ve

(
x

(
v2 − v1

2W

)
, u

(
v2 − v1

2W

))
, v1

}
< v2

for all t in [v2−v1
2W

, T [. On another hand, we know the set
{(x̂, u) : h2(x̂, u) ≤ max{h2(x̂(0), u(0), 1

4}} is forward
invariant. We have established that the solution cannot reach

the boundary of
︷̊︷
C on [0, T [. This implies that T is infinite

and that the solution remains in C for all t in R≥0. So
inequalities (31) and (32) and therefore inequalities (14) and
(25) hold for all t larger than v2−v1

2W
. From LaSalle invariance

principle, we can conclude:

lim
t→+∞

Ve(x(t), u(t)) + U(z̃(t)) = 0 .

and thus that the solution of the closed loop system converges
to the origin provided its initial condition (x̂(0), x(0), u(0))
is such that (x(0), u(0)) is in Cx,u and x̂(0) satisfies
h2(x̂(0), u(0)) < 1

2 .

V. CONCLUSIONS

The results presented in this paper are in line with the
many contributions on stabilization by output feedback de-
signed from a separation principle with a high gain observer.
Our objective is to propose a design more usable in appli-
cations. It applies to systems written in a generic form. It
assumes the knowledge of a stabilizing state feedback and
a (local) uniform complete observability property holds. It
takes advantage of the fact that, though possibly non affine
in the control, the system can be written in an observability
feedback form where one input derivative only is needed. As
a consequence, a dynamic extension with only the control

as extra state component is needed for the state feedback.
On the observer side, we propose a high gain observer
in the original coordinates and we use an extra dummy
measured output to round the problems of peaking and local
observability.

APPENDIX

Existence of h2 satisfying H1 to H5

Since the origin is in O, we have:∣∣∣∣det(∂Φ

∂x
(0, u)

)∣∣∣∣ 6= 0 ∀u ∈ U

This determinant has constant sign in u since U is connected.
Let Q : U → Rn∗n be a C1 function with positive definite
symmetric matrices as values. Given an input u in U , let
R(u) be the subset of real numbers r such that the set {z ∈
Rn : zTQ(u)z ≤ r} is contained in Φ(O×{u}). We define
the function:

Ψ(u) = sup
r∈R(u)

r

It takes strictly positive values on U . Let Ψs be a C1 function
lower bounding it but with still strictly positive values on U .
Then we select a real number µ in (0, 1) and let:

h2(x, u) = max

{
Φ(x, u)TQ(u)Φ(x, u)

Ψs(u)
− µ , 0

}2

.

With the property O3 of Φ, we can verify that Properties H1
to H5 are satisfied.
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