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Abstract—An observer whose state lives in the same space as
the one of the given system and which guarantees a vanishing
estimation error exhibits necessarily a symmetric matrix field
which is related to the local observability information. A direct
construction of this matrix field is possible by solving off-line
ordinary differential equations. Using this symmetric matrix
field as a Riemannian metric, we prove that geodesic convexity
of the level sets of the output function is sufficient to allow the
construction of an observer that contracts the geodesic distance
between the estimated state and the system’s state, globally in
the estimated state and semi-globally in the estimation error.

I. INTRODUCTION

For a complete nonlinear system of the form

ẋ = f(x) , y = h(x) , (1)

with x ∈ R
n being the system’s state and y ∈ R the mea-

sured system’s output, we consider the problem of obtaining
an estimate x̂ of the state x by means of the dynamical
system, called observer,

χ̇ = F (χ, y) , x̂ = H(χ, y), (2)

with χ ∈ R
p being the observer’s state, and x̂ ∈ R

n the
observer’s output, used as the system’s state estimate. More
precisely, we consider the following problem:

(�) Given functions f and h, design functions F and H
such that, for the interconnection of systems (1) and
(2), the set

{(x, χ) ∈ R
n × R

p | x = H(χ, h(x))} (3)

is globally asymptotically stable (see Section II for a
definition).

This note focuses on the particular case where the state
χ of the observer evolves in the same space as the system’s
state x, i.e., they both belong to R

n. In such a case, we can
pick the observer output function H trivial, i.e., pick

p = n , x̂ = χ . (4)

Many contributions from different points of view have
been made to address this problem. While a summary of
the very rich literature on the topic is out of the scope of
this note, it is important for us to point out the interest of
exploiting a possible non expansivity property of the flow
generated by the observer which emerged from [10]. Study
of non expansive flows has a very long history and has been
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77305, Fontainebleau, France Email: Laurent.Praly@ensmp.fr

proposed independently by several authors; see, e.g., [9], [6],
[4], [11] (see also [8] for a historical discussion). Indeed,
as we report in this note, when problem (�) has a solution
then there is necessarily a symmetric matrix field involved.
It is then very tempting to use it as a Riemannian metric
to measure the distance between system’s state x and its
estimation x̂, and therefore, characterize the non expansivity
of the observer flow.
Riemannian metrics have already been used in the context

of observers in [1], [2] for instance. In these papers, the
authors consider systems whose dynamics follow from a
principle of least action, which involves such a metric,
such as Euler-Lagrange systems with a Lagrangian that
is quadratic in the generalized velocities. The Riemannian
metric used in such observer designs depends only on the
system vector field f . This is a key difference with the
approach taken in this paper: the proposed metric depends on
the pair (f, h), i.e., it incorporates the observability property
of the system.
The paper contains three main parts. In Section II we show

that an observer whose state χ lives in the same space as the
state x of the given system and which guarantees a vanishing
estimation error exhibits necessarily a symmetric matrix field
which is related to the local observability information. In
Section III we establish a relationship between the necessary
condition in Section II and a local observability of system
(1), as well as provide a construction of a symmetric matrix
field satisfying the necessary conditions in Section II. Finally,
in Section IV, using the above symmetric matrix field as a
Riemannian metric, we propose a set of sufficient conditions
for the construction of an observer guaranteeing contraction
of the Riemannian distance between system’s state and
estimated state.
From our knowledge of the literature, we believe that

the ideas which follow are new, although they can be
seen as extension of what was proposed in [12] under the
restriction of existence of a quadratic Lyapunov function
depending only on the estimation error. For the sake of
simplicity, all along this paper we work under, not always
written, restrictions like, for instance, time independence,
completeness of the given system, functions differentiable
sufficiently many times, single output, R

n as system state
manifold, among others. Further extensions relaxing some
of these assumptions are in fact possible.

II. A NECESSARY CONDITION

Let e = x̂−x be the estimation error. The interconnection
of system (1) and observer (2) under the conditions in (4)



admits (x, e) as state with dynamics given by

ẋ = f(x) , ė = F (x + e, h(x)) − f(x) . (5)

In this context, the set to be rendered globally asymptotically
stable (GAS) takes the form

A = {(x, e) ∈ R
n × R

n | e = 0} . (6)

By GAS of this particular set, we mean that there exists a
class-KL function β such that for all pairs (x, e) in R

n×R
n,

the solution (X((x, e), t), E((x, e), t)) of (5), issued from
(x, e), is right maximally defined on [0, +∞) and satisfies

|E((x, e), t)| ≤ β(|e|, t) ∀t ≥ 0 .

To state the following proposition, we need to introduce
the Lie derivative LfP of the symmetric covariant tensor
field P of order 2 (see [3, Exercise V.2.8]). In x coordinates,
it satisfies:

v�LfP (x) v (7)

=
∂

∂x

(
v�P (x) v

)
f(x) + 2 v�P (x)

(
∂f

∂x
(x) v

)
.

