
PMSM Identification for Automotive Applications:

Cancellation of Position Sensor Errors

Nicolas Henwood1,2, Jérémy Malaizé1, and Laurent Praly2

1Control, Signal and System Department, IFP New Energy, FRANCE
2Systems and Control Centre, MINES ParisTech, FRANCE

Abstract—The rotor position plays a significant role in identi-
fication of motor parameters in Permanent Magnet Synchronous
Machines (PMSMs). This paper presents a new model, taking into
account errors in measurement of rotor position, for PMSM. A
Least Squares (LS) algorithm, based on this new model, is also
presented. The proposed algorithm relies on currents, voltages
and speed measurements, and identifies both motor parameters
and the value of the position error. The method is experimentally
implemented and the results demonstrate that the new proposed
model and LS algorithm improve the identified resistance and
dq-axis inductances, while the rotor flux is hardly affected by the
position error. Moreover, a study of measurement uncertainties
is conducted to establish confidence intervals on the identified
parameters.

I. INTRODUCTION

The emergence of more electric cars is dictated by a growing

demand for fuel-efficiency and lower pollutant emissions. The

complexity of these green powertrains is accompanied by a

significant increase in their cost. To compensate for this side

effect, the electric components are expected to operate as close

as possible to their optimal performances. Regarding electric

machines, this comes down to designing high-level control

algorithms to achieve optimal operation. We more specifically

believe that three main requirements have to be fulfilled:

• providing the requested torque at any time,

• adjusting the currents within the motor windings to

minimize losses,

• ensuring a repeatable response despite the motor heating.

These different objectives may be achieved provided electric

machines controllers know of their most significant physical

parameters. This paper is more specifically concerned with

the identification of Permanent Magnet Synchronous Machines

(PMSM), as this technology is widely acknowledged as the

best candidate for automotive applications.

The challenge related to the PMSM identification may come

from the fact that some parameters undergo changes due

to the motor heating. Several solutions may be considered

to overcome this issue. The most obvious would consist in

putting temperature sensors on the surface of the rotor and in

stator windings. However, this expensive solution would not

be consistent with mass production. The second way relies

on designing a thermal modeling of the motor, based on

geometry and physical properties, known heat sources and heat

exchanges between the different components. This method

allows estimation of the temperature in different parts of the

motor. Many publications on thermal modeling of electric

motors can be found in the literature, see [1] for a good review.

Nevertheless, using such a model can lead to some issues in the

automotive context, where external heat sources may perturb

the model.

The last solution consists in directly estimating parameters,

namely the winding resistance, the flux due to the magnets

and the inductances, to have a precise modeling of PMSM

and thus derive high-end control algorithms. Many methods

have been proposed to obtain these parameters. For example,

[2] designs an observer for magnets flux and [3] determines the

winding resistance through current injection. In [4], an online

computing method is implemented to identify inductances and

resistance while the flux is set to its nominal value. In [5],

resistance and inductance are identified through a method

based on the Lyapunov stability theorem, while [6] estimates

the rotor flux by using a Kalman filter and [7] uses an extended

Kalman filter (EKF) to simultaneously identify resistance and

flux. See [8] for a good review on parameter estimation of

PMSMs.

Our concern is to study the impact of position measurement

errors on the identification of PMSM. We shall point out

that minor position error may lead to significant deviations

of the estimated parameters, which may in turn have some

consequences on the performances of the PMSM. This kind

of error may appear in several situations, namely when the

position sensor is not precise enough, or the position is esti-

mated via sensorless schemes or also when slight delays occur

within the data acquisition process. This paper presents a new

modeling of the PMSM involving this position error. Such a

modeling is obtained by applying a rotation to the classical dq-

axis frame equations. The available measurements are injected

in a least squares (LS) algorithm based on this new modeling.

This algorithm is designed to identify the motor parameters

whatever the position error value is. The influence of this

error on parameter identification can be studied and the actual

position error be obtained by minimizing a quadratic index. A

testbed allows us to experimentally implement our algorithm

and asses its validity. Through these experimentations, we

show that motor flux is hardly sensitive to the position error,

while the resistance and inductances are highly related to

it. Comparisons between identified parameters allowing for

position error and not allowing for position error are also made

to illustrate the improvements brought by the former. The



dependence of identified parameters on motor speed is also

addressed. Moreover, measurement uncertainties are analyzed.