Proposition 2.1: If the set A is GAS for (5), then there
exists a C∞ function P : R

n → R
n∗n with nonnegative

symmetric matrix values satisfying

v�LfP (x) v ≤ −v�P (x) v ∀(x, v) :
∂h

∂x
(x) v = 0. (8)

Proof: Since the set A is GAS, there exists (see, for
instance, [15, Theorem 3.2]) a C∞ function V : R

n×R
n →

R≥0 satisfying for all x in R
n

V (x, 0) = 0
∂V

∂e
(x, 0) = 0

∂2V

∂e∂x
(x, 0) = 0,

P (x) :=
∂2V

∂e2
(x, 0) ≥ 0,

(9)

∂V

∂x
(x, e)f(x) +

∂V

∂e
(x, e) (F (x + e, h(x)) − f(x)) (10)

≤ −V (x, e) ∀(x, e) ∈ R
n × R

n .

Since A is stable, it is also forward invariant. Then, the
solutions to (5) with e = 0 as initial condition remain in A
for all t ≥ 0. In other words, e = 0 is an equilibrium point
of

ė = F (x(t) + e, h(x(t))) − f(x(t))

for any C1 function t �→ x(t). This establishes

F (x, h(x)) = f(x) ∀x ∈ R
n . (11)

By differentiating this identity with respect to x, we get

∂F

∂x
(x, h(x)) +

∂F

∂y
(x, h(x))

∂h

∂x
(x) =

∂f

∂x
(x)

and therefore

∂F

∂x
(x, h(x)) v =

∂f

∂x
(x) v (12)

∀(x, v) ∈ R
n × R

n :
∂h

∂x
(x) v = 0

Setting e = rv, with r ∈ R, in (10), we obtain

lim
r→0

1
r2

∂V

∂x
(x, rv)f(x) (13)

+ lim
r→0

∂V
∂e (x, rv)

r

F (x + rv, h(x)) − f(x))
r

≤ − lim
r→0

1
r2

V (x, rv)

With (9) and (11), we have that, for all (x, v) in R
n × R

n

lim
r→0

∂V
∂e (x, rv)

r

F (x + rv, h(x)) − f(x))
r

(14)

= v�
∂2V

∂e2
(x, 0)

∂F

∂x
(x, h(x))v .

To compute the limit of the first term of (13), note that the
Taylor expansion of ∂V

∂x (x, e) around e = 0 is given by

∂V

∂x
(x, e) =

∂V

∂x
(x, 0) +

∂

∂x

(
∂V

∂e
(x, 0) e

)

+
1
2

∂

∂x

(
e�

∂2V

∂e2
(x, 0) e

)
+ Ox(|e|3).

With (9), it follows that

lim
r→0

1
r2

∂V

∂x
(x, rv) =

1
2

∂

∂x

(
v�P (x) v

)
. (15)

Similarly, we get

lim
r→0

1
r2

V (x, rv) =
1
2

v�P (x) v . (16)

Then, combining (14), (15), and (16), and using equation
(12), we have that equation (13) becomes

v�P (x)
∂f

∂x
(x) v +

1
2

∂

∂x

(
v�P (x) v

)
f(x) ≤ −1

2
v�P (x) v

∀(x, v) ∈ R
n × R

n :
∂h

∂x
(x) v = 0 .

III. A LINK WITH LOCAL OBSERVABILITY

The necessary condition in (8) is linked to properties
of the family of linear time-varying systems obtained from
linearizing (1) along its solutions. We denote by X(x, t) a
solution to (1) at time t issued from x. Since (1) is assumed
to be complete, for each x, t �→ X(x, t) is defined on
(−∞, +∞). The linearization of f and h evaluated along
a solution X(x, t) gives the functions

Ax(t) =
∂f

∂x
(X(x, t)) , Cx(t) =

∂h

∂x
(X(x, t)) .

They allow us to define the following family of linear time-
varying systems:

ξ̇ = Ax(t) ξ , η = Cx(t) ξ, (17)

with state ξ ∈ R
n and output η ∈ R. Systems (17)

are parameterized by the initial condition x of the chosen
solution X(x, t). Their state transition matrices are denoted
as Φx for a given initial condition x ∈ R

n.



To state our following proposition, we need two defini-
tions.
Definition 3.1:

1) Given x ∈ R
n, system (17) is said to be uniformly

detectable if there exists a continuous function t �→
Kx(t) such that the origin of

ξ̇ = (Ax(t) − Kx(t)Cx(t)) ξ (18)

is uniformly exponentially stable.
2) The family of systems (17) is said to be reconstructible
uniformly in x if there exist strictly positive real
numbers τ and ε such that we have, for all x in R

n,∫ 0

−τ

Φx(s, 0)�Cx(s)�Cx(s)Φx(s, 0)ds ≥ ε I . (19)

Proposition 3.2:

1) Suppose there exist strictly positive real numbers pi

and ps, and a function P : R
n → R

n∗n with positive
symmetric matrix values satisfying condition (8) and

0 < pi I ≤ P (x) ≤ ps I ∀x ∈ R
n, (20)

Then, for each x ∈ R
n, the linear time-varying system

(17) is detectable.
2) Conversely, suppose that the family of systems (17) is
reconstructible uniformly in x. Furthermore, assume
that the functions f and h have bounded differential.
Then, there exist a strictly positive real number λ and
a continuous function P : R

n → R
n∗n satisfying (20)

such that the system

Π̇ = −Π
∂f

∂x
(x) − ∂f

∂x
(x)�Π

+
∂h

∂x
(x)�

∂h

∂x
(x) − λΠ,

ẋ = f(x)

(21)

admits the set {(x, Π) ∈ R
n × R

n∗n : Π = P (x)} as
an invariant manifold.
Proof: We show item 1) first. We start by establishing

the existence of a continuous function k : R
n → R satisfying

for all x in R
n

LfP (x) ≤ k(x)
∂h

∂x
(x)�

∂h

∂x
(x) − 1

2
P (x) . (22)

For this, let Ci be the compact set

Ci = {x ∈ R
n : i ≤ |x| ≤ i + 1}.

There exists a real number ki such that for all k ≥ ki, we
have for all x in Ci

LfP (x) ≤ k
∂h

∂x
(x)�

∂h

∂x
(x) − 1

2
P (x) . (23)

Indeed, if not, with S
n being the unit sphere in R

n, there is
a sequence (xn, vn) in Ci × S

n satisfying :

v�n LfP (xn) vn +
1
2

v�n P (xn) vn ≥ n

∣∣∣∣∂h

∂x
(xn) vn

∣∣∣∣
2

.

Since the functions LfP and P are continuous, the left hand
side is bounded. So any accumulation point (xω, vω), known
to exist by compactness of Ci × S

n, satisfies

v�ω LfP (xω) vω + 1
2

v�ω P (xω) vω ≥ 0 ,∣∣∣∣∂h

∂x
(xω) vω

∣∣∣∣
2

= 0 .
(24)

Since from (20) v�ω P (xω) vω is strictly positive, (24) con-
tradicts (8). Then, (23) holds. It follows that any continuous
function k satisfying

k(x) ≥ ki ∀x ∈ Ci , ∀i

satisfies the claim.
Now, to any x ∈ R

n, we associate the functions :

Πx(t) = P (X(x, t)) , Vx(ξ, t) = ξ�Πx(t) ξ ,

Kx(t) =
k(X(x, t))

2
Πx(t)−1 Cx(t)� .

We have :

pi |ξ|2 ≤ Vx(ξ, t) ≤ ps |ξ|2 ∀(x, t, ξ) (25)

and, with (22) and (7) :

d

dt

(
v�Πx(t) v

)
=

∂

∂x

(
v�P (x) v

)
f(x)

∣∣∣∣
x=X(x,t)

,

≤ −v�Πx(t) v − 2 v�Πx(t) (Ax(t) − Kx(t)Cx(t)) v .

So, for ξ̇ given by (18), we get :

d

dt
Vx(ξ, t) ≤ −Vx(ξ, t) .

The conclusion follows with (25).

To show item 2), note that, by boundedness of ∂f
∂x and

∂h
∂x ,

there exist scalars M1 and M2 such that

|Φx(t, s)| ≤ exp(M1|t − s|) , |Cx(t)| ≤ M2

∀(x, t, s) ∈ R
n × R × R .

Let λ > 2M1. Define

P (x) = (26)
lim

T→−∞

∫ 0

T

exp(λs)Φx(s, 0)�Cx(s)�Cx(s)Φx(s, 0)ds .

Since, for each x, we have

| exp(λs)Φx(s, 0)�Cx(s)�Cx(s)Φx(s, 0)|
≤ M2

2 exp([λ − 2M1]s) ∀s ≤ 0 ,

and, for each s, the function x �→ X(x, s) and therefore
the functions x �→ (Φx(s, 0), Cx(s)) are continuous, P is a
continuous function on R

n. Using (19), it satisfies, for all x
in R

n,

P (x) ≥
∫ 0

−τ

exp(λs)Φx(s, 0)�Cx(s)�Cx(s)Φx(s, 0)ds

≥ ε exp(−λτ ) I ∀x ∈ R
n,



P (x) ≤ M2
2

∫ 0

−∞
exp(λs) exp(2M1|s|)ds I =

M2
2

λ − 2M1
I

Then, the bounds in (20) hold with pi = ε exp(−λτ ) and
ps = M2

2
λ−2M1

.
To conclude our proof, it remains to show that

(X(x, t), P (X(x, t)) is a solution of (21). For this it is

sufficient to prove that
d

dt
P (X(x, t)) exists and satisfies

d

dt
P (X(x, t)) = −P (X(x, t))Ax(t) − Ax(t)�P (X(x, t))