For this purpose, measurement noises on current and volt-

ages signals are determined, and their influence on parameter

identification is studied to establish confidence intervals on

identified parameters.

The structure of this paper is as follows. Section II first

presents the classical dq-modeling of the PMSM and the

interest in an accurate knowledge of motor parameters for

the sake of a high-performance machine control. The new

model taking into account the position error is then derived

in Section III. In Section IV, we present the LS algorithm

used to identify the motor parameters and the position error.

Experimental results are finally given in Section V to assess

the relevancy of our approach. We then wrap up the paper

with some concluding remarks.

II. INFLUENCE OF THE CONTROL ON MOTOR

PERFORMANCES

A. PMSM modeling

The classical modeling of salient-pole PMSM in the dq-

frame [9] is given by the following set of equations:

Ld

did
dt

= −Rid + pωLqiq + vd

Lq

diq
dt

= −Riq − pω(Ldid +

√
3

2
φ) + vq

τ = p

√
3

2
φiq + p(Ld − Lq)idiq

(1)

The different parameters appearing in (1) are the stator wind-

ings resistance R, the flux due to the rotor magnets φ, the
inductances (Ld, Lq) modeling saliency and p the number of

pole pairs. R and Φ are temperature dependent parameters,

while Ld and Lq are supposed to be constant. (id, iq) and

(vd, vq) are respectively the currents and input voltages in the
dq-axis frame, ω is the rotor shaft’s rotation speed and τ the

torque provided by the motor. The rotor position ϑ is required

to access signals in the dq-axis frame. In the following, we

shall assume there is a measurement error ǫ in the position. Let
îd, îq, v̂d, v̂q be obtained by applying the Park transformation

with ϑ+ ǫ. These signals are related through the modeling (4)
derived in the following. The remainder of section II is devoted

to showing the need for an accurate estimation of the physical

parameters in (1) without error in position measurement.

B. Field-Oriented Control of the PMSM

We aim at making the torque τ track a time-varying control

demand τ⋆. For this purpose, voltages (vd, vq) are controlled
to make state variables (id, iq) converge to a reference (i

⋆
d, i

⋆
q).

For the purposes of control, let us assume we have at our

disposal the parameters estimations (R̂, φ̂, L̂d, L̂q). These esti-
mations are used to generate the (i⋆d, i

⋆
q) reference, performed

by the following optimization problem [10], which minimizes

copper losses:
(
i⋆d, i

⋆
q

)
= arg min

(id,iq)∈R2

(
i2d + i2q

)

s.t.: (i) τ⋆ = p

√
3

2
φ̂iq + p

(
L̂d − L̂q

)
idiq

(ii) i2d + i2q ≤ i2max

(iii) v2d + v2q ≤ v2max

(2)

where (iii) is given by equations (1) in steady state, imax comes

from thermal considerations and vmax from technological

constraints (maximum voltage deliverable by the DC bus).

Equations in (2) highlight that the optimization solution highly

depends on the parameters estimation.

C. Influence of temperature on the control performances

To illustrate the impact of a good knowledge of temperature

dependent parameters on motor performances, let us consider

the Toyota Prius electric motor, documented in [11]. We

assume this motor has been heated to 120°C. Figure 1 then

shows the maximum torque and power available according to

the motor speed in two cases. In the first one, values of R̂ and

φ̂ at 20°C are used in the optimization problem (2), whereas

in the second one, the actual values at 120°C are used in

(2). Figure 1 attests that the knowledge of the temperature

updated values of R̂ and φ̂ extends the operating range. At

low speed, the maximum available torque is indeed increased

by 10%, while a rise of 10% is also noticed for maximum

available power at high speed. This possible performances

improvement motivates the need for an accurate estimation

of the two temperature dependent parameters R̂ and φ̂, which
requires a strong knowledge of the rotor position.
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Fig. 1. Influence of control on performances

III. DERIVATION OF THE NEW MODEL

Let us return to the case where ǫ 6= 0. We choose to perform

the identification in the rotating frame with bias ǫ. Our goal
is to derive a new model linking (̂id, îq) to (v̂d, v̂q).
To that end, let us apply an inverse rotation of angle ϑ to

currents and voltages of the classical dq-model (1) to get the

model in the αβ-axis frame. Then, applying a direct rotation

of angle ϑ+ ǫ to currents and voltages in this αβ-model leads
to the new modeling we are looking for. Considering only the

currents case, we eventually come up with:
(

îd
îq

)
=

(
cos ǫ sin ǫ
− sin ǫ cos ǫ

)(
id
iq

)
(3)

The same transformation applies to (v̂d, v̂q) and (vd, vq).



LdLq

d̂id
dt

= v̂d(Lq cos
2 ǫ+ Ld sin

2 ǫ) + v̂q(Ld − Lq)
sin 2ǫ

2
+ îd

(
−R(Lq cos

2 ǫ+ Ld sin
2 ǫ) + pω(L2

q − L2
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sin 2ǫ

2

)

+ îq

(
R(Lq − Ld)

sin 2ǫ

2
+ pω(L2

q cos
2 ǫ+ L2

d sin
2 ǫ)

)
− pωLd

√
3

2
φ sin ǫ

LdLq

d̂iq
dt

= v̂d(Ld − Lq)
sin 2ǫ

2
+ v̂q(Lq sin

2 ǫ+ Ld cos
2 ǫ) + îd

(
R(Lq − Ld)

sin 2ǫ

2
− pω(L2

q sin
2 ǫ+ L2

d cos
2 ǫ)

)

+ îq

(
−R(Lq sin

2 ǫ+ Ld cos
2 ǫ) + pω(L2

d − L2
q)
sin 2ǫ

2

)
− pωLd

√
3

2
φ cos ǫ

(4)

Applying the change of coordinates (3) to equations (1)

leads to (4). Note that these equations may be found in

[12], though not used for the same purposes. For the sake

of simplicity, the expression of τ is omitted. In steady-state,

equations (4) can also be expressed as follows:

v̂dq = pω

√
3

2
φ

(
sin ǫ
cos ǫ

)
+




R+ pω(Ld − Lq)
sin 2ǫ

2
−pω(Lq cos

2 ǫ+ Ld sin
2 ǫ)

pω(Ld cos
2 ǫ+ Lq sin

2 ǫ) R− pω(Ld − Lq)
sin 2ǫ

2


 îdq

(5)

with v̂dq = ( v̂d v̂q )T and îdq = ( îd îq )T .

If ǫ = 0, it is easy to verify we get equations (1) in steady-
state. Therefore, comparisons between results obtained with

classical or new modeling are easy to make.

IV. LS ALGORITHM FOR MOTOR PARAMETERS

IDENTIFICATION AND POSITION ERROR DETERMINATION

The following procedure, performed offline, is followed to

identify the motor parameters and determine the position error

when the new modeling exposed in (4) and (5) is used.

Procedure . Provided ω, v̂dq and îdq are known, an estimate

of the position measurement error ǫ is given by the following

one-dimensional optimization problem:

ǫ̂ = argmin
ǫ

(
min
Θ

‖y −Ψ(ǫ)Θ‖2
)

(6)

with y and Ψ(ǫ) respectively given by (11) and (12). By doing

so, estimates of the physical parameters in (1) may be obtained

via

Θ̂ = (R̂, φ̂, L̂d, L̂q)
T = Θ⋆(ǫ̂) (7)

with the function Θ⋆ given by:

Θ⋆(ǫ) = argmin
Θ

‖y −Ψ(ǫ)Θ‖2 = (ΨT (ǫ)Ψ(ǫ))−1ΨT (ǫ)y

(8)

Steady-state modeling (5) is used throughout the iden-

tification process and these equations are linear in Θ =
(R,φ, Ld, Lq)