+ Cx(t)�Cx(t) − λP (X(x, t)) . (27)

Evaluating (26) along X(x, t) gives

P (X(x, t)) = lim
T→−∞

∫ 0

T

exp(λs)ΦX(x,t)(s, 0)�CX(x,t)(s)�

× CX(x,t)(s)ΦX(x,t)(s, 0)ds

where, by definition,

CX(x,t)(s) =
∂h

∂x
(X(X(x, t), s))

=
∂h

∂x
(X(x, t + s)) = Cx(t + s) .

(28)

Similarly, we have

AX(x,t)(s) = Ax(t + s) (29)

and therefore

ΦX(x,t)(s, 0) = Φx(s + t, 0)Φx(0, t) . (30)

Note finally that

Φx(s, r)Φx(r, s) = I ∀(s, r)

implies

∂Φx

∂r
(s, r) = −Φx(s, r)Ax(r) ∀(s, r) . (31)

Using the expressions above, and changing s+t into s inside
the integral, P (X(x, t)) can be expressed as

P (X(x, t))

= lim
T→−∞

∫ 0

T

exp(λs)Φx(0, t)�Φx(s + t, 0)�Cx(t + s)�

× Cx(t + s)Φx(s + t, 0)Φx(0, t)ds ,

= exp(−λt)Φx(0, t)�

×
[

lim
T→−∞

∫ t

T

exp(λs)Φx(s, 0)�Cx(s)�

× Cx(s)Φx(s, 0) ds

]
Φx(0, t) .

We conclude that (27) holds by taking the limit of
P (X(x, t + r)) − P (X(x, t))

r
when r goes to 0, with the

help of (31).

Item 1) in Proposition 3.2 indicates that the existence of
P satisfying (1) is closely related to the local observability
information of (1). The second item, and more specifically
the expression (26), suggests a method to approximate P (x).

Given a point x ∈ R
n where we want to evaluate P , we

compute the solution X(x, t) to ẋ = f(x) backward in time
from the initial condition x, at time t = 0, up to negative time
t = −T , for some T > 0 such that exp(−λT ) is sufficiently
small. Then, P (x) is given by Π(0), the solution at time
t = 0 of

Π̇ = −ΠAx(t) − Ax(t)�Π + Cx(t)�Cx(t) − λΠ

with initial condition Π(−T ) = 0 at time t = −T .

IV. SUFFICIENT CONDITIONS

In this section, we employ a symmetric matrix field P
satisfying

LfP (x) − ∂h

∂x
(x)�

∂h

∂x
(x) < 0 ∀x ∈ R

n

to design the function F of the observer (2). To that end,
we use P as a Riemannian metric on R

n. Then, define the
length of a C1 path γ between points x1 and x2 as

L(γ)
∣∣∣s2

s1

=
∫ s2

s1

√
dγ

ds
(s)

�
P (γ(s))

dγ

ds
(s) ds

where
γ(s1) = x1 , γ(s2) = x2 .

The Riemannian distance d(x1, x2) between two such points
is then the minimum of L(γ)

∣∣∣s2

s1

among all possible piece-

wise C1 path γ between x1 and x2. With the Hopf-Rinow
Theorem (see [3, Lemma VII.7.8]), we know that, if every
geodesic can be maximally extended to R, then the minimum

of L(γ)
∣∣∣s2

s1

is actually given by the length of a (maybe

nonunique) geodesic, which is called a minimal geodesic.
In the following, γ∗ denotes such a minimal geodesic.
Lemma 4.1: Suppose that a function P : R

n → R
n∗n

with symmetric values satisfies

0 < P (x) ∀x ∈ R
n , lim

r→∞
r2pi(r) = +∞ , (32)

where, for any positive real number r,

pi(r) = min
x:|x|≤r

min
v:|v|=1

v�P (x)v .

Then, with P as Riemannian metric, any geodesic can be
maximally extended to R.

Proof: Let x1 and x2 be any point in the ball Br

centered at the origin and with radius r. The Euclidean
distance |x1 − x2| satisfies∫ s2

s1

∣∣∣∣dγ

ds
(s)

∣∣∣∣ ds ≥ |x1 − x2|, .

where γ is any C1 path between x1 and x2. This implies :

L(γ)
∣∣∣s2

s1

≥
√

pi(r)
∫ s2

s1

∣∣∣∣dγ

ds
(s)

∣∣∣∣ ds ≥
√

pi(r) |x1 − x2| .
(33)

Let γ be any geodesic maximally defined on (σ−, σ+). By
definition, it satisfies

dγ

ds
(s)

�
P (γ(s))

dγ

ds
(s) = 1 ∀s ∈ (σ−, σ+) . (34)



Let [s1, s2] be any closed interval contained in (σ−, σ+). The
function γ : [s1, s2] → R

n is bounded (with the Euclidean
norm). We denote

r[s1,s2] = max
s∈[s1,s2]

|γ(s)| .