T and nonlinear in ǫ. A LS algorithm is applied

to identify Θ for any ǫ in a reasonable range around zero,

assuming the position measurement error is small. Let us

rewrite (5):

v̂d = (αd(ǫ) + βd(ǫ)̂id + γd(ǫ)̂iq)Θ

v̂q = (αq(ǫ) + βq(ǫ)̂id + γq(ǫ)̂iq)Θ
(9)

with

αd(ǫ) =

(
0 pω

√
3

2
sin ǫ 0 0

)

αq(ǫ) =

(
0 pω

√
3

2
cos ǫ 0 0

)

βd(ǫ) =

(
1 0 pω

sin 2ǫ

2
−pω

sin 2ǫ

2

)

γq(ǫ) =

(
1 0 −pω

sin 2ǫ

2
pω

sin 2ǫ

2

)

βq(ǫ) =

(
0 0 pω cos2 ǫ pω sin2 ǫ

)

γd(ǫ) = −
(

0 0 pω sin2 ǫ pω cos2 ǫ

)

(10)

with ω constant during the identification process. In our purely

static context, Θ and ǫ can be extracted from a sufficient

number of copies of (9) obtained by varying the constant

values of îd, îq, v̂d and v̂q. This motivates us to control currents
to successive constant setpoints. For each of these steps, mean

values of currents < îj >
(i) and voltages < v̂j >

(i), j = d, q,
are computed once in steady-state. Assuming there are N steps

of (̂id, îq) in input, N copies linking currents, voltages and

parameters are made available, leading to 2N equations. Let

y be the vector of the mean voltages measured on every step:

y =




< v̂d >(1)

...

< v̂d >(N)

< v̂q >(1)

...

< v̂q >(N)




(11)



and Ψ(ǫ) be given by:

Ψ(ǫ) =




αd(ǫ) + βd(ǫ) < îd >(1) +γd(ǫ) < îq >(1)

...

αd(ǫ) + βd(ǫ) < îd >(N) +γd(ǫ) < îq >(N)

αq(ǫ) + βq(ǫ) < îd >(1) +γq(ǫ) < îq >(1)

...

αq(ǫ) + βq(ǫ) < îd >(N) +γq(ǫ) < îq >(N)




(12)

Then, for all ǫ, the least squares algorithm gives the best

parameter vector (8). Position error ǫ̂ is then chosen to be

the one minimizing the cost function (6) and identified motor

parameters are thus given by (7).

V. RESULTS

A. Experimental setup

The previously described identification method is

experimentally validated on a testbed made up of two

PMSM, connected through a shaft. This setup is illustrated

in figure 2. These two drives have respective rated power of

1.7kW and 2.2kW, and similar rated speed of 6000rpm. The

former is intended to deliver a desired torque, while the latter

is intended to control the rotation speed of the shaft. Table I

presents the values of the first motor parameters, which will

be used as benchmarks in this section. Inductances values

are those given by the technical datasheet, which does not

distinguish between the direct and quadrature inductance. The

value of the resistance is obtained by applying a constant

voltage to the windings, with a locked rotor, and monitoring

the resulting current. Finally, back-emf measurements under

zero current enable us to find the value of the flux. All

of these parameter values are the reference values that our

identified parameters will be compared to, though some a

priori doubts may be expressed about the reference values of

the inductances.

Fig. 2. Experimental setup

TABLE I
ELECTRIC MOTOR PARAMETERS

p R (20°C) φ (20°C) Ld Lq

3 0.2525 Ω 0.0728 Wb 0.77 mH 0.77 mH

B. Parameters identification

The experimental results of parameters identification at

1000 rpm are given in figure 3. On each curve, results with

classical (ǫ = 0, triangle) and new (ǫ = ǫ̂, circle) modeling
are compared. Figure 3(a) presents the cost function to be

minimized to find the optimal position error ǫ̂, given by (6).

We clearly see that taking account of the position error makes
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Fig. 3. Cost and identified parameters according to position error (1000 rpm)

it possible to greatly reduce the cost and so, to improve

parameter identification. In this particular case, cost is indeed

divided by almost 40. Figures 3(b) to 3(d) show the values

of identified motor parameters according to position error.

The function Θ⋆ is actually evaluated for any ǫ within the

chosen range on these figures. We notice that an error of a few

degrees in position leads to significant identification errors,

in particular for resistance and inductances identification. In

the presented case for instance, the new modeling leads to

improvements of 24%, 29% and 21% on resistance, direct and

quadrature inductances identification respectively. Concerning

the flux identification, the dependence on position error is less

marked, but still exists.

Figure 4 presents identified parameters dependence on mo-

tor speed. We first notice a decreasing trend in the position

error according to the speed in figure 4(a). Figures 4(b) to 4(e)

show a comparison of the identified parameters as a function

of the speed, whether the position error is taken into account or

not. The classical modeling results are represented by triangles

and new modeling ones by circles. There is no significant

improvement in the identification of the flux. On the contrary,

differences are far more important for the other parameters.

With the classical modeling, identified resistance and induc-

tances vary greatly with speed, which is not consistent with

physical properties of materials. With the new modeling, there

still exists a small dependence on speed, especially concerning

resistance, but it is much less pronounced.

C. Measurement uncertainties

The results presented in the previous part were obtained

by applying the LS algorithm to mean values of currents and

voltages. In fact, (13) and (14) show the dependence of y (11)
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and Ψ(ǫ) (12) on these mean values:

y

({
< v̂d >(i) , < v̂q >(i)

}
1≤i≤N

)
(13)

Ψ

(
ǫ ,

{
< îd >(i) , < îq >(i)

}
1≤i≤N

)
(14)

However, since we are dealing with experimental data, the

mean values are subject to measurement uncertainties and thus

the identified parameters are subject to estimation errors.

In this part, the influence of a wrong knowledge of currents

and voltages mean values on identified parameters is studied

through a Monte Carlo statistical analysis. To that end, the LS

algorithm will be applied to noisy mean values. For the sake

of simplicity, let us consider the case of the signal îq , the same
notations and approach being applicable to îd, v̂d and v̂q. Let
riq be the measurement noise on the instantaneous signal îq
and δ

(i)
iq the noise on the mean value < îq >(i) of the signal

îq on the i-th step.

Our Monte Carlo statistical analysis requires the knowledge

of the characteristics of the stochastic process generating the

measurement noise. Since we only have a record of this noise,

we rely on ergodicity to approximate these characteristics. This

leads us to assume that each measurement noise is generated

by independant and identically distributed random variables. In

this case, it follows from [13, Theorem 36.4] for instance that

the statistical properties of each noise can be approximated

by its time statistics, provided the time window for doing this

estimation is long enough.

We first determine the temporal distribution, presented in

figure 5, of the noise riq , which can thus be considered as

its statistic distribution. To obtain this distribution, the noise

on each abc-current, is determined by eliminating from the

time signal its mean value and all of its frequency components
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which are not related to the noise. These components, deter-

mined by an FFT, mostly include fundamental and some har-

monics frequencies induced by the back-emf and the inverter

switches. Furthermore, the noises on currents (and voltages)

in the abc-axis frame are independant. riq is then obtained

through the Park transformation.

Assuming this distribution is normal, we determine its

standard deviation (SD) σ. Vertical lines indicate positions of
−2σ,−σ, mean value (i.e. zero), σ and 2σ. Moreover, the

Gaussian curve with variance σ2 and zero mean is plotted to

make sure it fits with the distribution.

Now looking for the statistical distribution of the noise δ
(i)
iq

on the mean value < îq >(i), let L be the length of the i-

th step. Then, under the previously made assumptions, δ
(i)
iq

follows a normal distribution with zero mean and variance

σ2/L [14, Theorem 3.2.4]. Table II summarizes SDs of noises

on mean values on any step i for each current and voltage, at
1000 rpm.