By continuity, there exists s12 in [s1, s2] satisfying

r[s1,s2] = |γ(s12)|.

Then, from (33), we obtain√
pi(r[s1,s2]) |γ(s12) − γ(s2)| ≤ L(γ)

∣∣∣s2

s12

= |s12 − s2 | .

(35)
Because (σ−, σ+) is the maximal interval of definition of

γ, if σ− is finite, we must have

lim
s1→σ−

∣∣∣∣
(

γ(s1),
dγ

ds
(s1)

)∣∣∣∣ = +∞ .

But, by definition of s12, we have the implication

lim
s1→σ−

|γ(s1)| = +∞ ⇒ lim
s1→σ−

|γ(s12)| = +∞

and therefore, with assumption (32),

lim
s1→σ−

√
pi(r[s1,s2]) |γ(s12) − γ(s2)| = +∞ .

This contradicts (35). Then, we must have

lim
s1→σ−

∣∣∣∣dγ

ds
(s1)

∣∣∣∣ = +∞ .

But, again, this contradicts (34) since we just established
that γ is bounded on (σ−, σ+), which, with (32), implies
that P ◦ γ is bounded away from 0.
The same arguments apply to show that σ+ = +∞.

In the following the function P is assumed to satisfy
the conditions of Lemma 4.1. Consequently, the Riemannian
distance is given by the length of minimal geodesics.
With these preliminaries, our problem is now to define

the observer vector field x̂ �→ F (x̂, y) so that it makes the
Riemannian distance d(x̂, x) between estimated state x̂ and
system state x to decrease along solutions. More precisely,
let γ∗ be a minimal geodesic satisfying

γ∗(0) = x , γ∗(ŝ) = x̂ .

Then, the Riemannian distance d(x̂, x) is

d(x̂, x) = L(γ∗)
∣∣∣ŝ
0

= |ŝ| .

As already remarked in the proof of Proposition 2.1, a
necessary condition for having the set A in (6), which is
also the set of pairs (x̂, x) with d(x̂, x) = 0, stable is

F (x, h(x)) = f(x) ∀x ∈ R
n . (36)

This is a first constraint we impose on F . It implies that the
observer contains also all solutions to (1). Then to study how
the distance d(x̂, x) evolves along the solutions, we define a
C1 function Γ as a solution of

∂Γ
∂t

(s, t) = F (Γ(s, t), h(x)) , Γ(s, 0) = γ∗(s) .

From the first order variation formula (see [14, Theorem
6.14] or [7, Theorem 5.7] for instance), we get

d

dt
d(x̂, x) =

dγ∗

ds
(ŝ)

�
P (γ∗(ŝ))F (γ∗(ŝ), y) (37)

−dγ∗

ds
(0)

�
P (γ∗(0))F (γ∗(0), y) .

Since the last term on the right-hand side is imposed by (36),
to obtain d

dtd(x̂, x) nonpositive we are left with choosing F

so that dγ∗

ds (ŝ)
�

P (γ∗(ŝ))F (γ∗(ŝ), y) is negative enough to
dominate that last term. Satisfying this requirement would
not be a problem if dγ∗

ds
(ŝ) were known. Indeed, by defini-

tion, since
γ∗(ŝ) = x̂,

it would be sufficient to choose, at least when h(x̂) is far
from y,

F (x̂, y) = −k(x̂, y)P (x̂)−1 dγ∗

ds
(ŝ)

with k : R
n×R → R≥0 an arbitrary C1 function. But dγ∗

ds (ŝ)
represents the direction in which the state estimate x̂ “sees”
the system state x along a minimal geodesic. Unfortunately,
such a direction is unknown and we know only that x belongs
to the following level set of the output function

H(y) = {x̄ : h(x̄) = y} .

Then, to satisfy the above requirement, we need the property:
given x̂ and y, the level set of the output function H(y) is
“seen” from x̂ within a cone whose aperture is less than
π. This property implies that H(y) is weakly geodesically
convex.
Definition 4.2: A subset S of R

n is said to be weakly
geodesically convex if, for any pair of points (x1, x2) ∈ S,
there exists a minimal geodesic γ∗ satisfying

γ∗(s1) = x1 , γ∗(s2) = x2 ,

γ∗(s) ∈ S ∀s ∈ [s1, s2] .

Lemma 4.3: Let P be a Riemannian metric, a subset S of
R

n such that, for any x̂ in R
n \S, there exists a unit vector

vx̂ such that, for any minimal geodesic γ∗ satisfying

γ∗(0) ∈ S , γ∗(ŝ) = x̂ ,

we have
dγ∗

ds
(ŝ)

�
P (x̂) vx̂ < 0 ,

is weakly geodesically convex.
Proof: Assume that S is not weakly geodesically

convex. Then we can find pair (x1, x2) of points of S such
that for any minimal geodesic γ∗

1 satisfying :

γ∗
1 (0) = x1 , γ∗

1 (s2) = x2

there exists ŝ1 in (0, s2) for which γ∗
1 (ŝ1) is not in S. Let

x̂ = γ∗
1 (ŝ1) .



γ∗
1 is a minimal geodesic satisfying

x1 = γ∗
1 (0) ∈ S , γ∗

1(ŝ1) = x̂ �∈ S .

Similarly
γ∗
2 (s) = γ∗

1 (s2 − s)

defines a minimal geodesic satisfying, with ŝ2 = s2 − ŝ1,

x2 = γ∗
2 (0) ∈ S , γ∗

2(ŝ2) = x̂ �∈ S .

With our assumption we know there exists a unit vector vx̂

satisfying

dγ∗
1

ds
(ŝ1)

�
P (x̂) vx̂ < 0 ,

dγ∗
2

ds
(ŝ2)

�
P (x̂) vx̂ < 0 .

But this impossible since we have :

dγ∗
1

ds
(ŝ1) = −dγ∗

2

ds
(ŝ2) .

This lemma motivates our restriction to consider the level
set of the output function H(y) as being weakly geodesically
convex for any y in R. Actually, we ask for the stronger
property that H(y) is an invariant set for the geodesic flow
which implies the weak geodesic convexity.
Definition 4.4: We say that H(y) is maximally geodesi-

cally convex for any y in R if, for any pair (x, v) in R
n×R

n

satisfying :

∂h

∂x
(x) v = 0 , v�P (x) v = 1 ,

the geodesic γ satisfying :

γ(0) = x ,
dγ

ds
(0) = v

is defined on (−∞, +∞) and takes its values in H(h(x)).
Remark 4.5: The maximal geodesic convexity of H(y) for

any y in R holds if we have

∂2h

∂xi∂xj
(x) −

n∑
m=1

∂h

∂xm
(x) Γm

ij (x)

= gi(x)
∂h

∂xj
(x) + gj(x)

∂h

∂xi
(x) ∀(i, j) , ∀x

where Γm
ij are the Christoffel symbols and gi are arbitrary

functions.
More about geodesic convexity can be found in [13] for

instance.
Proposition 4.6: Let P : R

n → R
n∗n be a sufficiently

many time differentiable function with symmetric matrix
values satisfying, for all x in R

n,

0 < pi I ≤ P (x) ≤ ps I (38)

LfP (x) − ∂h

∂x
(x)

� ∂h

∂x
(x) ≤ −qi I < 0 . (39)

Assume the set H(y) is maximally geodesically convex for
any y in R. Under these conditions, for any positive real

number E there exists a continuous function kE : R
n → R

such that the observer given by

F (x̂, y) = f(x̂) + kE(x̂)P (x̂)−1 ∂h

∂x
(x̂) [y − h(x̂)] (40)

renders the set A asymptotically stable with domain of
attraction containing the set {(x, x̂) : |x̂− x| < E}.

Proof: First we observe, with the help of Lemma 4.1,
that our assumptions on P imply that the Riemannian dis-
tance d(x1, x2) is given by the length of minimal geodesics
between x1 and x2 and satisfies :

pi |x1 − x2| ≤ d(x1, x2) ≤ ps |x1 − x2| . (41)

This implies that we have the inclusion :

{(x, x̂) : |x̂−x| < E} ⊂ {(x, x̂) : d(x̂, x) < psE} . (42)

(38) and (39) imply also that we have

LfP (x) − ∂h

∂x
(x)

� ∂h

∂x
(x) ≤ − qi

ps
P (x) ∀x ∈ R

n . (43)

Now, for any pair (x̂, x) in R
n × R

n and any minimal
geodesic γ∗ satisfying :

γ∗(0) = x , γ∗(ŝ) = x̂ ,

(40) with y = h(x), gives :

dγ∗

ds
(ŝ)

�
P (γ∗(ŝ)) [F (γ∗(ŝ), y) − f(γ∗(ŝ))]

−dγ∗

ds
(0)

�
P (γ∗(0)) [F (γ∗(0), y) − f(γ∗(0))]

= −kE(x̂)
d h ◦ γ∗

ds
(ŝ) (h ◦ γ∗(ŝ) − h(x)) .