TABLE II
STANDARD DEVIATIONS OF NOISES ON MEAN VALUES

Signal δ
(i)
id

δ
(i)
iq δ

(i)
vd

δ
(i)
vq

SD : σ/
√

L 1.5 mA 1.0 mA 17 mV 28 mV

Knowing these statistical properties, the Monte Carlo anal-

ysis can now be performed: let us apply several times the LS

algorithm described in section IV, with (15) and (16) replacing

(11) and (12):

y

({
< v̂d >(i) +δ

(i)
vd , < v̂q >(i) +δ(i)vq

}
1≤i≤N

)
(15)

Ψ

(
ǫ ,

{
< îd >(i) +δ

(i)
id , < îq >(i) +δ

(i)
iq

}
1≤i≤N

)
(16)

where (δ
(i)
id , δ

(i)
iq , δ

(i)
vd , δ

(i)
vq , i = 1 . . . N) are randomly gener-

ated according to normal distributions with zero mean and

SD given in table II. Figure 6 presents the resulting identified

parameters distributions, obtained via 35000 independant trial

runs. Let us assume these distributions are also Gaussian. Table

III presents, for each parameter distribution, its mean value,

SD and 95% confidence interval (CI). We are also interested in

determining the identification algorithm accuracy, depending

on the identification bias and the measurement uncertainties.

We introduce a normalized mean error (NME) computed as

follows for R. The same approach holds for other parameters.
With R the reference value of the resistance (cf. table I) and
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(d) Quadrature inductance
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Fig. 6. Identified parameters distributions at 1000 rpm

R̂ the identified mean value:

NME =

√
MSE

R
(17)

where MSE stands for the mean square error:

MSE
(
R̂
)
= E

(
(R̂−R)2

)
= V ar

(
R̂
)
+
(
Bias(R̂, R)

)2

(18)

The results are presented for both the classical modeling

(white background) and the new modeling (grey background).

We notice that the uncertainties due to noise are quite similar

TABLE III
IDENTIFIED PARAMETERS CHARACTERISTICS

Parameter ǫ Mean SD 95% CI NME

R[Ω]
ǫ = ǫ̂ 0.2511 0.0111 0.2294 - 0.2728 4.4%

ǫ = 0 0.1774 0.0108 0.1562 - 0.1987 30.0%

φ[mWb]
ǫ = ǫ̂ 72.19 0.117 71.96 - 72.41 0.86%

ǫ = 0 72.15 0.116 71.92 - 72.38 0.91%

Ld[mH]
ǫ = ǫ̂ 0.6474 0.0375 0.5740 - 0.7208 16.6%

ǫ = 0 0.4293 0.0385 0.3538 - 0.5047 44.5%

Lq [mH]
ǫ = ǫ̂ 0.8578 0.0366 0.7861 - 0.9296 12.4%

ǫ = 0 0.6424 0.0357 0.5724 - 0.7124 17.2%

ǫ[°] ǫ = ǫ̂ 1.79 0.055 1.682 - 1.898

with both models, standard deviations and thus the width of

confidence intervals being very close. Furthermore, if noise

has a non-negligible impact on resistance and inductances

identification, the flux identification is hardly affected by it.

Finally, focusing on the normalized mean errors shows us that

the new modeling brings a very significant improvement on

resistance identification. An important improvement can also

be noticed on inductances identification, even if error rates

remain high because of the obvious distinction between Ld and

Lq , which is not taken into account in the technical datasheet

of the motor. Thus, NME of inductances may be smaller.

VI. CONCLUSION

The new modeling, combined with its dedicated LS algo-

rithm, enables great improvements in resistance and induc-

tances identification, whatever the speed is, and to determine

the position error. With flux being less sensitive to a position

error than the three other parameters, flux identification results

are quite similar with classical and new modelings. The pa-

rameters uncertainties study shows that, despite measurement

noise, we can be very confident in the flux identification. Con-

cerning resistance and inductances identification, we must be

more careful, since slight errors remain after the identification

process. We also notice that resistance identification, and to a

lesser extent inductances identification, still depends a little on

speed. Future work will consist in trying to further improve

the modeling to get rid of this speed dependency, and to build

an observer based on this new modeling to get an accurate

online estimation of temperature dependent parameters and

as a result, be able to reach the three main objectives we

mentioned in the introduction.
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