On the other hand, we have :[
dγ∗

ds
(ŝ)

�
P (x̂)f(x̂) − dγ∗

ds
(0)

�
P (x)f(x)

]

=
∫ ŝ

0

d

ds

(
dγ∗

ds
(s)

�
P (γ∗(s)) f(γ∗ (s))

)
ds ,

But, with the definition of the Lie derivative LfP and (43),
we have :

d

ds

(
dγ∗

ds
(s)

�
P (γ∗(s)) f(γ∗ (s))

)

=
1
2

dγ∗

ds
(s)

�
LfP (γ∗(s))

dγ∗

ds
(s) ,

≤ 1
2

d h ◦ γ∗

ds
(s)2 − qi

2ps
,

where, in the last equation, we have used :

dγ∗

ds
(s)

�
P (γ∗(s))

dγ∗

ds
(s) = 1 .

So, with (37), we have obtained :

d

dt
d(x̂, x) ≤ 1

2

∫ ŝ

0

d h ◦ γ∗

ds
(s)2 − qi

2ps
ŝ



− kE(x̂)
d h ◦ γ∗

ds
(ŝ) (h ◦ γ∗(ŝ) − h(x)) .

By integrating by parts and using the fact that d(x̂, x) = ŝ,
this yields:

d

dt
d(x̂, x) ≤ − qi

2ps
d(x̂, x) (44)

−
[
kE(x̂) − 1

2

]
d h ◦ γ∗

ds
(ŝ) (h(x̂) − h(x))

− 1
2

∫ ŝ

0

[
d2 h ◦ γ∗

ds2
(s) (h ◦ γ∗(s) − h(x))

]
ds .

In view of (41) and (42), to complete our proof, it suffices
to show the existence of kE such that we have :

d

dt
d(x̂, x) ≤ − qi

4ps
d(x̂, x) ∀(x, x̂) ∈ D

where D is the open set

D = {(x, x̂) : d(x̂, x) < psE} .

As a preliminary step for this, we observe that, for any pair
(x̂, x) in R

n × R
n satisfying :

h(x̂) �= h(x)

and any geodesic γ satisfying :

γ(0) = x , γ(ŝ) = x̂ ,

we have :
d h ◦ γ

ds
(s) (h ◦ γ(s) − h(x)) > 0 ∀s �= 0 . (45)

Indeed assume there exists s satisfying :

d h ◦ γ

ds
(s) =

∂h

∂x
(γ(s))

dγ

ds
(s) = 0 ,

dγ

ds
(s)

�
P (γ(s))

dγ

ds
(s) = 1 .

Then the maximal geodesic convexity of H(h(γ(s)) implies :

h ◦ γ(s) = h ◦ γ(0) = h(x) ∀s

which contradicts :

h ◦ γ(ŝ) = h(x̂) �= h(x) .

So
d h ◦ γ

ds
has a constant sign. But, since we have :

h(x̂) − h(x) =
∫ ŝ

0

d h ◦ γ

ds
(s) ds ,

this sign must be the same as the one of as h(x̂) − h(x).
Now, for each integer i, we introduce the compact set :

Di = {(x, x̂) : d(x̂, x) ≤ psE , i ≤ |x̂| ≤ i + 1}

and we remark that, for a given geodesic γ satisfying γ(0) =
x , the functions

s �→
d h◦γ

ds
(s) (h ◦ γ(s) − h(xn))

s
,

s �→ 1
2s

∫ s

0

[
d2 h ◦ γ

ds2
(s) (h ◦ γ(s) − h(x))

]
ds

are well defined and continuous and satisfy :

lim
s→0

1
2s

∫ s

0

[
d2 h ◦ γ

ds2
(s) (h ◦ γ(s) − h(x))

]
ds = 0 .

Let us prove the existence of a real number ki such that, if
the function kE satisfies :

kE(x̂) ≥ ki ∀x̂ : i ≤ |x̂| ≤ i + 1 ,

then, for any pair (x̂, x) in Di and any minimal geodesic γ∗

satisfying :

γ∗(0) = x , γ∗(ŝ) = x̂ ,

we have :

qi

4ps
+ kE(x̂)

d h◦γ∗

ds (ŝ) (h ◦ γ∗(ŝ)) − h(x))
ŝ

≥ − 1
2ŝ

∫ ŝ

0

[
d2 h ◦ γ∗

ds2
(s) (h ◦ γ∗(s) − h(x))

]
ds

If ki would not exist, we could find a sequence
(ŝn, xn, x̂n, γ∗

n), with (xn, x̂n) in Di and γ∗
n a minimal

geodesic satisfying

γ∗
n(0) = xn , γ∗

n(ŝn) = x̂n ,

such that

qi

4ps
+

[
n − 1

2

] d h◦γ∗
n

ds
(ŝn) (h ◦ γ∗

n(ŝn)) − h(xn))
ŝn

(46)

≤ − 1
2ŝn

∫ ŝn

0

[
d2 h ◦ γ∗

n

ds2
(s) (h ◦ γ∗

n(s) − h(x))
]

ds .

Because (xn, x̂n) is in Di, and γ∗
n is a minimal geodesic,

we have :

pi |γ∗
n(s)−x| ≤ d(γ∗

n(s), x) ≤ ŝn ≤ psE ∀s ∈ [0, ŝn] .

This implies that γ∗
n : [0, psE] → R

s takes its values in a
compact set independent of n. γ∗

n being also a solution of
the geodesic equation, it follows (see [5, Theorems 5, §1]
for instance) that there is subsequence denoted n1 and a
quadruple (ŝω, xω, x̂ω, γω) such that :

lim
n1→∞

(ŝn1 , xn1, x̂n1) = (ŝω , xω, x̂ω),

lim
n1→∞

γ∗
n1

(s) = γω(s) uniformly in s ∈ [0, psE]

where γω is a solution of the geodesic equation and therefore
a geodesic satisfying γω(0) = xω, γω(ŝω) = x̂ω. With
(45), this convergence implies also :

− qi

4ps
(47)

≥ 1
2ŝω

∫ ŝω

0

[
d2 h ◦ γω

ds2
(s) (h ◦ γω(s) − h(x))

]
ds .

On the other hand, again since γ∗
n : [0, psE] → R

s takes
its values in a compact set independent of n, the functions h,
∂h
∂x
and ∂2

∂x2 restricted to this compact set are continuous and
bounded. The same hold, from the geodesic equation and
completeness, for γ∗

n,
dγ∗

n

ds
and d2γ∗

n

ds2 restricted to [0, psE].



This implies that the right hand side of (46) is bounded, say
by B. Consequently, we have :

d h ◦ γ∗
n

ds
(ŝn) (h ◦ γ∗

n(ŝn)) − h(xn)) ≤ BpsE

n− 1
2

.

With (45), this implies :

d h ◦ γω

ds
(ŝω) (h ◦ γω(ŝω)) − h(xω)) = 0 .

We must have :

h(x̂ω) − h(xω) = h ◦ γω(ŝω) − h(xω) = 0 . (48)

Indeed, if not, we get :

γω(ŝω) = x̂ω ,
dγω

ds
(ŝω) = v ,

∂h

∂x
(x̂ω) v = 0 , v�P (x̂ω) v = 1 .

With the maximal geodesic convexity of H(y) for any y, this
implies :

h(γω(s)) = h(x̂ω) ∀s

which is a contradiction for s = 0.
So now either

ŝω = 0 (49)

or we have

h(γω(s)) = h(xω) ∀s . (50)

To prove the latter, we remark that, if ŝω �= 0, then (48)
implies that the function h ◦ γω has a stationary point in the
interval [0, ŝω], i.e. there exists s0 satisfying :

0 =
d h ◦ γω

ds
(s0) =

∂h

∂x
(x0) v0

with the notations

x0 = γω(s0) , v0 =
dγω

ds
(s0) .

So, as above, the maximal geodesic convexity of H(y) for
any y implies (50).
But whether we have (49) or (50), we obtain :

1
2ŝω

∫ ŝω

0

[
d2 h ◦ γω

ds2
(s) (h ◦ γω(s) − h(x))

]
ds = 0

which contradicts (47).
Hence we have established the existence of ki by contra-

diction.
The proof is completed by picking kE as any continuous

function satisfying :

kE(x̂) ≥ ki ∀x̂ : i ≤ |x̂| ≤ i + 1 .

According to Proposition 4.6, we are able to design an
observer provided we have a function P satisfying (38)
and (39) but also making the level set H(y) maximally
geodesically convex for any y in R. It is interesting to note
that this condition is satisfied each time there exists an ob-
server whose convergence can be established with a quadratic
Lyapunov function which depends only on the estimation
error (see [12]) and with one of the state components as
measured output.

V. CONCLUSION

We showed that if the observer problem can be solved
for the system (1), then there exists a symmetric matrix
field P satisfying the property (8). We showed also that the
satisfaction of such property is related to the observability
of the linear time-varying systems obtained from linearizing
(1) along its solutions.
Conversely, from the data of a symmetric matrix field

satisfying (8) and under geodesic convexity of the level sets
of the output function, we constructed an observer which
gives convergence to 0 of the estimation error e, globally
in the estimated state x̂ but semi-globally in the error e.
To prove this result, we use the symmetric matrix field
as a Riemannian metric. We have also established that the
geodesic convexity is somehow necessary if we want to be
able to make the Riemannian distance between estimated
state and system state to decrease along the solutions. But,
at this time, it is not known whether it is necessary for the
observer problem to be solvable.
The main reason that the proposed observer provides

semiglobal rather than global stability of the set x̂ = x
seems to be its elementary form: a copy of the system plus
a correction term vanishing when h(x̂) = y. We expect that
more appropriate choices of the observer can be made to
obtain global asymptotic stability.
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